定理与证明(一)
人教版数学七年级下册5.3.2-1《命题、定理、证明1》教案2

人教版数学七年级下册5.3.2-1《命题、定理、证明1》教案2一. 教材分析《命题、定理、证明1》是人教版数学七年级下册第五章第三节的一部分,这部分内容是学生学习数学证明的基础。
通过这部分的学习,学生将理解命题与定理的概念,学会如何阅读和理解数学证明,并初步掌握证明的方法。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力,能够理解和运用基本的数学概念和运算。
但是,对于数学证明这一概念,学生可能还比较陌生,需要通过具体的例子和实践活动来逐渐理解和掌握。
三. 教学目标1.了解命题和定理的概念,能够区分它们。
2.学会阅读和理解数学证明,能够初步进行简单的证明。
3.培养学生的逻辑思维能力和数学表达能力。
四. 教学重难点1.命题与定理的概念。
2.数学证明的方法和步骤。
五. 教学方法采用问题驱动法和案例教学法,通过具体的例子和实践活动,引导学生理解和掌握命题、定理和证明的概念和方法。
六. 教学准备1.PPT课件。
2.相关例题和练习题。
七. 教学过程1.导入(5分钟)通过一个具体的数学问题,引出命题、定理和证明的概念。
2.呈现(15分钟)讲解命题和定理的概念,通过具体的例子让学生理解它们的区别。
然后讲解数学证明的方法和步骤,引导学生学会阅读和理解数学证明。
3.操练(15分钟)让学生分组讨论,尝试解决一些简单的证明问题,教师巡回指导。
4.巩固(5分钟)对学生的解答进行点评,指出其中的错误和不足,引导学生正确理解和掌握证明的方法。
5.拓展(5分钟)给出一些思考题,让学生进一步深入理解和掌握命题、定理和证明的知识。
6.小结(5分钟)对本节课的主要内容进行总结,强调命题、定理和证明的概念和方法。
7.家庭作业(5分钟)布置一些相关的练习题,让学生巩固所学知识。
8.板书(5分钟)将本节课的主要内容进行板书,方便学生复习和记忆。
教学过程每个环节所用的时间:导入5分钟,呈现15分钟,操练15分钟,巩固5分钟,拓展5分钟,小结5分钟,家庭作业5分钟,板书5分钟。
定理与证明

定理与证明定理与证明是数学的基本概念之一,是数学推理的核心。
定理是指对于一些命题在一定条件下求得的普遍真理,而证明则是通过逻辑推理和推导来验证这个定理的正确性。
定理与证明的关系密不可分,在数学研究中,证明定理是一项重要的工作。
下面我们将详细介绍定理与证明的概念、分类和重要性。
首先,定理是数学中的基本概念,指的是在一定条件下可以得出的普遍真理。
定理是经过推理、证明和验证后被广泛接受的数学命题。
一般来说,定理具有普遍性、确凿性和可证性的特点。
普遍性表示该定理对于所有符合条件的对象都成立;确凿性说明该定理是经过推理证明得出的,具有一定的可靠性;可证性表示该定理可以被证明,即可以通过逻辑推理和推导来验证其正确性。
根据定理的内容和形式,我们可以将定理分为不同的类型。
常见的定理类型包括代数定理、几何定理、概率定理、逻辑定理等。
代数定理主要研究数的性质和运算规律,如勾股定理、费马大定理等;几何定理主要研究形状、空间和尺寸等几何概念之间的关系,如平行线定理、垂线定理等;概率定理主要研究随机事件的概率分布和计算方法,如大数定理、中心极限定理等;逻辑定理主要研究命题之间的逻辑关系及推理规则,如排中律、简化定理等。
为了验证定理的正确性,我们需要进行证明。
证明是通过逻辑推理和推导来验证定理的正确性。
一个正确的证明应具有逻辑严密性、合乎规范和可验证性的特点。
证明的基本过程包括假设、推理和结论。
首先,我们需要根据已知条件和已知定理进行假设,设定一个或多个待证明的命题;然后,根据逻辑规则和推理方法进行严密的推理,从而逐步推导出结果;最后,通过逻辑推理和推导,得出结论,证明待证命题的正确性。
定理与证明在数学研究中具有重要的意义。
首先,定理是数学研究的核心和目标。
数学的发展离不开定理的发现和证明。
通过证明一个定理,可以揭示数学潜在的内在规律和关系,促进数学理论的进一步研究和发展。
其次,证明是数学推理和推导的重要手段。
通过证明,可以验证一个命题的正确性,建立数学理论的可靠性和科学性。
华师大八年级数学上册《定理与证明》课件(共15张PPT)

这个结论正确吗?是否有一个多边形 的内角Fra bibliotek不满足这 一规律?
正确
通过上面几个例子说明: 通过特殊的事例得到的结论可能正确,也可 能不正确。
因此: 通过这种方式得到的结论,还需进一步加以 证实。
证明的定义
根据条件、定义及基本事实、定理等,经过演绎 推理,来判断一个命题是否正确,这样的推理过 程叫做证明。
•3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/4/212022/4/21April 21, 2022
谢谢观赏
You made my day!
倍
速
课
时
学
练
我们,还在路上……
公理、定理、命题的关系
真命题
命题
假命题
公理(正确性由实践总结) 定理(正确性通过推理证实)
练习
1.把下列定理改写成“如果……,那么……”的形式,指出 它的条件和结论,并用逻辑推理的方法证明题(1):
(1)同旁内角互补,两直线平行;
如果两直线被第三条直线所截,同旁内角互补, 那么这两直线平行。
(2)三角形的外角和等于360°.
13.1 命题、定理与证明
复习回顾
1、什么叫命题? 表示判断的语句叫做命题。
2、命题的结构 命题由条件和结论两部分构成,常可写成“如 果……那么……”的形式
3、命题的分类 正确的命题称为真命题,错误的命题称为假命题。
4、真、假命题的判断
判断一个命题是真命题,可以用逻辑推理的方 法证明
判断一个命题是假命题,只要举出一个例子,说 明该命题不成立就可以了,这种方法称为举反例;
如果三个角分别是三角形的三个外角,那么这三 个角的和等于360°。
数学教案定理与证明

数学教案-定理与证明(一) 教学建议(一)教材分析一、知识结构二、重点、难点分析重点:真命题的证明步骤与格式.命题的证明步骤与格式是本节的主要内容,是学习数学必具有的能力,在此后的学习中将会有大量的证明问题;另一方面它还表现了数学的逻辑性和严谨性.难点:推论证明的思路和方式.因为它表现了学生的抽象思维能力,由于学生对逻辑的理解不深刻,往往找不出最优的思维切入点,证明的盲目性很大,因此对学生证明的思路和方式的训练是教学的难点.(二)教学建议一、四个注意(1)注意:①公理是通太长期实践反复验证过的,不需要再进行推理论证而都承认的真命题;②公理可以作为判定其他命题真假的按照.(2)注意:定理都是真命题,但真命题不必然都是定理.一般选择一些最大体最常常利用的真命题作为定理,可以以它们为按照推证其他命题.这些被选作定理的真命题,在教科书中是用黑体字排印的.(3)注意:在几何问题的研究上,必需通过证明,才能作出真实靠得住的判断.如“两直线平行,同位角相等”这个命题,若是只采用测量的方式.只能测量有限个两平行直线的同位角是相等的.但采用推理方式证明两平行直线的同位角相等,那么就可以够确信赖意两平行直线的同位角相等.(4)注意:证明中的每一步推理都要有按照,不能“想固然”.①论据必需是真命题,如:概念、公理、已经学过的定理和巳知条件;②论据的真实性不能依赖于论证的真实性;③论据应是论题的充沛理由.二、慢慢渗透数学证明的思想:(1)增强数学推理(证明)的语言训练使学生做到,能用准确的语言表述学过的概念和命题,即进行语言准确性训练;能学会一些大体的推理论证语言,如“因为……,所以……”句式,“若是……,那么……”句式等等;提高符号语言的识别和表达能力,例如,把要证明的命题结合图形,用已知,求证的形式写出来.(2)提高学生的“图形”能力,包括利用大纲允许的工具画图(垂线、平行线)的能力和在对要证命题的理解(如分清题设、结论)的基础上,画出要证明的命题的图形的能力,后一点尤其重要,一般通过图形易于弄清命题并找出证明的方式.(3)增强各类推理训练,一般应先使学生从“仿照”教科书的形式开始训练.首先是用自然语言叙述只有一步推理的进程,然后用简化的“三段论”方式表述出这一进程,再进行有两步推理的进程的仿照;最后,在学完“命题、定理、证明”一单元后,总结证明的一般步骤,并进行多至三、四步的推理.在以上训练中,每一步推理的后面都应要求填注推理按照,这既可训练良好的推理习惯,又有助于掌握学过的命题.教学目标:一、了解证明的必要性,知道推理要有依据;熟悉综合法证明的格式,能说出证明的步骤.二、能用符号语言写出一个命题的题设和结论.3、通过对真命题的分析,增强推理能力的训练,培育学生逻辑思维能力.教学重点:证明的步骤与格式.教学难点:将文字语言转化为几何符号语言.教学进程:一、温习提问一、命题“两直线平行,内错角相等”的题设和结论各是什么?二、按照题设,应画出什么样的图形?(答:两条平行线a、b被第三条直线c所截)3、结论的内容在图中如何表示?(答:在图中标出一对内错角,并用符号表示)二、例题分析例一、证明:两直线平行,内错角相等.已知:a∥b,c是截线.求证:∠1=∠2.分析:要证∠1=∠2,只要证∠3=∠2即可,因为∠3与∠1是对顶角,按照平行线的性质,易患出∠3=∠2.证明:∵a∥b(已知),∴∠3=∠2(两直线平行,同位角相等).∵∠1=∠3(对顶角相等),∴∠1=∠2(等量代换).例二、证明:邻补角的平分线彼此垂直.已知:如图,∠AOB+∠BOC=180°,OE平分∠AOB,OF平分∠BOC.求证:OE⊥OF.分析:要证明OE⊥OF,只要证明∠EOF=90°,即∠1+∠2=90°即可.证明:∵OE平分∠AOB,∴∠1=∠AOB,同理∠2=∠BOC,∴∠1+∠2=(∠AOB+∠BOC)=∠AOC=90°,∴OE⊥OF(垂直概念).三、课堂练习:一、平行于同一条直线的两条直线平行.二、两条平行线被第三条直线所截,同位角的平分线彼此平行.四、归纳小结主要通过学生回忆本节课所学内容,从知识、技术、数学思想方式等方面加以归纳,有利于学生掌握、运用知识.然后见投影仪.五、布置作业讲义P143 五、(2),7。
定理与证明1【公开课教案】(含反思)

第2课时 定理与证明1.了解公理、定理与证明的概念并了解本套教材所采用的公理;(重点)2.体会命题证明的必要性,体验数学思维的严谨性.一、情境导入体验证明的步骤:对于命题“如果一条直线与两条平行线中的一条垂直,那么这条直线也和另一条垂直”是否正确?转化为如图所示的图形,已知条件为AB∥CD,AB ⊥EF ,请问CD 与EF 垂直吗?为什么?二、合作探究探究点一:公理与定理下列平行线的判定方法中是公理的是( )A .平行于同一条直线的两条直线平行B .同位角相等,两直线平行C .内错角相等,两直线平行D .在同一平面内,不相交的两条直线叫做平行线解析:A 是由公理推出的定理;C 是由B 推出的平行线的判定定理;D 是平行线的定义,只有B 是由画图实践得来的,符合公理的定义,故选B.方法总结:公理是不需要推理判断的公认的真命题;定理是需要用推理的方法来判断其正确的命题.探究点二:证明【类型一】 直接证明非文字题如图所示,在直线AC 上取一点O ,作射线OB ,OE 和OF 分别平分∠AOB 和∠BOC.求证:OE⊥OF.解析:要证明某个结论,可从条件入手分析,也可以从结论逆推进行分析.要证OE⊥OF ,只需证∠EOF =90°,而∠EOF =∠EOB +∠BOF ,因此只需证∠EOB +∠BOF =90°.由OE 、OF平分∠AOB 和∠BOC 可得∠EOB +∠BOF =12(∠AOB +∠BOC)=90°,所以得证OE⊥OF.证明:∵OE 和OF 分别平分∠AOB 和∠BOC,∴∠EOB =12∠AOB ,∠BOF =12∠BOC.又∵∠AOB +∠BOC=180°,∴∠EOB +∠BO F =12(∠AOB+∠BOC)=12×180°=90°,即∠EOF=90°,∴OE ⊥OF.方法总结:从结论逆推进行分析得出条件,反过来的过程就是证明结论的过程.【类型二】 直接证明文字题求证:直角三角形的两个锐角互余.解析:分析这个命题的条件和结论,根据已知条件和结论画出图形,写出已知、求证,并写出证明过程.已知:如图所示,在△ABC 中,∠C =90°.求证:∠A 与∠B 互余.证明:∵∠A+∠B+∠C=180°(三角形内角和等于180°),又∠C=90°,∴∠A +∠B =180°-∠C=90°.∴∠A 与∠B 互余.方法总结:解此类题首先根据题意将文字语言变成符号语言,画出图形,最后再经过分析论证,并写出证明的过程.三、板书设计命题⎩⎪⎨⎪⎧分类⎩⎪⎨⎪⎧公理:公认的真命题定理:经过证明的真命题证明:推理的过程经历实际情境,初步体会公理化思想和方法,了解本教材所采用的公理,让学生对真假命题有一个清楚的认识,从而进一步了解定理、公理的概念.培养学生的语言表达能力.7.3 平行线的判定第一环节:情景引入活动内容:回顾两直线平行的判定方法师:前面我们探索过直线平行的条件.大家来想一想:两条直线在什么情况下互相平行呢? 生1:在同一平面内,不相交的两条直线就叫做平行线.生2:两条直线都和第三条直线平行,则这两条直线互相平行.生3:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行.师:很好.这些判定方法都是我们经过观察、操作、推理、交流等活动得到的.上节课我们谈到了要证实一个命题是真命题.除公理、定义外,其他真命题都需要通过推理的方法证实.我们知道:“在同一平面内,不相交的两条直线叫做平行线”是定义.“两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行”是公理.那其他的三个真命题如何证实呢?这节课我们就来探讨.活动目的:回顾平行线的判定方法,为下一步顺利地引出新课埋下伏笔.教学效果:由于平行线的判定方法是学生比较熟悉的知识,教师通过对话的形式,可以使学生很快地回忆起这些知识.第二环节:探索平行线判定方法的证明活动内容:①证明:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.师:这是一个文字证明题,需要先把命题的文字语言转化成几何图形和符号语言.所以根据题意,可以把这个文字证明题转化为下列形式:如图,已知,∠1和∠2是直线a、b被直线c截出的同旁内角,且∠1与∠2互补,求证:a ∥b.如何证明这个题呢?我们来分析分析.师生分析:要证明直线a与b平行,可以想到应用平行线的判定公理来证明.这时从图中可以知道:∠1与∠3是同位角,所以只需证明∠1=∠3,则a与b即平行.因为从图中可知∠2与∠3组成一个平角,即∠2+∠3=180°,所以:∠3=180°-∠2.又因为已知条件中有∠2与∠1互补,即:∠2+∠1=180°,所以∠1=180°-∠2,因此由等量代换可以知道:∠1=∠3.师:好.下面我们来书写推理过程,大家口述,老师来书写.(在书写的同时说明:符号“∵”读作“因为”,“∴”读作“所以”)证明:∵∠1与∠2互补(已知)∴∠1+∠2=180°(互补定义)∴∠1=180°-∠2(等式的性质)∵∠3+∠2=180°(平角定义)∴∠3=180°-∠2(等式的性质)∴∠1=∠3(等量代换)∴a∥b(同位角相等,两直线平行)这样我们经过推理的过程证明了一个命题是真命题,我们把这个真命题称为:直线平行的判定定理.这一定理可简单地写成:同旁内角互补,两直线平行.注意:(1)已给的公理,定义和已经证明的定理以后都可以作为依据.用来证明新定理.(2)证明中的每一步推理都要有根据,不能“想当然”.这些根据,可以是已知条件,也可以是定义、公理,已经学过的定理.在初学证明时,要求把根据写在每一步推理后面的括号内.②证明:内错角相等,两直线平行.师:小明用下面的方法作出了平行线,你认为他的作法对吗?为什么?(见相关动画)生:我认为他的作法对.他的作法可用上图来表示:∠CFE=45°,∠BEF=45°.因为∠BEF与∠FEA组成一个平角,所以∠FEA=180°-∠BEF=180°-45°=135°.而∠CFE与∠FEA是同旁内角.且这两个角的和为180°,因此可知:CD∥AB.师:很好.从图中可知:∠CFE与∠FEB是内错角.因此可知:“内错角相等,两直线平行”是真命题.下面我们来用规范的语言书写这个真命题的证明过程.师生分析:已知,∠1和∠2是直线a、b被直线c截出的内错角,且∠1=∠2.求证:a∥b证明:∵∠1=∠2(已知)∠1+∠3=180°(平角定义)∴∠2+∠3=180°(等量代换)∴∠2与∠3互补(互补的定义)∴a∥b(同旁内角互补,两直线平行).这样我们就又得到了直线平行的另一个判定定理:内错角相等,两直线平行.③借助“同位角相等,两直线平行”这一公理,你还能证明哪些熟悉的结论呢?生1:已知,如图,直线a⊥c,b⊥c.求证:a∥b.证明:∵a⊥c,b⊥c(已知)∴∠1=90°∠2=90°(垂直的定义)∴∠1=∠2(等量代换)∴b∥a(同位角相等,两直线平行)生2:由此可以得到:“如果两条直线都和第三条直线垂直,那么这两条直线平行”的结论.师:同学们讨论得真棒.下面我们通过练习来熟悉掌握直线平行的判定定理.活动目的:通过对学生熟悉的平行线判定的证明,使学生掌握平行线判定公理推导出的另两个判定定理,并逐步掌握规范的推理格式.教学效果:由于学生有了以前学习过的相关知识,对几何证明题的格式有所了解,今天的学习只不过是将原来的零散的知识点以及学生片面的认识进行归纳,学生的认识更提高一步.第三环节:反馈练习活动内容:课本第231页的随堂练习第一题活动目的:巩固本节课所学知识,让教师能对学生的状况进行分析,以便调整前进.教学效果:由于此题只是简单地运用到平行线的判定的三个定理(公理),因此,学生都能很快完成此题.第四环节:学生反思与课堂小结活动内容:①这节课我们主要探讨了平行线的判定定理的证明.同学们来归纳一下完成下表:②由角的大小关系来证两直线平行的方法,再一次体现了“数”与“形”的关系;而应用这些公理、定理时,必须能在图形中准确地识别出有关的角.③注意:证明语言的规范化.推理过程要有依据.活动目的:通过对平行线的判定定理的归纳,使学生的认识有进一步的升华,再一次体会证明格式的严谨,体会到数学的严密性.教学效果:学生充分认识到证明步骤的严密性,对平行线判定的三个定理有了更进一步的认识.课后作业:课本第232页习题6.4第1,2,3题思考题:课本第233页习题6.4第4题(给学有余力的同学做)教学反思平行线是众多平面图形与空间图形的基本构成要素之一,它主要借助角来研究两条直线之间的位置关系,即通过两条直线与第三条直线相交所成的角来判定两条直线平行与否,在教学中,要紧紧围绕这些角(同位角、内错角、同旁内角)与平行线之间的关系展开。
全国通用版中考数学:勾股定理有关的几何证明(一)—详解版

【例1】如图,在Rt△ABC中,∠C=90°,AM是中线,MN⊥AB,垂足为点N,求证:AN2-BN2=AC2.证明:∵MN⊥AB于N,∴BN2=BM2-MN2,AN2=AM2-MN2,∴BN2-AN2=BM2-AM2,又∵∠C=90°,∴AM2=AC2+CM2 ,∴BN2-AN2=BM2-AC2-CM2,又∵BM=CM,∴BN2-AN2=-AC2,即AN2-BN2=AC2.【例2】四边形ABCD,AC⊥BD ,探究AB2,CD2,BC2,AD2之间的数量关系.【解析】AD2+BC2=AB2+CD2,设AC与BD的交点为E∵AC⊥BD,∴∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+CE2+DE2,∴AD2+BC2=AB2+CD2;故答案为:AD2+BC2=AB2+CD2,1.我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.将△ABC绕顶点B按顺时针方向旋转60°,得到△DBE,连接AD,DC,∠DCB=30°.求证:四边形ABCD是以DC、BC为勾股边的勾股四边形.证明:连接CE,∵△DBE是由△ABC的顶点B按顺时针方向旋转60°而得,∴AC=DE,BC=BE,∠CBE=60°,∴△BCE是等边三角形,∴∠BCE=60°,EC=BC,又∵∠DCB=30°,∴∠DCE=90°,∴在Rt△DCE中,DE2=DC2+CE2∴AC2=DC2+BC2即四边形ABCD是以DC,BC为勾股边的勾股四边形.2.在△ABC中,AD⊥BC于D,求证:AB2+CD2=AC2+BD2.证明:在Rt△ABD中,根据勾股定理得:AB2-BD2=AD2;在Rt△ACD中,根据勾股定理得:AC2-CD2=AD2,∴AB2-BD2=AC2-CD2=AD2,则AB2+CD2=AC2+BD2.3.如图,△ABC中,AB=AC,∠BAC=90°,D是BC边上任意一点,求证:BD2+CD2=2AD2.证明:作AE⊥BC于E,如图所示:∵在△ABC中,∠BAC=90°,AB=AC,1BC,∴BE=CE=AE=2∴BD2+CD2=(BE+DE)2+(CE-DE)2=2AE2+2DE2=2AD2.4.如图,在△ABC中,∠C=90°,点P、Q分别在BC、AC上,求证:AP2+BQ2=AB2+PQ2.证明:∵在RT△APC中,AP2=AC2+CP2,在RT△BCQ中,BQ2=BC2+CQ2,∴AP2+BQ2=AC2+CP2+BC2+CQ2,∵在RT△ABC中,AC2+BC2=AB2,在RT△APC中,PC2+CQ2=PQ2,∴AP2+BQ2=AC2+CP2+BC2+CQ2=AB2+PQ2.5.如图,在△ABC中,∠C=90°,D是AC的中点,DE⊥AB于点E.求证:BC2=BE2-AE2.证明:连接BD,∵D是AC的中点,∴CD=AD.∵∠C=90°,DE⊥AB,∴BE2-AE2=(BD2-DE2)-(AD2-DE2)=BD2-AD2=(BC2+CD2)-AD2=BC2.【例1】在△ABC中,以AB为斜边,作Rt△ABD,使点D落在△ABC内,∠ADB=90°,AD=BD,过点D的直线交AC于点E,交BC于点F,EF⊥AC,且AE=EC,请直接写出线段BF、FC、AD之间的关系(不需要证明).证明:BF2+FC2=2AD2,理由:如图3,连接AF、CD.∵EF⊥AC,且AE=EC,∴FA=FC,∠FAC=∠FCA,∵EF⊥AC,且AE=EC,∴∠DAC=∠DCA,DA=DC,∵AD=BD,∴BD=DC,∴∠DBC=∠DCB,∵∠FAC=∠FCA,∠DAC=∠DCA,∴∠DAF=∠DCB,∴∠DAF=∠DBC,∴∠AFB=∠ADB=90°,在Rt△ADB中,DA=DB,∴AB2=2AD2,在Rt△ABF中,BF2+FA2=AB2=2AD2,∵FA=FC∴BF2+FC2=2AD2.【例2】如图,∠C=90°,AM=CM,MP⊥AB于点P,求证:BP2=AP2+BC2.证明:∵△ABC是直角三角形,∠C=90°,∴AB2=BC2+AC2,则AB2-AC2=BC2.又∵在直角△AMP中,AP2=AM2-MP2,∴AB2-AC2+(AM2-MP2)=BC2+(AM2-MP2).又∵AM=CM,∴AB2-AC2+(AM2-MP2)=BC2+(MC2-MP2),①∵△APM是直角三角形,∴AM2=AP2+MP2,则AM2-MP2=AP2,②∵△BPM与△BCM都是直角三角形,∴BM2=BP2+MP2=MC2+BC2,MC2+BC2-MP2=BM2-MP2=BP2,③把②③代入①,得AB2-AC2+AP2=BP2,即BP2=AP2+BC2.1.如图,已知AM是△ABC的BC边上的中线,证明:AB2+AC2=2(AM2+MC2).证明:过点A作AD⊥BC于点D,在Rt△ABD中,AB2=AD2+BD2①,在Rt△ACD中,AC2=AD2+CD2②,由①+②得:AB2+AC2=2AD2+BD2+CD2,在Rt△ADM中,AD2=AM2-DM2,则AB2+AC2=2AM2-2DM2+BD2+CD2,∵AM是△ABC的BC边上的中线,∴BM=MC,∴BD2=(BM+DM)2=(MC+DM)2=MC2+2MC•DM+DM2,CD2=(MC-DM)2=MC2-2MC•DM+DM2,∴AB2+AC2=2AM2-2DM2+MC2+2MC•DM+DM2+MC2-2MC•DM+DM2,∴AB2+AC2=2AM2+2MC2=2(AM2+MC2).2.在△ABC中,AB=AC.(1)如图,若点P是BC边上的中点,连接AP.求证:BP•CP=AB2-AP2;(2)如图,若点P是BC边上任意一点,上面(1)的结论还成立吗?若成立,请证明、若不成立,请说明理由;(3)如图,若点P是BC边延长线上一点,线段AB,AP,BP,CP之间有什么样的数量关系?画出图形,写出你的结论.(不必证明)(1)证明:∵AB=AC,P是BC的中点,∴AP⊥BC,∴AB2-AP2=BP2=BP•CP;(2)成立,理由如下:如图所示,过点A作AD⊥BC于D,∵AB=AC,∴BD=CD在Rt△ABD中,AB2=AD2+BD2①在Rt△APD中,AP2=AD2+PD2②①-②得:AB2-AP2=BD2-PD2=(BD+PD)(BD-PD)=PC•BP;(3)结论:AP2-AB2=BP•CP.如图所示,理由如下:P是BC延长线任一点,连接AP,并做AD⊥BC,交BC于D,∵AB=AC,AD⊥BC,∴BD=CD,在Rt△ABD中,AB2=AD2+BD2,在Rt△ADP中,AP2=AD2+DP2,∴AP2-AB2=(AD2+BD2)-(AD2+DP2)=PD2-BD2,又∵BP=BD+DP,CP=DP-CD=DP-BD,∴BP•CP=(BD+DP)(DP-BD)=DP2-BD2,∴AP2-AB2=BP•CP.3.已知AM是△ABC的中线.(1)求证:AB2+AC2=2(AM2+BM2);(2)若AD是高,求证:AB2-AC2=2BC•MD.证明:(1)在Rt△ABD中,AB2=AD2+BD2①,在Rt△ACD中,AC2=AD2+CD2②,由①+②得:AB2+AC2=2AD2+BD2+CD2,在Rt△ADM中,AD2=AM2-DM2,则AB2+AC2=2AM2-2DM2+BD2+CD2,∵AM是△ABC的BC边上的中线,∴BM=MC,∴BD2=(BM+DM)2=(MC+DM)2=MC2+2MC•DM+DM2,CD2=(MC-DM)2=MC2-2MC•DM+DM2,∴AB2+AC2=2AM2-2DM2+MC2+2MC•DM+DM2+MC2-2MC•DM+DM2,∴AB2+AC2=2AM2+2BM2=2(AM2+BM2).(2)∵AD是高,∴△ABD和△ACD是直角三角形,∴AB2=BD2+AD2,AC2=AD2+DC2,∴AB2-AC2=BD2-DC2=(BD+CD)(BD-CD)=BC(BM+MD-CD),∵AM是中线,∴AB2-AC2=BC(CM+MD-CD)=BC(MD+MD)=2BC•MD.。
13.定理与证明PPT课件(华师大版)

是( )
A.40°
B.50°
C.60°
D.140°
2 完成下面的证明过程,并在括号内填上理由.已知:如图所
示,AD∥BC,∠BAD=∠BCD.求证:AB∥CD.
证明:因为AD∥BC( ),
所以∠1=________(
),
又因为∠BAD=∠BCD(
),
所以∠BAD-∠1=∠BCD-∠2(
),
即∠3=∠4,所以AB∥________(
2 × 3 + 1 =7, 2 × 3 × 5+! =31, 2 × 3 × 5 × 7 + l = 211.
计算一下 2×3×5×7×
11+1与 2×3×5×7× 11×13+1,你 发现了什么?
于是,他根据上面的结果并利 用质数表得出结论:从 质数2开始, 排在前面的任意多个质数的乘积加1 一定 也是质数.他的结论正确吗?
例2 填写下列证明过程中的推理根据.
如图13.1-2:已知AC,BD相交于点O,DF平分
∠CDO与AC相交于点F,BE平分∠ABO与AC相交
于点E,∠A=∠C.
求证:∠1=∠2.
证明:∵∠A=∠C(已知),
∴AB∥CD(________).
图13.1-2
∴∠ABO=∠CDO(________).
又∵DF平分∠CDO,BE平分∠ABO(已知),
).
获取证明思路的方法: (1)从已知条件出发,结合图形,根据前面学过的定
义、基本事实、定理、公式逐步推理求证的结论,这 种方法叫做“综合法”. (2)从结论出发,去探求其成立的原因,直到与已知 条件相吻合为止,这种方法叫“分析法”. (3)“两头凑”,即在解决问题时,将上面的两种方 法结合起来用.
八年级数学上第13章全等三角形13.1命题、定理与证明1命题目标二命题的真假课华东师大

第13章
全等三角形
1课3题. 12.
命题
1
目标二 命题的真假
习题链接
温馨提示:点击 进入讲评
1 2B 3D 4D
5A 6C 7C 8
答案呈现
9
1 下列四个命题:①对顶角相等;②同旁内角互补; ③ 4的算术平方根是 2;④两直线平行,同位角相等. 其中是假命题的是__②__③____(填序号).
2 【2020·岳阳】下列命题是真命题的是( B ) A.一个角的补角一定大于这个角 B.平行于同一条直线的两条直线平行 C.等边三角形是中心对称图形 D.旋转改变图形的形状和大小
9 【教材P55练习T2变式】判断下列命题是真命题还是假 命题,若是假命题,请举出反例. (1)两个锐角的和是锐角;
解:假命题.反例:∠1=70°,∠2=80°, 但∠1+∠2=150°,不是锐角.(举反例不唯一)
(2)经过直线外一点,有且只有一条直线与这条直线 平行; 解:真命题.
(3)如果a2=b2,那么a=b. 假命题.反例:a=2,b=-2,有a2=b2, 但a≠b.(举反例不唯一)
3 【2021·安阳文峰区期末】下列命题是真命题的是( D ) A.若 x2+kx+14是完全平方式,则 k=1 B.一个正数的算术平方根一定比这个数小 C.若等腰三角形的两边长分别是 3 和 7,则第三边长 是3或7 D.两点之间线段最短
4 【2020·通辽改编】下列命题中,是假命题的是( D ) A.无理数都是无限小数 B.因式分解ax2-a=a(x+1)(x-1) C.棱长是1cm的正方体的表面展开图的周长一定 是14 cm D.六边形的内角和是360°
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定理与证明(一)
本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!
教学建议
(一)教材分析
1、知识结构
2、重点、难点分析
重点:真命题的证明步骤与格式.命题的证明步骤与格式是本节的主要内容,是学习数学必具备的能力,在今后的学习中将会有大量的证明问题;另一方面它还体现了数学的逻辑性和严谨性.
难点:推论证明的思路和方法.因为它体现了学生的抽象思维能力,由于学生对逻辑的理解不深刻,往往找不出最优的思维切入点,证明的盲目性很大,因此对学生证明的思路和方法的训练是教学的难点.(二)教学建议
1、四个注意
(1)注意:①公理是通过长期实践反复验证过的,不需要再进行推理论证而都承认的真命题;②公理可以作为判定其他命题真假的根据.
(2)注意:定理都是真命题,但真命题不一定都是定理.一般选择一些最基本最常用的真命题作为定理,可以以它们为根据推证其他命题.这些被选作定理的真命题,在教科书中是用黑体字排印的.(3)注意:在几何问题的研究上,必须经过证明,才能作出真实可靠的判断.如“两直线平行,同位角相等”这个命题,如果只采用测量的方法.只能测量有限个两平行直线的同位角是相等的.但采用推理方法证明两平行直线的同位角相等,那么就可以确信任意两平行直线的同位角相等.
(4)注意:证明中的每一步推理都要有根据,不能“想当然”.①论据必须是真命题,如:定义、公理、已经学过的定理和巳知条件;②论据的真实性不能依赖于论证的真实性;③论据应是论题的充足理由.
2、逐步渗透数学证明的思想:
(1)加强数学推理(证明)的语言训练使学生做到,能用准确的语言表述学过的概念和命题,即进行语言准确性训练;能学会一些基本的推理论证语言,如“因为……,所以……”句式,“如果……,那么……”句式等等;提高符号语言的识别和表达能力,例如,把要证明的命题结合图形,用已知,求证的形式写出来.(2)提高学生的“图形”能力,包括利用大纲允许
的工具画图(垂线、平行线)的能力和在对要证命题的理解(如分清题设、结论)的基础上,画出要证明的命题的图形的能力,后一点尤其重要,一般通过图形易于弄清命题并找出证明的方法.
(3)加强各种推理训练,一般应先使学生从“模仿”教科书的形式开始训练.首先是用自然语言叙述只有一步推理的过程,然后用简化的“三段论”方法表述出这一过程,再进行有两步推理的过程的模仿;最后,在学完“命题、定理、证明”一单元后,总结证明的一般步骤,并进行多至三、四步的推理.在以上训练中,每一步推理的后面都应要求填注推理根据,这既可训练良好的推理习惯,又有助于掌握学过的命题.教学目标:
1、了解证明的必要性,知道推理要有依据;熟悉综合法证明的格式,能说出证明的步骤.
2、能用符号语言写出一个命题的题设和结论.
3、通过对真命题的分析,加强推理能力的训练,培养学生逻辑思维能力.
教学重点:证明的步骤与格式.
教学难点:将文字语言转化为几何符号语言.
教学过程:
一、复习提问
1、命题“两直线平行,内错角相等”的题设和结论各是什么?
2、根据题设,应画出什么样的图形?(答:两条平行线a、b被第三条直线c所截)
3、结论的内容在图中如何表示?(答:在图中标出一对内错角,并用符号表示)
二、例题分析
例1、证明:两直线平行,内错角相等.
已知:a∥b,c是截线.
求证:∠1=∠2.
分析:要证∠1=∠2,
只要证∠3=∠2即可,因为
∠3与∠1是对顶角,根据平行线的性质,
易得出∠3=∠2.
证明:∵a∥b(已知),
∴∠3=∠2(两直线平行,同位角相等).
∵∠1=∠3(对顶角相等),
∴∠1=∠2(等量代换).
例2、证明:邻补角的平分线互相垂直.
已知:如图,∠AOB+∠BOC=180°,
OE平分∠AOB,OF平分∠BOC.
求证:OE⊥OF.
分析:要证明OE⊥OF,只要证明∠EOF=90°,即∠1+∠2=90°即可.
证明:∵OE平分∠AOB,
∴∠1=∠AOB,同理∠2=∠BOC,
∴∠1+∠2=(∠AOB+∠BOC)=∠AOC=90°,∴OE⊥OF(垂直定义).
三、课堂练习:
1、平行于同一条直线的两条直线平行.
2、两条平行线被第三条直线所截,同位角的平分线互相平行.
四、归纳小结
主要通过学生回忆本节课所学内容,从知识、技能、数学思想方法等方面加以归纳,有利于学生掌握、运用知识.然后见投影仪.
五、布置作业
课本P143 5、(2),7。
六、课后思考:
1、垂直于同一条直线的两条直线的位置关系怎样?
2、两条平行线被第三条直线所截,内错角的平分线位置关系怎样?
3、两条平行线被第三条直线所截,同旁内角的平
分线位置关系怎样?
本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!。