第三讲MATLAB预测1回归分析共20页
回归分析的Matlab求解课件

x=[49 54 59 64 69 74 79 84 89 94]
y=[5.4 6.0 6.7 7.0 8.1 9.1 9.8 10.3 11.3 11.8 ]
plot(x,y,‘r.')
5
第5页/共20页
一元线性回归
(2)人口线性增长模型 假设:人口随时间线性地增加,模型:y = a + cx
11.5 5.5 6.5 4.0 9.0 11.0 12.5]; y=[1035 624 1084 1052 1015 1066 704 ... 960 990 1050 839 1030 985 855]; beta0=[0 0 0]; beta=nlinfit(x,y,'fun',beta0) 结果为:beta = -13.1501 217.8686 175.6217
• 解:(1)设施肥量为,产量为,作出散点图观察数据 分布情况:
• 源程序shiyan4_1.m:
• x=[6.0 2.5 7.5 8.5 10.0 7.0 3.0...
• 11.5 5.5 6.5 4.0 9.0 11.0 12.5];
• y=[1035 624 1084 1052 1015 1066 704 ...
x=[ones(size(x1(:,1))),x1(:,2:3),x1(:,5)];y=x1(:,1); [b,bint,r,rint,st]=regress(y,x)
b = 16.8107 0.0630 0.2522
-0.2383
即 y=16.8107+0.0630x1+0.2522x2-0.2383x4
R2=0.9928 , F=1101.878 ,P=0 由R2和F 表明拟合效果很好! (5)预报 当X=108时,Y= 13.952亿; 当X=110时,Y=14.248亿
利用MATLAB进行回归分析

利用MATLAB进行回归分析一、实验目的:1.了解回归分析的基本原理,掌握MATLAB实现的方法;2. 练习用回归分析解决实际问题。
二、实验内容:题目1社会学家认为犯罪与收入低、失业及人口规模有关,对20个城市的犯罪率y(每10万人中犯罪的人数)与年收入低于5000美元家庭的百分比1x、失业率2x和人口总数3x(千人)进行了调查,结果如下表。
(1)若1x~3x中至多只许选择2个变量,最好的模型是什么?(2)包含3个自变量的模型比上面的模型好吗?确定最终模型。
(3)对最终模型观察残差,有无异常点,若有,剔除后如何。
理论分析与程序设计:为了能够有一个较直观的认识,我们可以先分别作出犯罪率y与年收入低于5000美元家庭的百分比1x、失业率2x和人口总数x(千人)之间关系的散点图,根据大致分布粗略估计各因素造3成的影响大小,再通过逐步回归法确定应该选择哪几个自变量作为模型。
编写程序如下:clc;clear all;y=[11.2 13.4 40.7 5.3 24.8 12.7 20.9 35.7 8.7 9.6 14.5 26.9 15.736.2 18.1 28.9 14.9 25.8 21.7 25.7];%犯罪率(人/十万人)x1=[16.5 20.5 26.3 16.5 19.2 16.5 20.2 21.3 17.2 14.3 18.1 23.1 19.124.7 18.6 24.9 17.9 22.4 20.2 16.9];%低收入家庭百分比x2=[6.2 6.4 9.3 5.3 7.3 5.9 6.4 7.6 4.9 6.4 6.0 7.4 5.8 8.6 6.5 8.36.7 8.6 8.4 6.7];%失业率x3=[587 643 635 692 1248 643 1964 1531 713 749 7895 762 2793 741 625 854 716 921 595 3353];%总人口数(千人)figure(1),plot(x1,y,'*');figure(2),plot(x2,y,'*');figure(3),plot(x3,y,'*');X1=[x1',x2',x3'];stepwise(X1,y)运行结果与结论:犯罪率与低收入散点图犯罪率与失业率散点图犯罪率与人口总数散点图低收入与失业率作为自变量低收入与人口总数作为自变量失业率与人口总数作为自变量在图中可以明显看出前两图的线性程度很好,而第三个图的线性程度较差,从这个角度来说我们应该以失业率和低收入为自变量建立模型。
MATLAB回归分析

MATLAB回归分析回归分析是统计学中常用的一种方法,用于建立一个依赖于自变量(独立变量)的因变量(依赖变量)的关系模型。
在MATLAB环境下,回归分析可以实现简单线性回归、多元线性回归以及非线性回归等。
简单线性回归是一种最简单的回归分析方法,它假设自变量和因变量之间存在线性关系。
在MATLAB中,可以通过`polyfit`函数进行简单线性回归分析。
该函数可以拟合一元数据点集和一维多项式,返回回归系数和截距。
例如:```matlabx=[1,2,3,4,5];y=[2,3,4,5,6];p = polyfit(x, y, 1);slope = p(1);intercept = p(2);```上述代码中,`x`是自变量的数据点,`y`是因变量的数据点。
函数`polyfit`的第三个参数指定了回归的阶数,这里是1,即一次线性回归。
返回的`p(1)`和`p(2)`分别是回归系数和截距。
返回的`p`可以通过`polyval`函数进行预测。
例如:```matlabx_new = 6;y_pred = polyval(p, x_new);```多元线性回归是在有多个自变量的情况下进行的回归分析。
在MATLAB中,可以使用`fitlm`函数进行多元线性回归分析。
例如:```matlabx1=[1,2,3,4,5];x2=[2,4,6,8,10];y=[2,5,7,8,10];X=[x1',x2'];model = fitlm(X, y);coefficients = model.Coefficients.Estimate;```上述代码中,`x1`和`x2`是两个自变量的数据点,`y`是因变量的数据点。
通过将两个自变量放在`X`矩阵中,可以利用`fitlm`函数进行多元线性回归分析。
返回值`model`是回归模型对象,可以通过`model.Coefficients.Estimate`获得回归系数。
MATLAB统计工具箱中的回归分析命令ppt课件

越不密切
数模
相关关系的测度
(相关系数取值及其意义)
完全负相关
无线性相关
完全正相关
-1.0 -0.5 0 +0.5 +1.0
r
负相关程度增加 正相关程度增加
即 ˆ0 16.073, ˆ1 0.7194; ˆ0 的置信区间为[-33.7017,1.5612], ˆ1 的
置信区间为[0.6047,0.834]; r2=0.9282, F=180.9531, p=0.0000
p<0.05, 可知回归模型 y=-16.073+0.7194x 成立.
ppt精选版
预测及作图 Y=polyconf(p,t,S) To MATLAB(liti23) plot(t,s,'k+',t,Y,'r')
ppt精选版
(二)多元二项式回归 命令:rstool(x,y,’model’, alpha)
nm矩阵 n维列向量
显著性水平 (缺省时为0.05)
由下列 4个模型中选择 1个(用字符串输入,缺省时为线性模型):
数模
统计工具箱中的回归分析命令
1.多元线性回归 2.多项式回归 3.非线性回归 4.逐步回归
数模
返回
回归模型的类型
一个自变量
一元回归
回归模型
两个及两个以上自变量
多元回归
线性 回归
非线性 回归
线性 回归
非线性 回归
数模
多元线性回归
y01x1.. .pxp
第三讲 MATLAB预测(1)回归分析

ˆ 489.2946 s t 2 65.8896 t 9.1329
方法二
化为多元线性回归:
t=1/30:1/30:14/30;
s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48];
3
1
模型:记血压为 y ,年龄为 x1 ,体重指数为 x2 ,吸烟习惯为 x3 , 用Matlab将 y 与 x2 的数据做散点图,看出大致也呈线性关系,建立 模型: y 0 1 x1 2 x2 3 x3 由数据估计系数 0,2,3,4 ,也可看做曲面拟合(其实为 超平面)
T=[ones(14,1) t‘ (t.^2)'];
[b,bint,r,rint,stats]=regress(s',T); b,stats
得回归模型为 :
ˆ 9.1329 65.8896 s t 489.2946 t2
预测及作图
Y=polyconf(p,t,S) plot(t,s,'k+',t,Y,'r')
(二)多元二项式回归
命令:rstool(x,y,’model’, alpha)
nm矩阵
n维列向量
显著性水平
(缺省时为0.05)
由下列 4 个模型中选择 1 个(用字符串输入,缺省时为线性模型): linear(线性): y 0 1 x1 m xm purequadratic(纯二次): interaction(交叉): y
其中 x=(x1,x2,„,xn) ,y=(y1,y2 ,„,yn) ; m m-1 p=(a1,a2,„,am+1)是多项式 y=a1x +a2x +„+amx+am+1 的系数;S 是一个矩阵,用来估计预测误差.
利用 Matlab作回归分析

利用 Matlab 作回归分析一元线性回归模型:2,(0,)y x N αβεεσ=++求得经验回归方程:ˆˆˆyx αβ=+ 统计量: 总偏差平方和:21()n i i SST y y ==-∑,其自由度为1T f n =-; 回归平方和:21ˆ()n i i SSR y y ==-∑,其自由度为1R f =; 残差平方和:21ˆ()n i i i SSE y y ==-∑,其自由度为2E f n =-;它们之间有关系:SST=SSR+SSE 。
一元回归分析的相关数学理论可以参见《概率论与数理统计教程》,下面仅以示例说明如何利用Matlab 作回归分析。
【例1】为了了解百货商店销售额x 与流通费率(反映商业活动的一个质量指标,指每元商品流转额所分摊的流通费用)y 之间的关系,收集了九个商店的有关数据,见下表1.试建立流通费率y 与销售额x 的回归方程。
表1 销售额与流通费率数据【分析】:首先绘制散点图以直观地选择拟合曲线,这项工作可结合相关专业领域的知识和经验进行,有时可能需要多种尝试。
选定目标函数后进行线性化变换,针对变换后的线性目标函数进行回归建模与评价,然后还原为非线性回归方程。
【Matlab数据处理】:【Step1】:绘制散点图以直观地选择拟合曲线x=[1.5 4.5 7.5 10.5 13.5 16.5 19.5 22.5 25.5];y=[7.0 4.8 3.6 3.1 2.7 2.5 2.4 2.3 2.2];plot(x,y,'-o')输出图形见图1。
510152025图1 销售额与流通费率数据散点图根据图1,初步判断应以幂函数曲线为拟合目标,即选择非线性回归模型,目标函数为:(0)b y ax b =< 其线性化变换公式为:ln ,ln v y u x == 线性函数为:ln v a bu =+【Step2】:线性化变换即线性回归建模(若选择为非线性模型)与模型评价% 线性化变换u=log(x)';v=log(y)';% 构造资本论观测值矩阵mu=[ones(length(u),1) u];alpha=0.05;% 线性回归计算[b,bint,r,rint,states]=regress(v,mu,alpha)输出结果:b =[ 2.1421; -0.4259]表示线性回归模型ln=+中:lna=2.1421,b=-0.4259;v a bu即拟合的线性回归模型为=-;y x2.14210.4259bint =[ 2.0614 2.2228; -0.4583 -0.3934]表示拟合系数lna和b的100(1-alpha)%的置信区间分别为:[2.0614 2.2228]和[-0.4583 -0.3934];r =[ -0.0235 0.0671 -0.0030 -0.0093 -0.0404 -0.0319 -0.0016 0.0168 0.0257]表示模型拟合残差向量;rint =[ -0.0700 0.02300.0202 0.1140-0.0873 0.0813-0.0939 0.0754-0.1154 0.0347-0.1095 0.0457-0.0837 0.0805-0.0621 0.0958-0.0493 0.1007]表示模型拟合残差的100(1-alpha)%的置信区间;states =[0.9928 963.5572 0.0000 0.0012] 表示包含20.9928SSR R SST==、 方差分析的F 统计量/963.5572//(2)R E SSR f SSR F SSE f SSE n ===-、 方差分析的显著性概率((1,2))0p P F n F =->≈; 模型方差的估计值2ˆ0.00122SSE n σ==-。
如何使用MATLAB进行数据拟合与回归分析

如何使用MATLAB进行数据拟合与回归分析使用 MATLAB 进行数据拟合与回归分析近年来,数据分析在科学研究、工程设计和商业决策中发挥着越来越重要的作用。
而 MATLAB 作为一种功能强大的数据分析工具,被广泛应用于各个领域。
本文将介绍如何使用 MATLAB 进行数据拟合和回归分析,并探讨其中的一些技巧和注意事项。
一、数据导入与预处理在进行数据拟合和回归分析之前,首先需要将数据导入 MATLAB 环境中,并进行预处理。
可以使用 MATLAB 中的 readtable() 函数将数据从文件中读取到一个表格中,然后通过对表格的操作来对数据进行预处理,例如删除缺失值、处理异常值等。
二、数据拟合数据拟合是指根据已知的数据集合,通过一个数学模型来描述真实数据的曲线走势。
在MATLAB 中,有多种方法可以进行数据拟合,如多项式拟合、曲线拟合、样条拟合等。
1. 多项式拟合多项式拟合是最简单的数据拟合方法之一。
在 MATLAB 中,可以使用 polyfit() 函数进行多项式拟合。
该函数可以将一组数据拟合成一个指定阶数的多项式曲线,并返回多项式的系数。
2. 曲线拟合曲线拟合是指将一条已知函数的曲线拟合到一组离散的数据点上。
在MATLAB 中,可以使用 fit() 函数进行曲线拟合。
该函数支持多种预定义的曲线模型,也可以自定义曲线模型,根据数据点对模型进行拟合,并返回最优拟合参数。
3. 样条拟合样条拟合是指将一条平滑的曲线拟合到一组离散的数据点上,并满足一定的平滑性要求。
在 MATLAB 中,可以使用 spline() 函数进行样条拟合。
该函数可以根据给定的数据点,生成一条平滑的曲线,并返回样条曲线的系数。
三、回归分析回归分析是通过一个或多个自变量来预测因变量之间的关系。
在MATLAB 中,可以使用 regress() 函数进行线性回归分析。
该函数可以根据给定的自变量和因变量数据,拟合出一个线性模型,并返回模型的系数和统计指标。
用MATLAB求解回归分析课件

用Matlab求解 回归分析课件
目 录
• 回归分析简介 • Matlab基础操作 • 线性回归分析 • 非线性回归分析 • 多元回归分析 • Matlab在回归分析中的应用实例
01
CATALOGUE
回归分析简介
回归分析的定义
回归分析是一种统计学方法,用于研 究自变量和因变量之间的相关关系, 并建立数学模型来预测因变量的值。
显著性检验
对回归模型的显著性进行检验,如F 检验、t检验等。
预测精度评估
使用均方误差、均方根误差等指标评 估模型的预测精度。
可解释性
评估模型的解释性,即模型是否易于 理解,自变量对因变量的影响是否合 理。
06
CATALOGUE
Matlab在回归分析中的应用实例
用Matlab进行线性回归分析的实例
迭代法
对于一些复杂的回归模型,可能 需要使用迭代法进行求解,如梯 度下降法、牛顿法等。
Matlab函数
在Matlab中,可以使用内建的回 归分析函数来求解多元回归模型 ,如 `fitlm`、`fitlm2` 等。
多元回归模型的评估
残差分析
对回归模型的残差进行分析,检查残 差是否满足正态分布、同方差等假设 。
要点一
总结词
要点二
详细描述
多元回归分析是处理多个自变量和因变量之间关系的回归 分析方法,通过Matlab可以方便地进行多元回归分析。
在Matlab中,可以使用`fitlm`函数对一组数据进行多元回 归分析。首先需要准备数据,然后使用`fitlm`函数拟合多 元线性模型,最后通过模型进行预测和评估。
THANKS
使用预测值与实际值之间的误差评估模型的预测 能力,如均方误差、平均绝对误差等指标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由数据估计系数 0, 2, 3 , 4 ,也可看做曲面拟合(其实为
超平面)
3
第三讲 MATLAB预测方法(1)回归分析
多元线性回归
y01x1.. .pxp
1、确定回归系数的点估计值:
b=regress( Y, X )
b
ˆ 0 ˆ 1
98.4084 78.7484 118.0683
0.9732 0.5601 1.3864
%已知的因变量数组 %已知的自变量数组 %已知的数据容量 %1与自变量组成的输入矩阵 %回归分析程序(显著性水平为0.05) %输出回归系数及其置信区间和统计量 %残差及其置信区间作图
s= 0.4540 23.2834 0.0000 273.7137
8 124 42 19.7 0 18 114 18 18.8 0 28 130 29 22.0 1
9 158 67 27.2 1 19 116 20 22.6 0 29 125 25 25.3 0
10 154 56 19.3 0 20 124 19 21.5 0 30 175 69 27.4 1
2
模型:记血压为 y ,年龄为 x 1 ,体重指数为 x 2 ,吸烟习惯为 x 3 , 用Matlab将 y 与 x 2 的数据做散点图,看出大致也呈线性关系,建立 模型:
表2
序号
血压
年龄
体重 指数
吸烟 习惯
序号
血压
年龄
体重 指数
吸烟 习惯
序号
血压
年龄
体重 指数
吸烟 习惯
1 144 39 24.2 0 11 162 64 28.0 1 21 136 36 25.0 0
2 215 47 31.1 1 12 150 56 25.8 0 22 142 50 26.2 1
3 138 45 22.6 0 13 140 59 27.3 0 23 120 39 23.5 0
但是由于β1的置信区间过长,R2较小,说明模型的精度不 高!
7
残差图如图所示:
图中第二个点的残差置信区间中不包含0点,由于残差服从均值为0的正 态分布,因此可以认为这个点为异常数据,偏离数据整体的变化范围, 应该剔除,重新进行回归分析!! 残差与残差区间杠杆图,最好在0点线附近比较均匀的分布,而不呈现一 定的规律性,如果是这样,就说明回归分析做得比较理想。
根据预测区间[yˆ0u1s,yˆ0u1s],可以得到其置信度为0.95
2
2
的置信区间为:[125.7887,163.2708].
9
同样方法做问题二 第一次做多元回归结果:
回归系数 0 1 2 3 R2=0.6855
回归系数估计值 回归系数置信区间
45.3636 0.3604
[3.5537 87.1736] [-0.0758 0.7965]
6
结果整理为下表:
回归系数 0 1 R2=0.4540
回归系数估计值 回归系数置信区间
98.4084
[74.7484, 118.0683]
0.9732
[0.5601 1.3864]
F=23.2834 p<0.001 s2=273.7137
从以下几点可以看出模型是有效的:参数的置信区间不含0 点;p小于显著性水平;用Matlab可以求出F1-α(1,n-2)=4.1960,显 然小于F值。
... ˆ p
Y1 YYຫໍສະໝຸດ 2.. Y
n
1 x11 x12 ... x1p
X 1
x21
x22
...
x2
p
... ... ... ... ...
1
xn1
xn2
...
xnp
对一元线性回归,取 p=1 即可
2、求回归系数的点估计和区间估计、并检验回归模型: [b, bint,r,rint,stats]=regress(Y,X,alpha)
回 归 系 数
置
残
信
差
区
间
的
用于检验回归模型的统计量,
区 间
有三个数值:R2、F值、与F
估
对应的概率p、以及残差的方
计
差的估计值
R2 越接近 1,说明回归方程越显著;
0.05
( 缺 省显 时著 为性
水 平 )
F F1 (k, n k 1) 时,F 越大,说明回归方程越显著;
与 F 对应的概率 p 时回归模型成立,否则,则说明回归方程中 有多余的自变量,可以将这些多余的自变量从回归方程中剔除
8
剔除第二个点后得到的结果:
回归系数 0 1 R2=0.7123
回归系数估计值 回归系数置信区间
96.8665
[85.4771, 108.2559]
0.9533
[0.7140, 1.1925]
F=66.8358 p<0.0001 s2=91.4305
对50岁的人血压进行预测,得到结果为:
y ˆ 0 ˆ 0 ˆ 1 x 0 9 6 . 8 6 6 5 0 . 9 5 3 3 x 0 1 4 4 . 5 2 9 8
模型:记血压为y,年龄为x,可以做出如上图所示的散点图,从图形 上直观的可以看出,y与x大致呈线性关系,即有:
y01x
需要由数据确定系数 0 , 1 的估计值 ˆ 0 , ˆ1 。 此函数为一元线性函数!!
1
问题2 (血压与年龄,体重指数,吸烟习惯)
世界卫生组织颁布的“体重指数”的定义是体重(kg)除以身高(m)的平 方,下表给出了30个人的体重指数等数据,其中,0表示不吸烟,1表示吸 烟,怎么考虑吸烟这个因素,此因素对于血压升高有影响吗,并对体重指 数为25,50岁的吸烟者的血压做出预测。
3.0906
[1.0530 5.1281]
4 145 47 24.0 1 14 110 34 20.1 0 24 120 21 20.3 0
5 162 65 25.9 1 15 128 42 21.7 0 25 160 44 27.1 1
6 142 46 25.1 0 16 130 48 22.2 1 26 158 53 28.6 1
7 170 67 29.5 1 17 135 45 27.4 0 27 144 63 28.3 0
3、画出残差及其置信区间: rcoplot(r,rint) 5
问题1的求解:
y=[……];
x=[……];
n=……; X=[ones(n,1),x’]; [b,bint,r,rint,s]=regress(y’,X); b, bint, s, rcoplot(r,rint)
输出结果为:
b=
bint =