2013年数学建模A题思路解析

合集下载

2013年数学建模A题概念解释--通行能力

2013年数学建模A题概念解释--通行能力

实际通行能力由于道路、交通和管制条件以及服务水平不同,通行能力分为:基本(理论)通行能力,可能(实际)通行能力和设计(规划)通行能力。

理论通行能力是理想的道路与交通条件下的通行能力。

以理论通行能力为基础,考虑到实际的地形、道路和交通状况,确定其修正系数,再以此修正系数乘以前述的理论通行能力,即得实际道路、交通在一定环境条件下的可能通行能力。

公式(参《路网环境下高速公路交通事故影响传播分析与控制》):单向车行道的可能通行能力Qx=CB*N*fw*fHV*fpQx是单向车行道可能通行能力,即在具体条件下,采用四级服务水平时所能通过的最大交通量veh/h。

CB是基本(理论)通行能力。

N是单向车行道的车道数。

fw是车道宽度和侧向净宽对通行能力的修正系数。

fHV是大型车对通行能力的修正系数,计算公式是:fHV=1/[1+ PHV(EHV-1)],EHV 是大型车换算成小客车的车辆换算系数;PHV是大型车交通量占总交通量的百分比。

fp驾驶员条件对通行能力的修正系数,一般在0.9~1之间基本通行能力基本通行能力【basic traffic capacity】指的是在理想的道路和交通条件下,单位时间一个车道或一条道路某一路段通过小客车最大数,是计算各种通行能力的基础。

通行能力通行能力【traffic capacity】指的是在一定的道路和交通条件下,道路上某一路段单位时间内通过某一断面的最大车辆数。

可分为基本通行能力、可能通行能力和设计通行能力三种。

计算公式为:CAP=s1*λ1+s2*λ2+....+sn*λn(s为饱和流量,λ为绿信比)全红时间越长,通行能力越小周期时长一定的情况下,相位数越多,通行能力越大它是指道路上某一地点、某一车道或某断面处,单位时间内可能通过的最大的交通实体(车辆或行人)数,亦称道路容量、交通容量或简称容量。

一般以辆/h、人/h表示。

车辆多指小汽车,当有其它车辆混入时,均采用等效通行能力的当量小客车单位道路通行能力与交通量不尽相同,交通量是指道路在某一定时段内实际通过的车辆数。

2013全国数模竞赛A题优秀论文祥解

2013全国数模竞赛A题优秀论文祥解

2013高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):车道被占用对城市道路通行能力的影响摘要本文主要研究车道被占用对城市道路通行能力的影响并建立了相应的数学模型。

针对问题一,考虑到交通信号灯的周期,我们选择1分钟为周期,结合不同车辆的标准车当量的折算系数,求出每个采样点的交通量,通过MATLAB作图,从定性方面对道路通行能力进行分析,然后通过基本通行能力和4个修正系数建立动态通行能力的模型。

图像显示,事故发生后(采样点5附近),实际通行能力下降至一个较低水平,并且横断面处的实际能力变化过程呈先下后上的波形变化,在事故解决(第20个采样点)以后,由图像看出实际通行能力持续上升。

针对问题二,利用问题一建立的模型,结合视频二,比较交通事故所占不同车道时横断面的实际通行能力,可以发现二者实际通行能力变化趋势大致相同,但视频二实际通行能力大于视频一实际通行能力。

可见占用车流量大的车道使道路通行能力降低更多。

针对问题三,首先我们建立单车道排队车辆数目的积分模型,单个车道的滞留车辆为上游车流量和实际通行能力的差值。

我们以30s为一个时间段,对视频一中的车流量进行统计,得到横截面处每个监测段的实际通行能力。

本题要求考虑三车道,总体排队长度不容易通过积分模型确定,所以我们将队列长度问题转化为车辆数目问题,通过视频资料统计120米对应24辆车,据此关系转换,从而得到车辆排队长度与事故横断面实际通行能力、事故持续时间和上游车流量的关系。

针对问题四,在对问题3研究的基础上,根据问题3建立的数学模型,建立起某一段时间间隔车辆排队的长度,然后,通过求得的关系得到当排队长度为140m的时候所对应的时间段,由于每段时间间隔设为30s,因此,可以求得排队长度到达上游时用的时间为347.7273s。

关键词:交通事故车道占用通行能力排队论一、问题的重述车道被占用是指因交通事故、路边停车、占道施工等因素,导致车道或道路横断面通行能力在单位时间内降低的现象。

2013年东北三省大学生数学建模竞赛A题

2013年东北三省大学生数学建模竞赛A题

2013年“深圳杯”数学建模夏令营
A题:食品质量安全抽检数据分析
“民以食为天”,食品安全关系到千家万户的生活与健康。

随着人们对生活质量的追求和安全意思的提高,食品安全已成为社会关注的热点,也是政府民生工程的一个主题。

城市食品的来源越来越广泛,人们消费加工好的食品的比例也越来越高,因此除食材的生产收获外,食品的运输、加工、包装、贮存、销售以及餐饮等每一个环节皆可能影响食品的质量与安全。

另一方面,食品质量与安全又是一个专业性很强的问题,其标准的制定和抽样检测及评价都需要科学有效的方法。

深圳是食品抽检、监督最统一、最规范、最公开的城市之一。

请下载2010年、2011年和2012年深圳市的食品抽检数据(注意蔬菜、鱼类、鸡鸭等抽检数据的获取),并根据这些资料来讨论:
1.如何评价深圳市这三年各主要食品领域微生物、重金属、添加剂含量等安全情况的
变化趋势;
2.从这些数据中能否找出某些规律性的东西:如食品产地与食品质量的关系;食品销
售地点(即抽检地点)与食品质量的关系;季节因素等等;
3.能否改进食品抽检的办法,使之更科学更有效地反映食品质量状况且不过分增加监
管成本(食品抽检是需要费用的),例如对于抽检结果稳定且抽检频次过高的食品
领域该作怎样的调整?
[注] 数据下载网站:(深圳市市场监督管理局网站)
1.点击首页中间的食品安全监管(专题专栏)
2.点击食品安全监管菜单
3.点击监督抽查。

2013年全国数学建模竞赛A题

2013年全国数学建模竞赛A题

2013高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。

如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。

以上内容请仔细核对,提交后将不再允许做任何修改。

如填写错误,论文可能被取消评奖资格。

)日期: 2013 年月日赛区评阅编号(由赛区组委会评阅前进行编号):2013高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号)车道被占用对城市道路通行能力的影响摘要道路堵塞时车辆排队长度和排队持续时间时交通管理与控制部门制定和实施管理控制措施的重要依据,对道路堵塞时车辆排队和排队时间计算方法进行研究具有重要的实际意义和应用价值。

本文以交通事故为例讨论车道被占用对城市道路通行能力的影响,从而对交通管理部门正确引导车辆行驶、审批占道施工、设计道路渠化方案、设计路边停车位等问题提供理论依据。

2013-2014年全国数模竞赛a题讲解

2013-2014年全国数模竞赛a题讲解

2013-2014年全国数模竞赛a题讲解2013-2014年全国数模竞赛A题是一道涉及建模和优化等数学概念的综合性问题。

本文将对该题进行详细的解析和讲解,帮助读者理解题目的要求,并提供一些解题思路和方法。

第一部分:理解题目该题目的题面由多个部分组成,涉及到原问题、目标、约束条件等内容。

在进行解题之前,我们首先需要完全理解题目的要求。

原问题是一个货车经过N个城市,每个城市都有相应的货物量,目标是使得货车的路径长度最短。

同时,题目要求我们设计一个数据模型,来描述这个问题。

第二部分:建立数学模型为了更好地解决问题,我们需要建立一个数学模型来描述货车的路径以及货物量的分配。

在本部分,我们将详细讲解如何建立这个模型。

假设有N个城市,每个城市的货物量分别为w1, w2, ..., wN。

我们可以将货车的路径表示为一个N*N的矩阵D,其中D[i][j]表示从第i个城市到第j个城市的距离。

同时,我们引入一个N维的向量x,其中x[i]表示从第i个城市运送的货物量。

我们的目标是最小化路径长度,即最小化下式:Minimize ∑∑D[i][j]*x[i]*x[j] (i从1到N, j从1到N)同时,我们有一些约束条件需要满足:1. 每个城市必须运送货物:∑x[i] = W,其中W是总的货物量。

2. 每个城市的货物量不能超过其容量:x[i] <= C,其中C是城市i的容量。

第三部分:优化求解在第二部分中,我们已经建立了数学模型,现在我们需要找到一种优化方法来求解这个模型。

在现实生活中,这类问题通常是NP难问题,因此我们需要采用一些启发式搜索算法。

在本部分,我们将介绍一种常用的优化方法,即遗传算法。

遗传算法模拟了自然界中的进化过程,通过不断筛选和演化来得到最优解。

遗传算法的优化步骤如下:1. 初始化种群:随机生成一组初始解,也就是一组路径和货物分配方案。

2. 评估适应度:根据路径长度和货物量是否满足约束条件,计算每个解的适应度。

2013年美国大学生数学建模大赛A题 一等奖

2013年美国大学生数学建模大赛A题 一等奖

最终的布朗尼蛋糕盘Team #23686 February 5, 2013摘要Summary/Abstract为了解决布朗尼蛋糕最佳烤盘形状的选择问题,本文首先建立了烤盘热量分布模型,解决了烤盘形态转变过程中所有烤盘形状热量分布的问题。

又建立了数量最优模型,解决了烤箱所能容纳最大烤盘数的问题。

然后建立了热量分布最优模型,解决了烤盘平均热量分布最大问题。

最后,我们建立了数量与热量最优模型,解决了选择最佳烤盘形状的问题。

模型一:为了解决烤盘形态转变过程中所有烤盘形状热量分布的问题,我们假设烤盘的任意一条边为半无限大平板,结合第三边界条件下非稳态导热公式,建立了不同形状烤盘的热量分布模型,模拟出不同形状烤盘热量分布图。

最后得到结论:在烤盘由多边形趋于圆的过程中,烤焦的程度会越来越小。

模型二:为了解决烤箱所能容纳最大烤盘数的问题,本文建立了随烤箱长宽比变化下的数量最优模型。

求解得到烤盘数目N 随着烤箱长宽比和烤盘边数n 变化的函数如下:AL W L W cont cont cont N 4n2nsin 1222⎪⎭⎫ ⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+⋅--=π模型三:本文定义平均热量分布H 为未超过某一温度时的非烤焦区域占烤盘边缘总区域的百分比。

为了解决烤盘平均热量分布最大问题,本文建立了热量分布最优模型,求解得到平均热量分布随着烤箱长宽比和形状变化的函数如下:n sin n cos -n 2nsin 22ntan1H ππδπδπ⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛⋅-=A结论是:当烤箱长宽比为定值时,正方形烤盘在烤箱中被容纳的最多,圆形烤盘的平均热量分布最大。

当烤盘边数为定值时,在长宽比为1:1的烤箱中被容纳的烤盘数量最多,平均热量分布H 最大。

模型四:通过对函数⎪⎭⎫ ⎝⎛n ,L W N 和函数⎪⎭⎫⎝⎛n ,L W H 作无量纲化处理,结合各自的权重p 和()p -1,本文建立了数量和热量混合最优模型,得到烤盘边数n 随p值和LW的函数。

2013数学建模A题问题一解析

2013数学建模A题问题一解析

2013数学建模A题问题一解析作者:徐小玲杨玉娥贾雅伟王生锋来源:《中小企业管理与科技·下旬刊》2014年第12期摘要:以2013全国大学生数学建模A题为基础,对问题一给出了详细解答,最后对问题一的答题要点进行了详尽地分析。

关键词:城市道路通行能力 ;插值和多项式拟合 ;车流量近年来,城市中交通事故频繁发生,车道被占用致使交通堵塞更是司空见惯,交通问题已成为困扰世界各大城市的主要社会热点问题。

本文对于2013数学建模中的问题一进行了详细的解答,记录并分析视频1发生事故至事故撤离期间事故所处横断面距离上游路口为120m 时,不同时刻的堵塞车辆数,使用EXCEL处理统计数据,然后运用MATLAB拟合出在事故发生至事故撤离期间上述情形下的堵塞车辆数变化趋势图像,从而确定实际通行能力的变化趋势。

1 预备知识1.1 问题背景资料与条件由于城市道路具有交通流密度大、连续性强等特点,一条车道被占用,也可能降低路段所有车道的通行能力,即使时间短,也可能引起车辆排队,出现交通阻塞。

如处理不当,甚至出现区域性拥堵,影响城市车辆区域通行能力。

车道占用是指因交通事故、路边停车、占道施工等因素,导致车道或道路横断面(垂直于线路轴线的断面)通行能力在单位时间内降低的现象。

1.2 问题的重要性分析近年来,城市中交通事故频繁发生,车道被占用致使交通堵塞更是司空见惯,交通问题已成为困扰世界各大城市的主要社会问题之一。

正确估算车道被占用对城市道路通行能力的影响程度,将为交通部门正确引导车辆行驶、审批占道施工、设计道路渠化方案、设置路边停车位和设置非港湾式公交车站等提供理论依据。

2 问题一的基本建模与求解记录视频1在事故发生至事故撤离期间城市车辆在一定横断面、一定时间内的车辆堵塞数量,通过对记录数据进行理论统计与分析后,得出在事故所处横断面城市车辆的实际通行能力[1],得出一定的变化过程。

表1 ;采用标准小汽车当量数计算车型折算系数及其车辆数表■标准车当量数:M=■AiBi(i=1,2…)(1)2.1 视频1中采集数据周期1min时事故所处横断面车辆通过能力根据表1和公式(1),采集数据周期1min时,记录统计视频一中每一个数据周期事故所处横断面距离上游路口为120m的标准堵塞车辆数,然后运用Excel统计整理数据得表2。

2013高教社杯全国大学生数学建模竞赛A题

2013高教社杯全国大学生数学建模竞赛A题

2013高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。

如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话): &&& 所属学校(请填写完整的全名):东北电力大学参赛队员 (打印并签名) :1. 吴泽伟楚鑫指导教师或指导教师组负责人 (打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。

以上内容请仔细核对,提交后将不再允许做任何修改。

如填写错误,论文可能被取消评奖资格。

)日期: 2013 年 9 月 15 日赛区评阅编号(由赛区组委会评阅前进行编号):车道被占用对城市道路通行能力的影响摘要在现代这个交通拥挤非常严重的时代,突发的交通事故更是加剧了交通拥挤的程度,严重影响道路交通的运行效率。

确定交通事故影响范围及其对道路交通通行能力的影响程度,对于交通管理部门制定合理、有效的拥挤疏导措施具有非常重要意义。

针对这个问题,我们可以在做出合理假设的基础上,通过对附件中的视频数据进行分析归纳,综合考虑交通事故对道路通行能力的影响因素,并将各因素之间的关系进行分析总结,以期能够解决实际问题1、根据视频1(附件1),观察交通事故发生后车辆通过事故横断面的实际车流量随着时间变化的情况,进行数据的收集;结合交通信号灯的变化,利用MA TLAB对视频数据进行处理,实现道路实际通行能力的图像以及函数拟合,进而描述视频中交通事故发生至撤离期间,事故所处横断面实际通行能力的变化过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013国赛思路解析A题
(仅供参考,内部使用,请勿外传)
此题为交通运输类问题,可以视作优化类问题,而且本题重点在于目标的选取和目标函数的建立,而最优值的求解反而不是问题的重点(因为哪里会发生交通事故、持续时间、车流量等等都是不可控制的参数,本题几乎没有可决策变量)。

可以用到的知识有排队论,元胞自动机,模拟仿真等等,用这些手段来建立函数关系;
关键概念:通行能力,指单位时间内通过断面的最大车辆数TC(traffic capacity)=n/t=vd (n为通过车辆数,t是时间,v为车辆平均速度,d是道路宽度);
问题一:求出函数表达式TC=f(t),可以根据视频中的信息,隔一段时间求一次对应的TC值,再通过插值方法求出解f,或者深入研究事故发生时对车辆行进情况的变化机理来求解f,最后用图像或者解析式来表达出结果;
问题二:求出泛函数表达式TC=g(LN),LN表示车道编号或其组合,此处TC代表问题一中的f函数,这个处理和问题一是一样的,可以用的方法也可以是直接从视频中读取,可以得到LN=(1,2)或(2,3)时的TC关于t的函数,如果采用机理分析方法,如排队论,元胞自动机来仿真这个过程,则可以求出LN=1,2,3时的情况;比较有两种形式:直观比较:将几个函数图像画在一起相互比较,就可以比较LN不同时,对通行能力的影响;
数量化比较:可以将LN不同时的TC关于t的函数作差后积分,求得不同堵车形式对总的通行车辆数的影响;
问题三: ················
问题四:用问题三求出的函数表达式计算结果即可。

相关有用的资料我会及时上传群共享,大家加油!。

相关文档
最新文档