实数完备性的六大基本定理的相互证明(共30个)

实数完备性的六大基本定理的相互证明(共30个)
实数完备性的六大基本定理的相互证明(共30个)

中值定理证明

中值定理 首先我们来瞧瞧几大定理: 1、 介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值f(a)=A 及 f(b)=B,那么对于A 与B 之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

关于实数完备性相关定理等价性的研究

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1.1确界存在定理的证明 (1) 1.2 确界存在定理证明单调有界定理 (3) 1.3单调有界定理证明区间套定理 (3) 1.4 区间套定理证明有限覆盖定理 (4) 1.5有限覆盖定理证明聚点定理 (4) 1.6聚点定理证明致密性定理 (5) 1.7致密性定理证明柯西收敛准则 (5) 1.8柯西收敛准则证明确界存在定理 (6) 致谢 (7) 参考文献 (7)

关于实数完备性相关定理等价性的研究 数学与应用数学专业学生xxx 指导教师 xxx 摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础。可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理。与之相关的七个基本定理(确界存在定理、单调有界定理、区间套定理、致密性定理、聚点定理、闭区间有限覆盖定理以及柯西收敛准则)是彼此等价的。本文主要是讨论证明这七个定理的等价性。在这里我们首先论证确界存在定理,然后由此出发依次论证实数系的其它六个基本定理,并最终形成一个完美的论证“环”。 关键词:实数集完备性基本定理等价性证明 Research about the equivalence theorems of completeness of real numbers Student majoring in Mathematics and Applied Mathematics .Bing Liu Tutor Shixia Luan Abstract: Completeness of the set of real numbers is its basic character, and it is stable theory background of calculus. It can be described and depicted in different angles, so there are considerable fundamental theorems about it. Fundamental Theorems of seven related about completeness of the set of real numbers,which are existence theorem of supremum, monotone defined management,interval sequence theorem,Bolzano-Weierstrass theorem, convergence point theorem,Heine-Borel theorem and Cauchy convergence rule are Equivalent. This paper is to discuss the proof of the equivalence of the seven theorems. Here we first Prove the existence theorem of supremum, then prove the other correlative theorems based of existence theorem of supremum and form a ideal proof “loop”. Key words: set of real numbers,completeness,fundamental theorem,equivalence,proof. 引言: 我们知道实数的完备性在理论上有很大的价值,与之相关的七个基本定理从不同的角度描述了实数的基本性质。并且这七个基本定理是相互等价的,在这里我们先证明出实数的确界存在定理,然后以此为基础顺次证明其他的六个定理最后再回到确界存在定理得到一个完美的“环”状结构的证明。本文的论证结构为确界存在定理证明单调有界定理证明区间套定理证明有限覆盖定理证明聚点定理证明致密性定理证明柯西收敛准则证明确界存在定理。 1实数完备性相关定理的论证 1.1确界存在定理的证明

赵晓玉哥德尔不完全性定理的推广形式及其哲学影响2018

赵晓玉:哥德尔不完全性定理的推广形式及其哲学影响(2018) 1930年,哥德尔证明了关于递归可枚举理论的哥德尔不完全性定理,而本文的第一项工作便是将哥德尔不完全性定理推广到非递归可枚举理论上,得到推广的哥德尔不完全性定理。为此,首先详细回顾哥德尔不完全性定理的整个证明,并证明一些相关的推论。 为便于将哥德尔不完全性定理推广到非递归可枚举理论上,首先将哥德尔不完全性定理涉及的一致性、语法完全性、ω-一致性、相对于N的可靠性、相对于N的完全性、可定义性等元理论性质,分别推广成Γ-一致性、Γ-决定性、n-一致性、相对于N的Γ-可靠性、相对于N的Γ-完全性、Γ-可定义性等更一般的形式,并对其基本性质进行深入研究,然后利用推广的元理论性质对哥德尔不完全性定理进行重述。 关于推广的哥德尔第一不完全性定理,首先回顾萨利希和萨拉杰证明的4簇结果:任给n>0,如果T是包含罗宾森算术的、Σn+1-可定义的(Πn-可定义的)、Σn-可靠的(n-一致的)算术理论,那么T 不是Πn+1-决定的;并证明其中的Σn-可靠性或n-一致性不能被相应地强化为Σn?1-可靠性或(n?1)-一致性;期间会就关键定理给出一种更简洁易读的证明。然后额外证明2簇结果:任给n>0,如果T是包含罗宾森算术的、Σn+1-可定义的(Πn-可定义的)、Πn+1-可靠的算术理论,那么T不是Πn+1-决定的;并证明其中的Πn+1-可靠性不能被强化为Πn-可靠性。 关于推广的哥德尔第二不完全性定理,首先将Γ-可靠性形式化,然后证明4簇结果:任给n>0,如果T是包含皮亚诺算术的、Σn+1-可定义的(Πn-可定义的)、Σn-可靠的(Πn+1-可靠的)算术理论,那么T不能证明自身Σn-可靠性(Πn+1-可靠性);并且证明其中的Σn+1-可靠性或Πn+1-可靠性不能被相应地强化为Σn-可靠性或Πn-可靠性;最后通过引入强可证性关系给出这4簇结果的第二种证明方法。 本文的第二项工作是深入讨论非递归可枚举理论与形式化的一致性之间的关系。首先分析非递归可枚举理论与可证性条件的关系,然后据此证明满足一定条件的非递归可枚举理论不能证明自身一致性,即结论涉及一致性的4簇推广的哥德尔第二不完全性定理:任给n>0,如果T是包含皮亚诺算术的、一致的、Σn+1-可定义的(Πn-可定义的)、Σn+1-完全的(Πn-完全的)算术理论,那么T不能证明自身一致性;并且将这些结果作为第一项工作中推广的哥德尔第二不完全性定理的推论从而给出第二种证明方法;最后还会给出2簇能证明自身一致性的理论从而证明其中的Σn+1-完全性或Πn-完全性不能被相应地强化为Σn-完全性或Πn?1-完全性。 本文的第三项工作是基于推广的哥德尔不完全性定理,从对形式化方法局限的反驳、对反机械主义的支持、对数学家地位的辩护等三个方面重新审视哥德尔不完全性定理的哲学影响。 关键词:不完全性,非递归可枚举理论,Γ-可靠性,Γ-可定义性,哲学影响

实数完备性证明

一.七大定理循环证明: 1.单调有界定理→区间套定理 证明:已知n a ≤1+n a (?n ), n a ≤n b ≤1b ,∴由单调有界定理知{n a }存在极限,设∞ →n lim n a = r , 同理可知{n b }存在极限,设∞ →n lim n b =r ' ,由∞ →n lim (n n a b -)=0得r r '-=0 即r r '= ?n ,有n a ≤n b ,令∞→n ,有n a ≤r r '=≤n b ,∴?n ,有n a ≤r ≤n b 。 下面证明唯一性。 用反证法。如果不然。则? 21r r ≠,同时对任意 A a ∈,1r a ≤,2r a ≤ 对任意b 有1r b ≥ 2r b ≥,不妨设21r r <, 令 2 2 1'r r r += 显然 2 '1r r r << ? A r ∈', B r ∈', 这与B A |是R 的一个分划矛盾。 唯一性得证。定理证完。 2.区间套定理→确界定理 证明:由数集A 非空,知?A a ∈,不妨设a 不是A 的上界,另外,知 ?b 是A 的上界,记[1a ,1b ]=[a , b ],用1a ,1b 的中点2 1 1b a +二等分[1 a ,1 b ],如果2 11 b a +是A 的上界, 则取[2a ,2 b ]=[1 a ,2 11 b a +];如果2 11 b a +不是A 的上界,则取[2a ,2b ]=[2 1 1b a +,1 b ];用2 a ,2 b 的中点2 22 b a +二等分[2a ,2 b ]……如此继 续下去,便得区间套[n a ,n b ]。其中n a 不是A 的上界,n b 是A 的上界。由区间套定理可得,?唯一的 ∞ =∈1],[n n n b a r , 使∞ →n l i m n a =∞ →n lim n b = r 。A x ∈?,

2.实数基本定理的等价性证明

§ 2 实数基本定理等价性的证明 证明若干个命题等价的一般方法. 本节证明七个实数基本定理等价性的路线 : 证明按以下三条路线进行:Ⅰ: 确界原理单调有界原理区间套定理Cauchy收敛准则 确界原理 ; Ⅱ: 区间套定理致密性定理Cauchy收敛准则 ; Ⅲ: 区间套定理Heine–Borel 有限复盖定理区间套定理 . 一. “Ⅰ”的证明: (“确界原理单调有界原理”已证明过 ). 1. 用“确界原理”证明“单调有界原理”: 定理 1 单调有界数列必收敛 . 2. 用“单调有界原理”证明“区间套定理”: 定理 2 设是一闭区间套. 则存在唯一的点,使对有. 推论1 若是区间套确定的公共点, 则对, 当时, 总有. 推论2 若是区间套确定的公共点, 则有↗, ↘, . 3. 用“区间套定理”证明“Cauchy收敛准则”: 定理 3 数列收敛是Cauchy列.

引理Cauchy列是有界列. ( 证 ) 定理 4 的证明: ( 只证充分性 ) 教科书P217—218上的证明留作阅 读 . 现采用三等分的方法证明, 该证法比较直观. 4.用“Cauchy收敛准则”证明“确界原理”: 定理5 非空有上界数集必有上确界;非空有下界数集必有下确界 . 证(只证“非空有上界数集必有上确界”)设为非空有上界数集 . 当为有限集时 , 显然有上确 界 .下设为无限集, 取不是的上界, 为的上界. 对分区间, 取, 使不是 的上界, 为的上界. 依此得闭区间列. 验证为Cauchy 列, 由Cauchy收敛准则, 收敛; 同理收敛. 易见↘. 设↘.有↗. 下证.用反证法验证的上界性和最小性. 二. “Ⅱ”的证明: 1. 用“区间套定理”证明“致密性定理”: 定理6 ( Weierstrass ) 任一有界数列必有收敛子列. 证(突出子列抽取技巧) 定理7 每一个有界无穷点集必有聚点. 2.用“致密性定理”证明“Cauchy收敛准则”: 定理8 数列收敛是Cauchy列.

拉格朗日中值定理证明中的辅助函数的构造及应用

分类号 编号 本科生毕业论文(设计) 题目拉格朗日中值定理证明中的辅助函数的构造及应用 作者姓名常正军 专业数学与应用数学 学号 2 9 1 0 1 0 1 0 2 研究类型数学应用方向 指导教师李明图 提交日期 2 0 1 3 - 3 - 1 5

论文原创性声明 本人郑重声明:所呈交毕业论文,是本人在指导教师的指导下,独立进行研究工作所取得的成果。除文中已经注明引用的内容外,本论文不包含任何其他人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 论文作者签名:年月日

摘要拉格朗日中值定理是微积分学三大基本定理中的主要定理,它在微积分中占据极其重要的地位,有着广泛地应用。关于它的证明,绝大多数教科书采用作辅助函数的方法,然后利用罗尔中值定理的结论证明拉格朗日中值定理来证明。罗尔中值定理是其的特殊形式,而柯西中值定理是其的推广形式,鉴于微分中值定理的广泛地应用,笔者将从以下几个不同的角度探讨拉格朗日中值定理中辅助函数的构造,以及几个方面的应用加以举例。 关键词:拉格朗日中值定理辅助函数的构造证明及应用 Abstract Lagrange mean value theorem is the main theorem of calculus three basic theorem, It occupies an important status and role in the calculus, has wide application. Proof of it, the vast majority of textbooks by using the method of auxiliary function, and then use the conclusion of Rolle's theorem to prove the Lagrange mean value theorem. Rolle mean value theorem is a special form of it, and Cauchy's theorem is extended form of it, given the widely application of the differential mean value theorem. This paper will discuss the construction of auxiliary function of the Lagrange mean value theorem from several following different angles, and several applications for example. Keyword: Lagrange mean value theorem The construction of auxiliary function Proof and Application

实数的完备性

第七章实数的完备性 教学目的: 1.使学生掌握六个基本定理,能准确地加以表述,并深刻理解其实质意义; 2.明确基本定理是数学分析的理论基础,并能应用基本定理证明闭区间上连续函数的基本性质和一些有关命题,从而掌握应用基本定理进行分析论证的能力。 教学重点难点:本章的重点是实数完备性的基本定理的证明;难点是基本定理的应用。 教学时数:12学时 § 1 关于实数集完备性的基本定理(3学时)教学目的: 1.使学生掌握六个基本定理,能准确地加以表述,并深刻理解其实质意义; 2.明确基本定理是数学分析的理论基础。 教学重点难点:实数完备性的基本定理的证明。 一.确界存在定理:回顾确界概念. Th 1 非空有上界数集必有上确界;非空有下界数集必有下确界 . 二.单调有界原理: 回顾单调和有界概念 . Th 2 单调有界数列必收敛 . 三.Cantor闭区间套定理 : 区间套: 设是一闭区间序列. 若满足条件 1.

ⅰ> 对 , 有 , 即 , 亦即后一个闭区间 包含在前一个闭区间中 ; ⅱ> . 即当 时区间长度趋于零. 则称该闭区间序列为一个递缩闭区间套,简称为区间套 . 简而言之, 所谓区间套是指一个 “闭、缩、套” 区间列. 区间套还可表达为: . 我们要提请大家注意的是, 这里涉及两个数列 和 , 其中 递增, 递减. 例如 和 都是区间套. 但 、 和 都不是. 2. Cantor 区间套定理: Th 3 设 是一闭区间套. 则存在唯一的点 ,使对 有 . 简言之, 区间套必有唯一公共点. 四. Cauchy 收敛准则 —— 数列收敛的充要条件 : 1. 基本列 : 回顾基本列概念 . 基本列的直观意义 . 基本列亦称为Cauchy 列. 例1 验证以下两数列为Cauchy 列 : ⑴ . ⑵ .

实数基本定理

Ch 8 实数基本定理 计划课时:8 时 § 0 连续统假设简介(2 时) 一.数的发展简史:参阅《数学分析》选讲讲稿P66—76(1997. 8.10 ). 1.自然数的产生: 十九世纪数学家Leopold Kronecker说: 上帝创造了整数, 其余则是我们人类的事了. 2.从自然数系到有理数系: 3.算术连续统假设的建立及其破灭: 不可公度性的发现及其深远影响. Pythagoras(约在纪元前六世纪),Hippasus,Leonardo da Vinci 称为“无理的数”. Eudoxus , Euclid. 4.微积分的建立: Newton , Leibniz ; Euler , Lagrange , D′Alembert , Laplace ; Voltaire , B. Berkeley . 十九世纪分析学理论的重建工作: B.Bolzano , A.Cauchy , Abel , Dirichlet, Weierstrass . Archimedes数域. 5.实数系的建立:

十九世纪后半叶由Weierstrass , Meray , Dedekind , Cantor 等完成. 二. 连续统假设: 1.连续统假设: 以Cantor实数为例做简介. Cauchy ( 1789—1857, 法 ), Bolzano (1781—1845 ), Cantor ( 1829—1920 ). 在他们的著作中表现了实数连续性的观点. 1900年, 哥庭根大学教授Hilbert ( 1862—1943, 德 )在巴黎国际数学家代表大会上的致辞中 , 提出了二十三个研究课题 , 其中的第一题就是所谓连续统假设.首当其冲的是关于连续统观点的算术陈述. ( 参阅 D.J.斯特洛伊克著《数学简史》P160—161 ). 连续统假设的研究现况. 2.实数基本定理: 连续统假设的等价命题. 共有九个定理, 我们介绍其中的七个. 另外还有 上、下极限定理和实数完备性定理. § 1 实数基本定理的陈述( 4 时) 一.确界存在定理:回顾确界概念. Th 1 非空有上界数集必有上确界;非空有下界数集必有下确界. 二.单调有界原理: 回顾单调和有界概念. Th 2 单调有界数列必收敛.

实数系基本定理等价性的完全互证[1]

第38卷第24期2008年12月数学的实践与认识M A TH EM A T I CS I N PRA CT I CE AND TH EO R Y V o l 138 N o 124  D ecem.,2008  教学园地 实数系基本定理等价性的完全互证 刘利刚 (浙江大学数学系,浙江杭州 310027) 摘要: 综合给出了实数系六个基本定理的等价性的完全互证方法,并归纳了各种证明方法的规律,旨在把抽象的证明转化为容易掌握的基本方法. 关键词: 实数系;连续性;等价;极限 收稿日期:2005206210 实数系基本定理是数学分析中重要组成部分,是分析引论中极限理论的基础,也称为实数系的连续性定理.能够反映实数连续性的定理很多,它们是彼此等价的.现有的教材都是按照某一顺序将这些定理进行一次循环证明就验证了它们的等价性[122].虽然不同的教材对于循环证明的顺序有所不同,但每一次循环证明看起来都似乎没有关联,并没有综合归纳其中的方法技巧.这么多相互独立的证明使得不少学生都感到数学分析中这部分内容太抽象,难以理解.因而当遇到一个教材中没有给出的2个定理之间的等价性证明时就无从下手.为此,在讲述这些定理的时候,我们把这些定理的相互证明详细地整理出来,并且归纳给出了这些定理的完全互证方法与规律,使学生在学习这部分内容时不再感到无所适从. 我们使用的教材[1]中给出的实数系的六个基本定理及其描述为: 1)确界存在定理(pp .12):上(下)有界的非空数集必存在唯一上(下)确界. 2)递增(减)有界数列必有极限(pp .34). 3)闭区间套定理(pp .41):设I 1,I 2,…,I n ,…是一串有界闭区间,I 1=I 2=…=I n = …,且I n 的长度 I n →0,称{I n }为闭区间套.则闭区间套{I n }的交∩∞ n =1 I n 必不空且为单点集. 4)Bo lzano 2W eierstrass 定理(pp .44):有界数列必有收敛子列 .5)Cauchy 收敛准则(pp .299):数列{x n }收敛Ζ{x n }是基本数列. 6)有限开覆盖定理(pp .308):若开区间族{O Α}覆盖了有界闭区间[a ,b ],则从{O Α}中必可挑出有限个开区间O Α1,O Α2,…,O Αn 同样覆盖了[a ,b ]:[a ,b ]

2016考研数学中值定理证明思路总结

2016考研数学中值定理证明思路总结中值定理这块一直都是很多考生的“灾难区”,一直没有弄清楚看到一个题目到底怎么思考处理,因此也是考研得分比较低的一块内容,如果考生能把中值定理的证明题拿下,那么我们就会比其他没做上的同学要高一个台阶,也可以说这是一套“拉仇恨”的题目。下面小编就和大家来一起分析一下这块内容。 1.具体考点分析 首先我们必须弄清楚这块证明需要的理论基础是什么,相当于我们的工具,那需要哪些工具呢? 第一:闭区间连续函数的性质。 最值定理:闭区间连续函数的必有最大值和最小值。 推论:有界性(闭区间连续函数必有界)。 介值定理:闭区间连续函数在最大值和最小值之间中任意一个数,都可以在区间上找到一点,使得这一点的函数值与之相对应。 零点定理:闭区间连续函数,区间端点函数值符号相异,则区间内必有一点函数值为零。 第二:微分中值定理(一个引理,三个定理)

费马引理:函数f(x)在点ξ的某邻域U(ξ)内有定义,并且在ξ处可导,如果对于任意的x∈U(ξ),都有f(x)≤f(ξ) (或f(x)≥f(ξ) ),那么f'(ξ)=0。 罗尔定理:如果函数f(x)满足: (1)在闭区间[a,b]上连续 (2)在开区间(a,b)内可导 在区间端点处的函数值相等,即f(a)=f(b), 那么在(a,b)内至少有一点ξ(a<ξ 柯西中值定理:如果函数f(x)及F(x)满足 (1)在闭区间[a,b]上连续 (2)在开区间(a,b)内可导 (3)对任一x∈(a,b),F'(x)≠0 那么在(a,b) 内至少有一点ξ,使等式[f(b)-f(a)]/[F(b)-F(a)]=f'(ξ)/F'(ξ)成立。 第三:积分中值定理: 如果函数f(x) 在积分区间[a, b]上连续,则在[a, b]上至少存在一个点ξ,使下式成立

哥德尔不完备定理

哥德尔不完备定理 哥德尔不完备定理有两条: 一、任何相容的形式系统,只要蕴涵皮亚诺算术公理,就可以在其中构造在体系中不能被证明的真命题,因此通过推演不能得到所有真命题 二、任何相容的形式系统,只要蕴涵皮亚诺算术公理,它就不能用于证明它本身的相容性 我们只论述第一条定理。 证明思路: ①要证明蕴含皮亚诺算术公理的形式系统不完备,只需要证明皮亚诺算术公理不 完备。 ②要证明皮亚诺算术公理不完备,我们可以选择皮亚诺算数公理的一个模型(也 就是实际意义),最简单的,选择自然数?作为一个模型。那么之后,这个公理系统都是描述自然数的了,公式的变元是自然数,项是自然数等等。 ③将皮亚诺公理系统的所有有效的句子(逻辑学称为公式),映射到自然数的一个 子集。 ④根据皮亚诺算术公理的性质,构造一个命题,使得它可证或不可证都会产生矛 盾。 皮亚诺算术公理如下 1.?x(Sx≠0) 0不是任何数的后继数 2.?x?y(Sx=Sy→x=y) x与y的后继数相等,则x与y相等

3.(φ(0)∧?x(φ(x)→φ(Sx)))→?xφ(x),φ(x)为算术公理的任一公式 这个就是数学归纳法 4.?x(x+0=x∧x?1=x) 存在零元和幺元 5.?x?y(S(x+y)=x+Sy) 加法的定义 6.?x?y(x?Sy=(x?y)+x) 乘法的定义 递归函数 我们可以根据这个公理系统定义“递归函数”,也就是编程一般都会用到的那种函数,其函数值f(a n)依赖于f(f(a n?1))(其中a n=f(a n?1))……在这里我们一般指的是定义域和值域都是自然数的子集的递归函数。 我们可以给出定义: 定义1:原始递归函数为: ①零函数:0(x)=0 ②后继函数:S(x)=Sx ③射影函数:I mn(x1,x2…,x n,…,x m)=x n 原始递归函数为递归函数 定义2:递归函数的复合仍然是递归函数。 也就是f(x),g(x)为递归函数,则f(g(x))也是递归函数。 ?,n!等都是递归函数。 例子:?√n?,?x y 事实上,只要是定义域和值域都是自然数的子集的函数,都是递归函数。

关于高等数学常见中值定理证明及应用

中值定理 首先我们来看看几大定理: 1、介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值 f(a)=A及f(b)=B,那么对于A与B之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

关于实数连续性的6个基本定理的互证.pdf

关于实数连续性的6个基本定理的互证中国 人民大学2006级经济学数学双学位实验班张磊 首先6个定理表述如下: 确界定理:在实数系R内,非空的有上(下)界的数集必有上(下)确界存在. 单调有界原理:若数列{x n}单调上升有上界,则{x n}必有极限. 区间套定理:设{[a n,b n]}是一个区间套,则必存在唯一的实数r,使得r包含在 ∞ 所有的区间里,即r∩[a n,b n]. n=1 有限覆盖定理:实数闭区间[a,b]的任一覆盖E,必存在有限的子覆盖. 紧致性定理:有界数列必有收敛子数列. 柯西收敛定理:在实数系中,数列{x n}有极限存在的充分必要条件是:ε> 0, N , 当n>N , m>N时,有x n?x m<ε 一、确界定理证明其他定理 1、确界定理证明单调有界定理 证明:设{x n}是单调上升有上界的实数列.由确界定理可得,r ,使r=sup{x n} . n ,有 x n≤ r ,并且ε>0,x N,有x N>r?ε n > N ,有r ?ε≤ x N≤ x n≤ r ,即| x n? r |<ε 2、确界定理证明区间套定理 证明:由[a n+1,b n+1][a n , b n ] ,知{a n } 是单调上升有上界的实数列,{b n } 是单调下 降有下界的数列.且b1是a n的上界,a1是b n的下界.设lim a = r,lim b n = r′,由 n n →∞n →∞ 确界定理对单调有界定理的证明知 r=sup{a n},r′ =inf{b n} .由 lim(b n?a n ) = 0 得r?r' =0 即r?r' = sup{a n} =inf{b n} n→∞

第七章 实数的完备性

第七章实数的完备性 § 1 关于实数集完备性的基本定理 一区间套定理与柯西收敛准则 定义1 区间套: 设是一闭区间序列. 若满足条件ⅰ)对, 有, 即, 亦即后一个闭区间包含在前一个闭区间中; ⅱ). 即当时区间长度趋于零. 则称该闭区间序列为闭区间套, 简称为区间套 . 区间套还可表达为: . 我们要提请大家注意的是, 这里涉及两个数列和, 其中递增,递减. 例如和都是区间套. 但、和都不是. 区间套定理 定理7.1(区间套定理) 设是一闭区间套. 则在实数系中存在唯一的点, 使对有 . 简言之, 区间套必有唯一公共点. 二聚点定理与有限覆盖定理

定义设是无穷点集. 若在点(未必属于)的任何邻域内有的无穷多个点, 则称点为的 一个聚点. 数集=有唯一聚点, 但; 开区间的全体聚点之集是闭区间; 设是中全体有理数所成之集, 易见的聚点集是闭区间. 定理 7.2 ( Weierstrass ) 任一有界数列必有收敛子列. 聚点原理 :Weierstrass 聚点原理. 定理7.3 每一个有界无穷点集必有聚点. 列紧性: 亦称为Weierstrass收敛子列定理. 四. Cauchy收敛准则——数列收敛的充要条件 : 基本列 : 回顾基本列概念 . 基本列的直观意义 . 基本列亦称为Cauchy 列. 例1 验证以下两数列为Cauchy列 : ⑴. ⑵. 解⑴ ;

对,为使,易见只要. 于是取. ⑵ . 当为偶数时 , 注意到上式绝对值符号内有偶数项和下式每个括号均为正号 , 有 , 又 . 当为奇数时,

. 综上 , 对任何自然数, 有 . …… Cauchy 列的否定: 例2 . 验证数列不是Cauchy列. 证对, 取, 有 . 因此, 取,…… 三 Cauchy收敛原理: 定理数列收敛是Cauchy列. ( 要求学生复习函数极限、函数连续的Cauchy准则,并以Cauchy收敛原理为依据,利用Heine归并原 则给出证明 )

为什么歌德尔的不完全性定理与理解人的心智相关

为什么歌德尔的不完全性定理与理解人的心智相关 哥德尔第一不完全性定理:任意一个包含算术系统在内的形式系统中,都存在一个命题,它在这个系统中既不能被证明也不能被否定。 哥德尔第二不完全性定理:任意一个包含算术系统的形式系统自身不能证明它本身的无矛盾性。 心智这个概念,不同的人有不同的理解,因此对其定义也各有千秋,通过对各种概念的剖析和总结,我觉得心智可以如下定义:指人们对已知事物的沉淀和储存,通过生物反应而实现动因的一种能力总和。它涵盖了“哲学”对已知事物的积累和储存,结合了“生物学”的大脑信息处理,即“生物反应”,运用了为实现某种欲需(动因)而从事的“心理”活动,从而达到为实现动因结果而必须产生的智能力和“潜能”力。 歌德尔定理研究的对象是“形式系统”,理解其与心智的相关性,就要把心智和形式系统联系起来,而在心智中最重要的环节是上述中的“生物反应”,即大脑信息处理。人脑在“运算”时与电脑的基本原理是一样的,只不过电脑使用电子元件的“开.闭”和电信号的传递体现,人脑则是表现为神经原的“冲动.拟制”和化学信号(当然也包括电信号)的传递。这与歌德尔定理的条件没有本质上的差别。而认识过程中的“思维是客观实在的近似反映,语言是思维的近似表达”这点,正是受哥德尔定理限制的结果。就拿语言(指形式上的)来说,完全可以转化为有限

公理和一定规则下的符号逻辑系统,也就是一种符合定理条件的形式公理系统。该定理恰恰说明,这样的系统中不完备,存在不能用该系统证实的命题,对于这个系统来说,就是语言对思维的表达不完全,也就是我们常说的“只可意会,不可言传”。这也与我们经常感觉到的“辞不达意”是相吻合的,任何形式上的语言都不能完全准确的表达我们的思想。还有另一个事实也说明这点,就是翻译。文对文的形式语言翻译虽然不难,可是如实地表达原来语言中的准确蕴义就非常难了,甚至可以说是不可能的事情。上面已经说了人类的思维也可以近似转化为这样的形式公理系统,那人脑也一定受哥德尔定理的限制,即歌德尔定理与理解人的心智有关。 《GEB》这本书中的一些例子也可以说明这一问题。例如它里面讲到“我们自己怎样弄清楚自己是否精神失常”的问题:“一旦你开始探究自己精神的正常性,你可能就会陷入一个极其讨厌的“信之则有”的漩涡之中,尽管这种情况绝非不可避免。每个人都知道,精神失常的人会用他们自己古怪的内部一致性逻辑去解释世界,但如果你只能用自己的逻辑去检查它本身,那你怎样才能弄清你的“逻辑”是否古怪呢?”由这个例子再结合哥德尔第二定理,它说明那种断定自身一致性的形式系统是不一致的。而这也说明了歌德尔定理与理解人的心智有关系。

第五讲中值定理的证明分析

第四讲 中值定理的证明技巧 一、 考试要求 1、 理解闭区间上连续函数的性质(最大值、最小值定理,有界性定理,介值定 理),并会应用这些性质。 2、 理解并会用罗尔定理、拉格朗日中值定理、泰勒定理,了解并会用柯西中值 定理。掌握这四个定理的简单应用(经济)。 3、 了解定积分中值定理。 二、 内容提要 1、 介值定理(根的存在性定理) (1)介值定理 在闭区间上连续的函数必取得介于最大值 M 与最小值m 之间的任何值. (2)零点定理 设f(x)在[a 、b]连续,且f(a)f(b)<0,则至少存在一点,c ∈(a 、b),使得f(c)=0 2、 罗尔定理 若函数)(x f 满足: (1))(x f 在[]b a ,上连续 (2))(x f 在),(b a 内可导 (3))()(b f a f = 则一定存在),(b a ∈ξ使得0)('=ξf 3、 拉格朗日中值定理 若函数)(x f 满足: (1))(x f 在[]b a ,上连续 (2))(x f 在),(b a 内可导 则一定存在),(b a ∈ξ,使得))((')()(a b f a f b f -=-ξ 4、 柯西中值定理 若函数)(),(x g x f 满足: (1)在[]b a ,上连续 (2)在),(b a 内可导 (3)0)('≠x g 则至少有一点),(b a ∈ξ使得)(')(') ()()()(ξξg f a g b g a f b f =--

5、 泰勒公式 如果函数)(x f 在含有0x 的某个开区间),(b a 内具有直到1+n 阶导数, 则当x 在 ),(b a 内时, )(x f 可以表示为0 x x -的一个n 次多项式与一个余项)(x R n 之和,即 )())((!1 ))((!21))(()()(00)(200000x R x x x f n x x x f x x x f x f x f n n n +-+???+-''+-'+= 其中10)1()()!1()()(++-+=n n n x x n f x R ξ (ξ介于0x 与x 之间). 在需要用到泰勒公式时,必须要搞清楚三点: 1.展开的基点; 2.展开的阶数; 3.余项的形式. 其中余项的形式,一般在求极限时用的是带皮亚诺余项的泰勒公 式,在证明不等式时用的是带拉格朗日余项的泰勒公式. 而基点和阶数,要根据具体的问题来确定. 6、 积分中值定理 若f(x)在[a 、b]上连续,则至少存在一点c ∈[a 、b],使得 b a ?f(x)dx=f(c)(b-a) 三、 典型题型与例题 题型一 、与连续函数相关的问题(证明存在ξ使0)(=ξf 或方程f(x)=0有根) 例1、设)(x f 在[a,b]上连续,),,2,1(0,21n i c b x x x a i n ΛΛ=><<<<<,证明存在],[b a ∈ξ ,使得 n n n c c c x f c x f c x f c f ++++++=ΛΛ212211)()()()(ξ 例2、设)(,0x f a b >>在[a,b]上连续、单调递增,且0)(>x f ,证明存在),(b a ∈ξ 使得 )(2)()(222ξξf a f b b f a =+ 例3、设)(x f 在[a,b]上连续且0)(>x f ,证明存在),(b a ∈ξ使得 ???==b b a a dx x f dx x f dx x f ξξ )(2 1)()(。 例4、设)(),(x g x f 在[a,b]上连续,证明存在),(b a ∈ξ使得

实数完备性定理的证明及应用

实数完备性定理的证明及应用 学生姓名:xxx 学号:072 数学与信息科学学院数学与应用数学专业 指导老师:xxx 职称:副教授 摘要:实数集的完备性是实数集的一个基本特征,他是微积分学的坚实的理论基础,从不同的角度来描述和刻画实数集的完备性,六个完备性定理是对实数完备性基本定理等价性的系统论述,让我们获得对实数集完备性的基本特征的进一步的认识和理解. 并用实数完备性定理证明闭区间上连续函数的若干性质.关键词:完备性;基本定理;等价性 Testification and application about Real Number Completeness Abstract: Completeness of the set of reel numbers is its basic character, and it is stable theory background of calculus. It can be described and depicted in different angles, To prove the equivalence of the six principle theorem is systematic discussion about it and make us acquire more recognition and understanding. At the same time, the theorem of completeness of real numbers testpfyies the several qualities of the continuous function in closed interval. Key Words: sigmacompleteness; fundamental theorem; equivalence 引言 在数学分析学习中,我们知道,实数完备性定理是极限的理论基础,是数学分析理论的基石,对实数完备性表达通常有六个定理.在此,我们以实数连续性为公理,顺序证明其余六个基本定理,最后达到循环,从而证明等价性,并用实数完备性定理证明闭区间上连续函数的若干性质. 1. 基本定义[1]

哥德尔不完备性定理

哥德尔不完备性定理 2010-10-28 23:09:32来自: 苏仁(履霜冰至。一心难二用。) 一、哥德尔不完备性定理的基本内容 一个普遍公认的事实是,哥德尔不完备性定理在数理逻辑中占有极其重要的地位,是数学与逻辑发展史中的一个里程碑。 哥德尔关于形式系统的不完备性定理,首次发表在他的论文《论数学原理及有关系统中不可判定命题》中。不完备性定理是关于不可判定命题存在的一般结果,如果仅就算术系统而言,这个定理可以简单地表述为: 定理:如果形式算术系统是ω无矛盾的,则存在着这样一个命题,该命题及其否定在该系统中都不能证明,即它是不完备的。 罗塞尔(Rosser)对上面的定理进行了如下改进: 定理:如果形式算术系统是无矛盾的,则它是不完备的。具体说就是—— 定理:如果一个含有自然数论的形式系统S是无矛盾的,则S中存在一个逻辑公式A,使得在S中A是不能证明的,同时 ̄|A( ̄| 为否定连接词——笔者注)也是不能证明的。 作为不完备性定理证明思想的一个关键之处在于映射原理的应用,哥德尔是通过一种十分新颖的映射形式来构造他的命题的。映射是数学研究中极为重要的一种研究方法,其基本思想就是借助一一对应使得某一领域内的对象之间的某种关系得以在另一领域内的对象之间的关系得到表现。哥德尔的方法是:把算术系统(记为N)中的符号、表达式和表达式的序列都映射为数——通过引进“哥德尔数”而实现了对象的数化手续。这样处理的结果,对于数理逻辑和其他有关分支来说,在研究方法上就提供了一种数字化工具,能够方便地把一些讨论对象(如符号、公式)转换为自然数或自然数的函数,能够用自然数的理论来讨论有关问题。其次,哥德尔又通过“递归函数”的引进证明了所有元理论中关于表达式的结构性质命题,都可以在算术系统中得到表达。映射原理的应用和递归函数的引进,使元理论中的命题都映射为了算术系统中的命题,算术系统也因此获得了元数学的意义。 哥德尔在阐述自己的证明思想时说过:“我们可以注意到一个形式系统的公式在形式上都表现为基本符号(变量、逻辑常项、括号或中断号)的一个有限序列,而且人们容易精确地去指明基本符号的那些有限序列是有意义的公式和那些不是有意义的公式。类似地,从形式的观点看,所谓证明实际上就是公式的一个有限序列。对于元数学来说,究竟用什么东西来作为基本符号当然是没有关系的。我们不妨就用自然数来作为基本符号,如此,一个公式就是一个自然数的有限序列,而证明便是一个有限的自然数序列的有限序列。据此,元数学的概念(命题)也就变成了关于自然数或他们的序列的基本概念(命题),从而就可以(至少是部分地)在(对象)系统本身的符号中得到表示,特别是人们可以证明…公式?、…证明?、…可证公式?等都可在对象系统中加以定义。” 哥德尔按照上述的证明思想,为不完备性定理的证明在对象系统内构造了这样一个命题G,使

相关文档
最新文档