测距仪的原理及分类
测距仪原理

测距仪原理
测距仪原理是通过发送并接收具有特定波长的信号来测量到目标物体的距离。
这些信号可以是电磁波、声波或激光波。
其中一种常用的测距原理是时间差测距法。
它利用声波或激光波的传播速度已知的特性,通过测量发送和接收信号之间的时间差来计算距离。
当发送器发出一束脉冲信号时,它会经过大气或其他介质传播到目标物体,并被目标物体反射回来。
接收器接收到反射信号后,测量发送和接收之间的时间差,并乘以信号传播速度,从而计算出目标物体与测距仪之间的距离。
另一种常用的测距原理是三角测距法,也称为角度测距法。
它利用测距仪上的角度传感器测量目标物体和测距仪之间的角度,并结合测量设备到目标物体的基线长度,通过三角函数计算出目标物体到测距仪的距离。
此外,还有其他常见的测距原理,如相位测距法。
它利用激光波的相位差来计算距离,通过测量反射信号与发射信号的相位差来确定距离。
综上所述,测距仪原理涉及不同的方法和技术,但它们都可以通过测量信号传播时间、角度或相位差来计算目标物体的距离。
测距原理

现在市面上的测距仪主要分为三类:激光测距仪、超声波测距仪、红外测距仪,我们介绍对测距仪原理的分析也主要介绍这三种。
1. 激光测距仪激光测距仪是利用激光对目标的距离进行准确测定的仪器。
激光测距仪在工作时向目标射出一束很细的激光,由光电元件接收目标反射的激光束,计时器测定激光束从发射到接收的时间,计算出从观测者到目标的距离。
激光测距仪是目前使用最为广泛的测距仪,激光测距仪又可以分类为手持式激光测距仪(测量距离0-300米),望远镜激光测距仪(测量距离500-3000米)。
激光测距原理就是激光发射机发出一束激光,激光遇到物体后反射回来,接收机收到反射回来的激光,计算自发出激光到收到激光的时间,用此时间乘以激光的速度再除以2就是测距仪到被测物体见的距离2. 超声波测距仪超声波测距仪是根据超声波遇到障碍物反射回来的特性进行测量的。
超声波发射器向某一方向发射超声波,在发射同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即中断停止计时。
通过不断检测产生波发射后遇到障碍物所反射的回波,从而测出发射超声波和接收到回波的时间差T,然后求出距离L。
超声波测距仪,由于超声波受周围环境影响较大,所以一般测量距离比较短,测量精度比较低。
目前使用范围不是很广阔,但价格比较低,一般几百元左右。
3.红外测距仪用调制的红外光进行精密测距的仪器,测程一般为1-5公里。
利用的是红外线传播时的不扩散原理:因为红外线在穿越其它物质时折射率很小,所以长距离的测距仪都会考虑红外线,而红外线的传播是需要时间的,当红外线从测距仪发出碰到反射物被反射回来被测距仪接受到再根据红外线从发出到被接受到的时间及红外线的传播速度就可以算出距离红外测距的优点是便宜,易制,安全,缺点是精度低,距离近,方向性差。
激光测距仪的测量原理及作用方法随着科技的发展,似乎有大部分的人都还不晓得有激光测距仪,不了解激光测距仪。
甚至有部分工人还在用卷尺量距离,用笔算面积‘体积等等。
测距仪 原理

测距仪原理测距仪是一种用于测量距离的仪器,它在工程、建筑、地理测量和其他领域中有着广泛的应用。
测距仪的原理是基于光学、声学或者无线电波等技术,通过测量信号的传播时间或者信号的反射来确定目标物体与测距仪之间的距离。
本文将介绍测距仪的原理及其工作方式,并对不同类型的测距仪进行简要的分析和比较。
光学测距仪是一种常见的测距仪器,它利用激光或红外线等光源发射出的光束,通过接收器接收光束反射回来的信号,并根据光的传播速度和接收到信号的时间差来计算目标物体与测距仪之间的距离。
光学测距仪具有测量精度高、测量范围广等优点,广泛应用于工程测量、建筑测量、地理测量等领域。
声学测距仪则是利用声波在空气或水中的传播速度来测量距离的仪器。
声学测距仪通常包括一个发射声波的发射器和一个接收声波的接收器,通过测量声波的传播时间来计算目标物体与测距仪之间的距离。
声学测距仪在水下测距、声呐测距等领域有着重要的应用。
另外,无线电波测距仪也是一种常见的测距仪器,它利用无线电波的传播速度来测量距离。
无线电波测距仪通常包括一个发射无线电波的发射器和一个接收无线电波的接收器,通过测量无线电波的传播时间来计算目标物体与测距仪之间的距离。
无线电波测距仪在雷达测距、无线通信、导航定位等领域有着广泛的应用。
总的来说,不同类型的测距仪在测量原理上有所不同,但它们的基本原理都是通过测量信号的传播时间或者信号的反射来确定目标物体与测距仪之间的距离。
在实际应用中,我们可以根据具体的测量需求和环境条件选择合适的测距仪,以达到最佳的测量效果。
在选择测距仪时,我们需要考虑测量精度、测量范围、测量速度、环境适应能力等因素。
不同类型的测距仪在这些方面都有着各自的优势和局限性,因此在实际应用中需要根据具体情况进行选择。
同时,我们还需要注意测距仪的使用方法和维护保养,以确保测距仪的正常工作和长期稳定性。
综上所述,测距仪是一种用于测量距离的重要仪器,它在工程、建筑、地理测量等领域有着广泛的应用。
测距仪的原理

测距仪的原理
测距仪,顾名思义,是用来测量距离的仪器。
它在工程测量、地质勘探、建筑
施工等领域都有着广泛的应用。
那么,测距仪是如何实现测量距离的呢?接下来,我们将深入探讨测距仪的原理。
首先,我们需要了解测距仪的工作原理。
测距仪通常采用激光测距技术,其原
理是利用激光束发射器发射一束激光,并通过接收器接收被测目标反射回来的激光,然后根据激光的发射和接收时间差来计算出目标与测距仪之间的距离。
其次,我们来了解一下激光测距的具体过程。
首先,激光束发射器会向目标发
射一束激光,激光束会在目标表面发生反射。
然后,接收器会接收到被目标表面反射回来的激光,并记录下激光的接收时间。
最后,通过计算激光的发射和接收时间差,就可以得出目标与测距仪之间的距离。
除了激光测距技术,测距仪还有其他测距原理,比如超声波测距、雷达测距等。
超声波测距利用超声波在空气中传播的速度来计算距离,而雷达测距则是利用电磁波在空气中传播的速度来计算距离。
不同的测距原理有着各自的特点和适用范围,可以根据实际需要进行选择。
总的来说,测距仪的原理主要是通过测量激光、超声波或雷达等信号的发射和
接收时间差来计算距离。
不同的测距原理有着各自的优缺点,可以根据实际需求选择合适的测距仪。
测距仪的原理虽然看似复杂,但在实际应用中却能够简单、快速、准确地实现距离测量,为各行各业的工作提供了便利。
测距仪工作原理

测距仪工作原理
测距仪是一种用来测量两点间距离的仪器。
其工作原理可以分为几种不同的方式,包括声波测距、激光测距和电磁测距。
声波测距原理:声波测距利用声波在空气中传播时的速度恒定这一特性进行测距。
仪器发出一个短脉冲声波信号,当这个声波信号遇到障碍物后会反射回来,仪器会计算出声波的往返时间,并使用声波传播速度(通常为声速)乘以时间来计算两点间的距离。
激光测距原理:激光测距利用激光束在空气中传播时的速度快且准确的特性进行测距。
仪器发出一个激光束,激光束会遇到障碍物并反射回来,仪器会计算出激光的往返时间,并使用光速乘以时间来计算两点间的距离。
电磁测距原理:电磁测距利用电磁波在空间中传播时的速度恒定这一特性进行测距。
仪器发出一个电磁波信号,当信号遇到障碍物会发生反射,反射信号由接收器接受并测量时间延迟,然后使用电磁波在空间中的传播速度乘以时间来计算两点间的距离。
这些测距原理在实际的测距仪中可能会有一些变化和改进,但基本的原理是相同的。
通过测量信号的往返时间和使用特定的物理参数(例如声速,光速或电磁波速度),测距仪可以计算出两个点之间的距离。
电子测距仪原理

电子测距仪原理电子测距仪(Electronic Distance Meter,简称EDM)是一种利用电子技术测量距离的仪器。
它在建筑、工程、测绘等领域广泛应用。
本文将详细介绍电子测距仪的原理及其工作方式。
一、激光测距原理电子测距仪通常采用激光测距原理进行测量。
其基本原理是利用激光发射器发出的激光束,经过目标物体后被反射回来,然后通过接收器接收激光信号,根据光的传播速度和反射信号的时间差来计算距离。
二、时间测距法电子测距仪采用的一种常见的测距方法是时间测距法。
它利用光的传播速度和时间的关系来计算距离。
具体步骤如下:1. 发射激光:电子测距仪内置激光发射器,当操作人员按下测量按钮时,激光发射器会发出一束激光束。
2. 接收激光:激光束照射到目标物体上后,会被目标物体反射。
接收器会接收到反射回来的激光信号。
3. 计算时间差:接收器接收到激光信号后,会记录下接收到信号的时间点。
4. 计算距离:根据光的传播速度和接收信号的时间点,电子测距仪可以通过计算得出目标物体与测距仪之间的距离。
三、精确测量的关键因素电子测距仪进行精确测量的关键因素包括:1. 光的传播速度:光在真空中的传播速度约为每秒299792458米,根据这个数值可以计算出测距仪与目标物体之间的距离。
2. 时间测量的精度:电子测距仪需要具备精确的时间测量功能,以确保测量结果的准确性。
3. 激光的功率和焦点:激光的功率和焦点直接影响到测量的范围和精度。
较高功率的激光和较小的焦点可以实现更远距离和更精确的测量。
四、应用领域由于电子测距仪具有准确、高效和便携等特点,它在多个领域得到广泛应用。
以下是几个常见的应用领域:1. 建筑测量:电子测距仪可以用于建筑工地测量建筑物长度、高度、角度等参数,提供准确的测量数据,辅助建筑施工。
2. 工程测量:在工程测量中,电子测距仪可以用于测量道路长度、隧道距离、桥梁高度等参数,为工程规划和设计提供参考。
3. 测绘工程:电子测距仪可以用于测绘工程中的地形测量、地图制作等任务,提高测绘工作的精度和效率。
第四章距离测量..

精度
1cm 10cm
1m
10m 100m
控制LO测GO量
可以采用一组测尺共同测距,以短测尺(精 测尺)保证精度,长测尺(粗测尺)保证测 程,从而也解决了“多值性”的问题。 根据仪器的测程与精度要求,即可选定测尺 数目和测尺精度。
控制LO测GO量
❖ 当待测距离较长时,为了既保证必需的测距精度, 又满足测程的要求。在考虑到仪器的测相精度为千 分之一情况下,我们可以在测距仪中设置几把不同 的测尺频率,即相当于设置了几把长度不同、最小 分划值也不相同的“尺子”,用它们同测某段距离, 然后将各自所测的结果组合起来,就可得到单一的、 精确的距离值。
相位式测距仪:测定仪器发射的测距信号往返于被测距离的 滞后相位来间接推算信号的传播时间,从而求得所测距离的 一类测距仪。
控制LO测GO量
一、电磁波测距仪的分类
思考:取v=3*108m/s,f=15MHZ,当要求测距 误差小于1cm时,脉冲法测距的计时精度、相 位法测距时的测定相位角的精度应达到多少?
❖ 中程光电测距仪:测程在3~15km左右的仪器称为中程 光电测距仪,这类仪器适用于二、三、四等控制网的边 长测量。
❖ 远程激光测距仪:测程在15km以上的光电测距仪,精度 一般可达±(5mm+1×10-6),能满足国家一、二等控制 网的边长测量。
控制LO测GO量
一、电磁波测距仪的分类
3、按载波源,测距仪分为 光波 微波
各等级边长测距的主要技术要求,应符合下表的规定。
平面 控制 网等
级
三等
四等
一级 二、 三级
仪器型号
观测 次数
往返
≤ 5 mm级仪器 11
≤10 mm级仪器 ≤5 mm级仪器
光学测距仪原理【详解】

光电测距仪----亦称光速测距仪,用调制的光波进行精密测距的仪器,测程可达25公里左右,也能用于夜间作业。
一、光电测距原理光电测距仪根据测定时间t的方式,分为直接测定时间的脉冲测距法和间接测定时间的相位测距法。
高精度的测距仪,一般采用相位式。
相位式光电测距仪的测距原理是:由光源发出的光通过调制器后,成为光强随高频信号变化的调制光。
通过测量调制光在待测距离上往返传播的相位差φ来解算距离。
相位法测距相当于用“光尺”代替钢尺量距,而λ/2为光尺长度。
相位式测距仪中,相位计只能测出相位差的尾数ΔN,测不出整周期数N,因此对大于光尺的距离无法测定。
为了扩大测程,应选择较长的光尺。
为了解决扩大测程与保证精度的矛盾,短程测距仪上一般采用两个调制频率,即两种光尺。
例如:长光尺(称为粗尺)f1=150kHz,λ1/2=1 000m,用于扩大测程,测定百米、十米和米;短光尺(称为精尺)f2=15MHz,λ2/2=10m,用于保证精度,测定米、分米、厘米和毫米。
二、光电测距仪及其使用方法1.仪器结构主机通过连接器安置在经纬仪上部,经纬仪可以是普通光学经纬仪,也可以是电子经纬仪。
利用光轴调节螺旋,可使主机的发射——接受器光轴与经纬仪视准轴位于同一竖直面内。
另外,测距仪横轴到经纬仪横轴的高度与觇牌中心到反射棱镜高度一致,从而使经纬仪瞄准觇牌中心的视线与测距仪瞄准反射棱镜中心的视线保持平行,配合主机测距的反射棱镜,根据距离远近,可选用单棱镜(1500m内)或三棱镜(2 500m 内),棱镜安置在三脚架上,根据光学对中器和长水准管进行对中整平。
2.仪器主要技术指标及功能短程红外光电测距仪的最大测程为2 500m,测距精度可达±(3mm+2×10-6×D)(其中D为所测距离);最小读数为1 mm;仪器设有自动光强调节装置,在复杂环境下测量时也可人工调节光强;可输入温度、气压和棱镜常数自动对结果进行改正;可输入垂直角自动计算出水平距离和高差;可通过距离预置进行定线放样;若输入测站坐标和高程,可自动计算观测点的坐标和高程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文章简介测距仪是一种航迹推算仪器,用于测量目标距离,进行航迹推算。
测距仪的形式很多,通常是一个长形圆筒,由物镜、目镜、测距转钮组成,用来
测定目标距离。
测距仪是根据光学、声学和电磁波学原理设计的,用于距离测
量的仪器文章详细内容
那什么是测距仪呢?原理是什么?市面上有哪些测距仪,下文将详细进行介绍。
一.测距仪分类
测距仪从测距基本原理,可以分为以下三类:
1. 激光测距仪
激光测距仪是利用激光对目标的距离进行准确测定的仪器。
激光测距仪在
工作时向目标射出一束很细的激光,由光电元件接收目标反射的激光束,计时
器测定激光束从发射到接收的时间,计算出从观测者到目标的距离。
激光测距仪是目前使用最为广泛的测距仪,激光测距仪又可以分类为手持
式激光测距仪(测量距离0-300米),望远镜激光测距仪(测量距离500-20000米)。
目前市面上主流的都是激光测距仪,手持式激光测距仪全球
前两大品牌是徕卡和博世,右图就是一款主流的手持式激光测距仪。
望远
镜激光测距仪,为远距离激光测距仪,目前在户外使用相当广泛,望远镜激光
测距仪全球前四大品牌是图雅得、博士能、奥尔法和尼康。
四个品牌在产品上
各有特点,2011年,美国激光技术杂志公布的数据,2011年全球单品销售冠军是图雅得YP900,这款测距仪测量精准,反应速度快捷。
2. 超声波测距仪
超声波测距仪是根据超声波遇到障碍物反射回来的特性进行测量的。
超声
波发射器向某一方向发射超声波,在发射同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即中断停止计时。
通过不断检测产生波发射后遇到障碍物所反射的回波,从而测出发射超声波和
接收到回波的时间差T,然后求出距离。
超声波测距仪,由于超声波受
周围环境影响较大,所以一般测量距离比较短,测量精度比较低。
目前使用范
围不是很广阔,但价格比较低,一般几百元左右。
3. 红外测距仪用调制的红外光进行精密测距的仪器,测程一般为1-5公里。
利用的是红
外线传播时的不扩散原理:因为红外线在穿越其它物质时折射率很小,所以长
距离的测距仪都会考虑红外线,而红外线的传播是需要时间的,当红外线从测
距仪发出碰到反射物被反射回来被测距仪接受到再根据红外线从发出到被接受
到的时间及红外线的传播速度就可以算出距离
红外测距的优点是便宜,易制,安全,缺点是精度低,距离近,方向性差。
二. 测距仪原理
激光测距仪一般采用两种方式来测量距离:脉冲法和相位法。
脉冲法测距
的过程是这样的:测距仪发射出的激光经被测量物体的反射后又被测距仪接收,测距仪同时记录激光往返的时间。
光速和往返时间的乘积的一半,就是测距仪
和被测量物体之间的距离。
脉冲法测量距离的精度是一般是在+/- 1米左右。
另外,此类测距仪的测量盲区一般是15米左右。
激光测距是光波测距中的一种测距方式,如果光以速度c在空气中传播在A、B两点间往返一次所需时间为t,则A、B两点间距离D可用下列表示。
D=ct/2
式中:
D——测站点A、B两点间距离;
c——光在大气中传播的速度;
t——光往返A、B一次所需的时间。
由上式可知,要测量A、B距离实际上是要测量光传播的时间t,根据测量时间方法的不同,激光测距仪通常可分为脉冲式和相位式两种测量形
式。
相位式激光测距仪相位式激光测距仪是用无线电波段的频率,对激光束进行幅度调制并测定调制光往返测线一次所产生的相位延迟,再根据
调制光的波长,换算此相位延迟所代表的距离。
即用间接方法测定出光经往返
测线所需的时间,如图所示。
相位式激光测距仪一般应用在精密测距中。
由于其精度高,一般为毫米级,为了有效的反射信号,并使测定的目标限制在与仪器精度相称的某一特定点上,对这种测距仪都配置了被称为合作目标的反射镜。
若调制光角频率为ω,在待测量距离D上往返一次产生的相位延迟为φ,
则对应时间t 可表示为:
t=φ/ω
将此关系代入(3-6)式距离D可表示为
D=1/2 ct=1/2 c·φ/ω=c/(4πf) (Nπ+Δφ)
=c/4f (N+ΔN)=U(N+)
式中:
φ——信号往返测线一次产生的总的相位延迟。
ω——调制信号的角频率,ω=2πf。
U——单位长度,数值等于1/4调制波长
N——测线所包含调制半波长个数。
Δφ——信号往返测线一次产生相位延迟不足π部分。
ΔN——测线所包含调制波不足半波长的小数部分。
ΔN=φ/ω
在给定调制和标准大气条件下,频率c/(4πf)是一个常数,此时距离的测量变成了测线所包含半波长个数的测量和不足半波长的小数部分的测量即测N或φ,由于近代精密机械加工技术和无线电测相技术的发展,已使φ的测量达到很高的精度。
为了测得不足π的相角φ,可以通过不同的方法来进行测量,通常应用最多的是延迟测相和数字测相,目前短程激光测距仪均采用数字测相原理来求得φ。
由上所述一般情况下相位式激光测距仪使用连续发射带调制信号的激光束,为了获得测距高精度还需配置合作目标,而目前推出的手持式激光测距仪是脉
冲式激光测距仪中又一新型测距仪,它不仅体积小、重量轻,还采用数字测相
脉冲展宽细分技术,无需合作目标即可达到毫米级精度,测程已经超过100m,且能快速准确地直接显示距离。
是短程精度精密工程测量、房屋建筑面积测量
中最新型的长度计量标准器具。