八年级数学上册第13章全等三角形13.1命题定理与证明1命题习题课件新版华东师大版

合集下载

华东师大版数学八年级上册1.1命题课件

华东师大版数学八年级上册1.1命题课件

如果两个角是对顶角,那么这两个角相等.
条件
结论
①两直线平行,同位角相等;②直角都相等.
这两个命题,条件和结论分别是什么?
有些命题的条件和结论不明显,可将它经过适当 变形,改写成“如果……,那么……”的情势.
①两直线平行,同位角相等;②直角都相等. ①如果两直线平行,那么同位角相等;
条件
结论
②如果给出的角是直角,那么这些角都相等.
条件成立时,不能保证结论总是正确,也就是 说结论不成立.像这样的命题,称为假命题.
命题的判断方法: 真命题:用演绎推理论证; 假命题: “举反例”.
例题
【例3】判断下列命题是真命题还是假命题. (1)互为补角的两个角相等; (2)若a=b,则a+c=b+c; (3)如果两个长方形的周长相等,那么这两个长 方形的面积相等. 分析:如果是真命题,给出理由即可,如果是 假命题,需要“举反例”.
练习
1.下列语句:①钝角大于90°;②两点之间,线
段最短;③希望明天下雨;④作AD⊥BC;⑤
同旁内角不互补,两直线不平行.其中是命题
的是( B)
A.①②③
B.①②⑤
C.①②④⑤ D.①②④
2.命题“平行于同一条直线的两条直线互相平行” 的
条件是( D )
A.平行
B.两条直线
C.同一条直线 D.两条直线平行于同一条直线
例2中的命题,是正确的吗?
根据等边三角形的判定,我们知道,例2的命题 是正确的. 如果条件成立,那么结论一定成立.像这样的 命题,称为真命题.
思考
内错角相等. 一个钝角和一个锐角的和是平角. 这两个命题是真命题吗?
我们知道,只有两直线平行时形成的内错角才 相等.所以第一个命题不是真命题. 91°和1°的和不是平角,所以第二个命题也不 是真命题.

【华师大版】初中八年级数学上册第13章全等三角形课件

【华师大版】初中八年级数学上册第13章全等三角形课件

∴∠1=∠2( ) ∴∠3=∠4( )
∴AC∥FD(内错角
BC=ED(已证) 相等,两直线平行
∴△ABC≌△FED(SAS)
如图小线明段的设AB计是方一案个:池先在塘池的塘长旁度取,一个能 现直在接到想达测A量和这B处个的池点塘C的,连长结度A,C并在延长至 水方D使这点上法个BC,长测较=使度E量方CA就,不便C等=连方地D于结便把CAC,池,,D连,B塘你两结用的有点B米C长什的并尺度么距延测测好离长出。量的至D请EE的点你长,说, 出明来理由吗。?想想看。
2cm
60°
80°
60°
80°
你画的三角形与同伴
画的一定全等吗?
2、角.角.边
若三角形的两个内角分别是60° 和45°,且45°所对的边为3cm, 你能画出这个三角形吗?
60°
45°
分析:
这里的条件与1中的条件有什 么相同点与不同点?你能将它 转化为1中的条件吗?
60°
75°
两角和它们的夹边对应相 等的两个三角形全等,简写 成“角边角”或“ASA”
“边边角”不能判定两个三角形全等
2.在下列推理中填写需要补 充的条件,使结论成立:
(1)如图,在△AOB和△DOC中
A
D
O
AO=DO(已知)
B
C
∠__A__O_B_=_∠___D_O__C_( 对顶角相等 )
BO=CO(已知)
∴ △AOB≌△DOC( SAS )
(2).如图,在△AEC和△ADB中, C
AB = AC,
B
C
∠A = ∠A(公共角),
AD = AE,
∴ △ ABE ≌ △ ACD(SAS).
练习二
1.若AB=AC,则添加什么条件可得

八年级数学上第13章全等三角形13.5逆命题与逆定理1互逆命题与互逆定理授课课华东师大

八年级数学上第13章全等三角形13.5逆命题与逆定理1互逆命题与互逆定理授课课华东师大
形是四边形.
知2-讲
总结
判断一个定理是否有逆定理的方法:先把定理作为 命题,写出它的逆命题,然后判断其逆命题是否正 确, 如果不正确,举一个反例即可,如果是真命题,加 以证 明即可判断原定理有逆定理.
1 下列定理中,没有逆定理的是( ) A.两直线平行,同旁内角互补 B.全等三角形的对应角相等 C.直角三角形的两个锐角互余 D.两内角相等的三角形是等腰三角形
谢谢观赏
You made my day!
我们,还在路上……
题就
知1-讲
例1 判断下列命题的真假,写出逆命题,并判断逆命 题的真假:
(1)如果两条直线相交,那么它们只有一个交点; (2)如果a>b,那么a2>b2; (3)如果两个数互为相反数,那么它们的和为零; (4)如果ab<0,那么a>0,b<0. 导引:根据题目要求,先判断原命题的真假,再将原命 题的条件和结论部分互换,写出原命题的逆命 题,最后判断逆命题的真假.
知2-练
1.每一个命题都有逆命题,只要将原命题的条件 改成结论,并将结论改成条件,就可以得到原命 题的 逆命题.但原命题的真假与逆命题是否为真命题 没有 丝毫关系. 2.每个定理都有逆命题,但每个定理不一定都有 逆定理,只有当定理的逆命题经过证明是正确的, 才
1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月11日星期五2022/3/112022/3/112022/3/11 2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/112022/3/112022/3/113/11/2022 3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/112022/3/11March 11, 2022 4、享受阅读快乐,提高生活质量。2022/3/112022/3/112022/3/112022/3/11

华师大版八年级上册1命题、定理与证明课件

华师大版八年级上册1命题、定理与证明课件

∵ DF 平分∠ CDO,BE 平分∠ ABO(已知),
∴∠ 1= 1 ∠ CDO,∠ 2= 1 ∠ ABO(_角__平__分__线__的__定__义_ ).
2
2
∴∠ 1= ∠ 2(等量代换).
解题秘方:根据上一步的因为条件填写下一步的根据.
感悟新知
4-1. 如图, 已知: 点A,B,C 在同一条直线上.
感悟新知
知1-练
解:条件:两个角互为补角;结论:这两个角相等. 假命题. 条件:a=b;结论:a+c=b+c. 真命题. 条件:两个长方形的周长相等;结论:这两个长方
形的面积相等. 假命题.
感悟新知
知1-练
2-1. 下列命题是真命题的是( A ) A. 如果两个角不相等,那么这两个角不是对顶角 B. 如果a2=b2, 那么a=b C. 两个互补的角一定是邻补角 D. 如果两个角是同位角,那么这两个角一定相等
知2-练
感悟新知
知识点 3 命题证明的一般步骤
知3-讲
1. 证明 根据条件、定义以及基本事实、定理等,经过演绎 推理,来判断一个命题是否正确,这样的推理过程叫做 证明.
感悟新知
知3-讲
2. 命题证明的一般步骤 第一步:分清命题的条件和结论,若命题与图形有关,则
根据题意,画出图形,并在图形上标出相关的字母和符号; 第二步:根据条件、结论,结合图形,写出已知、求证; 第三步:视察图形,分析证明思路,找出证明方法; 第四步:写出证明的过程,并注明根据.
结论不成立,像这样的命题,称为假命题.
感悟新知
知1-练
例 1 把下列命题改写成“如果……,那么……”的情势: 对顶角相等; 平行于同一条直线的两条直线平行; 同角或等角的余角相等. 解题秘方:紧扣命题的结构情势进行改写.

八年级数学上册 第13章 全等三角形13.1 命题、定理与证明 2定理与证明课件

八年级数学上册 第13章 全等三角形13.1 命题、定理与证明 2定理与证明课件
已知、求证;
3.经过分析,找出由已知推出求证的
途径,写出证明过程.
第十一页,共二十二页。
根据下列命题,画出图形,并结合
图形写出已知、求证(不写证明过程):
1)垂直于同一直线的两直线平行;
2)内错角相等,两直线平行;
3)一个角的平分线上的点到这个角的两边
的距离相等; 4)两条平行线的一对(yī duì)内错角的平分线互相
∴ OE⊥OF 2 第十七页,共二十二页。
如何(rúhé)判断一个命题是假命题?
只要举出一个例子(反例),
它符合(fúhé)命题的题设,但不满足 结论就可以了.
第十八页,共二十二页。
判断下列(xiàliè)命题是真命题还是假命题.
如果是假命题,举出一个反例:
1)相等的角是对顶角; 2)同位角相等;
4)两条平行线的一对(yī duì)内错角的平分线互相 平行.
已知:如图,AB、CD被直线EF所截,且
AB∥CD,EG、FH分别(fēnbié)是∠AEF和
∠EFD的平分线
求证:EG∥FH
A
E
B
G CF
第十六页,共二十二页。
H D
例2.证明(zhèngmíng):邻补角的平分线互相垂直.
已知:如图,∠AOB、∠BOC互为邻补角(bǔ , jiǎo)
c
3a
1
2
b
第九页,共二十二页。
c
证明 :∵a∥已b 知( (zhèngmíng)
∴∠3=∠2
3a
1
)2
b
(两直线平行(píngxíng),同位角相) 等
∵ ∠3=∠1 ( 对顶角相等)(xiāngděng)
∴∠1=∠2 ( 等量代换)

华师版八年级数学上册作业课件(HS)第十三章 全等三角形 命题、定理与证明 第1课时 命题

华师版八年级数学上册作业课件(HS)第十三章 全等三角形 命题、定理与证明 第1课时 命题

(2)同一个角的两个补角相等. 解:如果两个角是同一个角的补角,那么这两个角相等
6.(4分)下列命题是真命题的是( C ) A.不相交的两条直线是平行线 B.同旁内角互补 C.对顶角的角平分线成一条直线 D.一个数能被5整除,那么这个数的末位数是0
7.(4 分)下列命题是假命题的是( B )
A.若 x<y,则 x+2 015<y+2 015 B.单项式-4x72y3 的系数是-4 C.若|x-1|+(y-3)2=0,则 x=1,y=3 D.平移不改变图形的形状和大小
两个直角 以举反例:____________.
15.把命题“平行于同一直线的两直线平行”改写成“如果……,那 么……”的形式:
___如__果__有__两__条__直__线__平__行__于__同__一__条__直__线__,__那__么__这__两__条__直__线__互__相__平__行_____. 16.对于同一平面内的三条直线a,b,c,给出下列五个论断:①a∥b; ②b∥c;③a⊥b;④a∥c;⑤a⊥c.以其中两个论断为条件,一个论断为 结论,组成一个你认为正确的命题: ____如__果__a_∥__b_,__b_∥__c_._那__么__a_∥__c(_答__案__不__唯__一__)______.
三、解答题(共32分) 17.(12分)写出下列各命题的条件和结论: (1)如果x=0,那么xy=0; 解:条件是x=0,结论是xy=0 (2)如果两条直线相交,那么它们只有一个交点; 解:条件是两条直线相交,结论是它们只有一个交点 (3)互补的两个角是邻补角; 解:条件是两个角互补,结论是它们是邻补角 (4)过一点有且只有一条直线与已知直线垂直. 解:条件是过一点作已知直线的垂线,结论是有且只有一条直线垂直 于已知直线

沪科版八年级数学上册第13章教学课件:13.1.2 三角形中角的关系(共19张PPT)

沪科版八年级数学上册第13章教学课件:13.1.2 三角形中角的关系(共19张PPT)

45°
x=50
3.如图,则∠1+∠2+∠3+∠4=____2_8_0_°____ .
C
D4
1
40° 2
3
A
E
B
4.如图,四边形ABCD中,点E在BC 上,∠A+∠ADE=180°,∠B=78°,∠C=60°,求 ∠EDC的度数.
解:∵∠A+∠ADE=180°, ∴AB∥DE, ∴∠CED=∠B=78°. 又∵∠C=60°, ∴∠EDC=180°-(∠CED+∠C) =180°-(78°+60°) =42°.
当堂练习
1.下列各组角是同一个三角形的内角吗?为什么?
(1)3°, 150°, 27°

(2)60°, 40°, 90°
不是
(3)30°, 60°, 50°
不是
三角形的内角和为180°.
2.求出下列各图中的x值.
7 0
4 0
x
x=70
2x° x°
x=30
x° x° x°
x=60
x° 20°
25°
思考
三角形若按角来分类,可分为哪几类?
讲授新课
一 三角形按角分类 画一画:同学们手中有直角三角板,请再画一个内 角不是90°的三角形.
三个角都是锐角的三角形叫做锐角三角形; 有一个角是直角的三角形叫做直角三角形;
直角三角形ABC可以写成Rt△ABC; 有一个角是钝角的三角形叫做钝角三角形.
A
锐角三角形
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/52021/9/52021/9/52021/9/59/5/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月5日星期日2021/9/52021/9/52021/9/5 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/52021/9/52021/9/59/5/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/52021/9/5September 5, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/52021/9/52021/9/52021/9/5

华东师大版八年级数学上册第13章全等三角形

华东师大版八年级数学上册第13章全等三角形

03
全等三角形在几何图形 中的应用
利用全等三角形求线段长度
通过全等三角形的对应边相等 ,可以求出一些线段的长度。
在一些复杂的几何图形中,可 以通过构造全等三角形来简化 问题,进而求出所需线段的长 度。
利用全等三角形的性质,可以 通过已知条件推导出其他线段 的长度。
利用全等三角形求角度大小
通过全等三角形的对应角相等,可以求出一些角的大小。 在一些涉及到角度计算的几何问题中,可以通过构造全等三角形来简化计算过程。
过程中的细节和准确性避免出错。
06
章节小结与拓展延伸
知识点总结回顾
全等三角形的定义和性质
01
能够准确描述全等三角形的定义,理解全等三角形的对应边相
等、对应角相等的性质。
全等三角形的判定方法
02
掌握SSS、SAS、ASA、AAS和HL五种全等三角形的判定方法,
并能够灵活运用它们来解决实际问题。
全等三角形的应用
全等三角形的对应边上的中线 相等。
全等三角形的判定方法
ASA(角边角)
SAS(边角边)
两边和它们的夹角对应相等的两 个三角形全等。
两角和它们的夹边对应相等的两 个三角形全等。
AAS(角角边)
两角和其中一个角的对边对应相 等的两个三角形全等。
SSS(边边边)
三边对应相等的两个三角形全等 。
HL(斜边、直角边)
直角三角形全等的判定
判定方法一
判定方法二
斜边和一条直角边对应相等的两个直角三 角形全等(HL)。
两个锐角对应相等的两个直角三角形,若 斜边相等,则这两个直角三角形全等。
判定方法三
注意事项
两个锐角对应相等的两个直角三角形,若 一条直角边相等,则这两个直角三角形全 等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档