圆周运动高考题(含答案)
2023年高考复习微专题——圆周运动习题选编 含答案

微专题—圆周运动习题选编一、单项选择题1.如图所示,B和C是一组塔轮,即B和C半径不同,但固定在同一转动轴上,其半径之比为R B∶R C=3∶2.A 轮的半径大小与C轮相同,它与B轮紧靠在一起,当A轮绕其中心的竖直轴转动时,由于摩擦作用,B轮也随之无滑动地转动起来,a、b、c分别为三轮边缘的三个点,则a、b、c三点在运动过程中()A.线速度大小之比为3∶2∶2B.角速度之比为3∶3∶2C.转速之比为2∶3∶2D.向心加速度大小之比为9∶6∶42.A、B两艘快艇在湖面上做匀速圆周运动(如图),在相同时间内,它们通过的路程之比是4:3,运动方向改变的角度之比是3:2,则它们()A.线速度大小之比为4:3B.角速度大小之比为3:4C.圆周运动的半径之比为2:1D.向心加速度大小之比为1:23.如图所示,一位同学玩飞镖游戏.圆盘最上端有一P点,飞镖抛出时与P等高,且距离P点为L.当飞镖以初速度v0垂直盘面瞄准P点抛出的同时,圆盘以经过盘心O点的水平轴在竖直平面内匀速转动.忽略空气阻力,重力加速度为g,若飞镖恰好击中P点,则()A .飞镖击中P 点所需的时间为0LvB .圆盘的半径可能为2202gL vC .圆盘转动角速度的最小值为2v Lπ D .P 点随圆盘转动的线速度不可能为54gLv π 4.如图,有一倾斜的匀质圆盘(半径足够大),盘面与水平面的夹角为θ,绕过圆心并垂直于盘面的转轴以角速度ω匀速转动,有一物体(可视为质点)与盘面间的动摩擦因数为(μ设最大静摩擦力等手滑动摩擦力),重力加速度为g .要使物体能与圆盘始终保持相对静止,则物体与转轴间最大距离为( )A .2cos g μθωB .2sin g θω C .2cos sin g μθθω- D .2cos sin g μθθω+ 5.未来的星际航行中,宇航员长期处于完全失重状态,为缓解这种状态带来的不适,有人设想在未来的航天器上加装一段圆柱形“旋转舱”,如图所示.当旋转舱绕其轴线匀速旋转时,宇航员站在旋转舱内圆柱形侧壁上,可以受到与他站在地球表面时相同大小的支持力.为达到上述目的,下列说法正确的是( )A .旋转舱的半径越大,转动的角速度就应越大B .旋转舱的半径越大,转动的角速度就应越小C .宇航员质量越大,旋转舱的角速度就应越大D .宇航员质量越大,旋转舱的角速度就应越小6.在G20峰会“最忆是杭州”的文化文艺演出中,芭蕾舞演员保持如图所示姿势原地旋转,此时手臂上A、B 两点角速度大小分别为1ω、2ω,线速度大小分别为A v 、B v ,则( )A .12ωω<B .12ωω>C .A B v v <D .A B v v >7.一质量为2.0×103kg 的汽车在水平公路上行驶,路面对轮胎的径向最大静摩擦力为1.4×104N ,当汽车经过半径为80m 的弯道时,下列判断正确的是( )A .汽车转弯时所受的力有重力、弹力、摩擦力和向心力B .汽车转弯的速度为20m/s 时所需的向心力为1.4×104NC .汽车转弯的速度为20m/s 时汽车会发生侧滑D .汽车能安全转弯的向心加速度不超过7.0m/s 28.滑雪运动深受人民群众喜爱,某滑雪运动员(可视为质点)由坡道进入竖直面内的圆弧形滑道AB ,从滑道的A 点滑行到最低点B 的过程中,由于摩擦力的存在,运动员的速率不变,则运动员沿AB 下滑过程中( )A .合外力做功一定大于零B .所受摩擦力大小不变C .合外力始终与速度垂直D .机械能始终保持不变9.如图所示,照片中的汽车在水平路面上做匀速圆周运动,已知图中双向四车道的总宽度约为15m ,内径75m,假设汽车受到的最大静摩擦力等于车重的0.7倍,则运动的汽车()A.所受的合力可能为零B.只受重力和地面的支持力作用C.最大速度不能超过25m/sD.所需的向心力由重力和支持力的合力提供10.小球P和Q用不可伸长的轻绳悬挂在天花板上,P球的质量大于Q球的质量,悬挂P球的绳比悬挂Q 球的绳短.将两球拉起,使两绳均被水平拉直,如图所示,将两球由静止释放,在各自轨迹的最低点()A.P球的速度一定大于Q球的速度B.P球的动能一定小于Q球的动能C.P球所受绳的拉力一定大于Q球所受绳的拉力D.P球的向心加速度一定小于Q球的向心加速度11.如图所示,旋转秋千中的两个座椅A、B质量相等,通过相同长度的缆绳悬挂在旋转圆盘上.不考虑空气阻力的影响,当旋转圆盘绕竖直的中心轴匀速转动时,下列说法正确的是()A.A的速度比B的大B.A与B的向心加速度大小相等C.悬挂A、B的缆绳与竖直方向的夹角相等D.悬挂A的缆绳所受的拉力比悬挂B的小12.如图所示,转动轴垂直于光滑水平面,交点O的上方h处固定细绳的一端,细绳的另一端栓接一质量为m的小球B,绳长l>h,转动轴带动小球在光滑水平面上做圆周运动,当转动的角速度ω逐渐增大时,下列说法正确的是()A .小球始终受三个力的作用B .细绳上的拉力始终保持不变C .要使球离开水平面角速度至少为√gℎD .若小球飞离了水平面则线速度为√gl13.“太极球”运动是一项较流行的健身运动。
第四章 第3讲 圆周运动 高三新高考练习题及答案解析

第3讲 圆周运动一、非选择题1.(2022·河北高三月考)国家雪车雪橇中心位于北京延庆区西北部,赛道全长1 975 m ,垂直落差121 m ,由16个角度、倾斜度都不同的弯道组成,其中全长179 m 的回旋弯赛道是全球首个360°回旋弯道。
2022年北京冬奥会期间,国家雪车雪橇中心将承担雪车、钢架雪车、雪橇三个项目的全部比赛,其中钢架雪车比赛惊险刺激,深受观众喜爱。
测试赛上,一钢架雪车选手单手扶车,助跑加速30 m 之后,迅速跳跃车上,以俯卧姿态滑行。
该选手推车助跑时间为4.98 s ,运动员质量为80 kg ,通过回旋弯道某点时的速度为108 km/h ,到达终点时的速度为124 km/h 。
该选手推车助跑过程视为匀加速直线运动,回旋弯道可近似看作水平面,重力加速度g 取10 m/s 2,结果保留两位有效数字。
求该选手:(1)助跑加速的末速度;(2)以108 km/h 的速度通过回旋弯道某点时钢架雪车对运动员作用力的大小。
[答案] (1)12 m/s (2)2.6×103 N[解析] (1)运动员助跑加速的末速度为v 1,可知s =12v 1t 代入数据,解得v 1=12 m/s 。
(2)回旋弯道全长179 m ,L =2πr ,运动员通过回旋弯道某点时,钢架雪车对运动员作用力设为F ,F y =mg ,F x =m v 2r,代入数据,解得F =F 2x +F 2y =2.6×103N 。
2.(2022·山东新泰月考)如图所示,水平传送带与水平轨道在B 点平滑连接,传送带AB 长度L 0=2.0 m ,一半径R =0.2 m 的竖直圆形光滑轨道与水平轨道相切于C 点,水平轨道CD 长度L =1.0 m ,在D 点固定一竖直挡板。
小物块与传送带AB 间的动摩擦因数μ1=0.9,BC 段光滑,CD 段动摩擦因数为μ2。
当传送带以v 0=6 m/s 沿顺时针方向匀速转动时,将质量m =1 kg 的可视为质点的小物块轻放在传送带左端A 点,小物块通过传送带、水平轨道、圆形轨道、水平轨道后与挡板碰撞,并以原速率弹回,经水平轨道CD 返回圆形轨道。
高考物理生活中的圆周运动题20套(带答案)及解析

高考物理生活中的圆周运动题20套(带答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大?(3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g s v H L=-201[1]42()s T mg H L L =+- 【解析】【分析】【详解】 (1)由万有引力等于向心力可知22Mm v G m R R= 2Mm G mg R= 可得2v g R= 则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t = 解得0024g sv H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:20 1142()sT mgH L L⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.2.如图所示,半径R=2.5m的竖直半圆光滑轨道在B点与水平面平滑连接,一个质量m=0.50kg 的小滑块(可视为质点)静止在A点.一瞬时冲量使滑块以一定的初速度从A点开始运动,经B点进入圆轨道,沿圆轨道运动到最高点C,并从C点水平飞出,落在水平面上的D点.经测量,D、B间的距离s1=10m,A、B间的距离s2=15m,滑块与水平面的动摩擦因数 ,重力加速度.求:(1)滑块通过C点时的速度大小;(2)滑块刚进入圆轨道时,在B点轨道对滑块的弹力;(3)滑块在A点受到的瞬时冲量的大小.【答案】(1)(2)45N(3)【解析】【详解】(1)设滑块从C点飞出时的速度为v c,从C点运动到D点时间为t滑块从C点飞出后,做平抛运动,竖直方向:2R=gt2水平方向:s1=v c t解得:v c=10m/s(2)设滑块通过B点时的速度为v B,根据机械能守恒定律mv B2=mv c2+2mgR解得:v B=10m/s设在B点滑块受轨道的压力为N,根据牛顿第二定律:N-mg=m解得:N=45N(3)设滑块从A点开始运动时的速度为v A,根据动能定理;-μmgs2=mv B2-mv A2解得:v A =16.1m/s设滑块在A 点受到的冲量大小为I ,根据动量定理I=mv A解得:I=8.1kg•m/s ;【点睛】本题综合考查动能定理、机械能守恒及牛顿第二定律,在解决此类问题时,要注意分析物体运动的过程,选择正确的物理规律求解.3.如图所示,带有14光滑圆弧的小车A 的半径为R ,静止在光滑水平面上.滑块C 置于木板B 的右端,A 、B 、C 的质量均为m ,A 、B 底面厚度相同.现B 、C 以相同的速度向右匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高处.则:(已知重力加速度为g )(1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【答案】(1)023v gR =(2)123gR v =253gR v =【解析】本题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为v 0,AB 相碰过程中动量守恒,设碰后AB 总体速度u ,由02mv mu =,解得02v u = C 滑到最高点的过程: 023mv mu mu +='222011123222mv mu mu mgR +⋅=+'⋅ 解得023v gR =(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有01222mv mu mv mv +=+22220121111222222mv mu mv mv +⋅=+⋅ 解得:123gR v =253gR v =4.如图所示,一轨道由半径2R m =的四分之一竖直圆弧轨道AB 和水平直轨道BC 在B 点平滑连接而成.现有一质量为1m Kg =的小球从A 点正上方2R 处的O '点由静止释放,小球经过圆弧上的B 点时,轨道对小球的支持力大小18N F N =,最后从C 点水平飞离轨道,落到水平地面上的P 点.已知B 点与地面间的高度 3.2h m =,小球与BC 段轨道间的动摩擦因数0.2μ=,小球运动过程中可视为质点. (不计空气阻力,g 取10 m/s 2). 求:(1)小球运动至B 点时的速度大小B v(2)小球在圆弧轨道AB 上运动过程中克服摩擦力所做的功f W(3)水平轨道BC 的长度L 多大时,小球落点P 与B 点的水平距最大.【答案】(1)4?/B v m s = (2)22?f W J = (3) 3.36L m = 【解析】试题分析:(1)小球在B 点受到的重力与支持力的合力提供向心力,由此即可求出B 点的速度;(2)根据动能定理即可求出小球在圆弧轨道上克服摩擦力所做的功;(3)结合平抛运动的公式,即可求出为使小球落点P 与B 点的水平距离最大时BC 段的长度.(1)小球在B 点受到的重力与支持力的合力提供向心力,则有:2B N v F mg m R-= 解得:4/B v m s =(2)从O '到B 的过程中重力和阻力做功,由动能定理可得:21022f B R mg R W mv ⎛⎫+-=- ⎪⎝⎭ 解得:22f W J =(3)由B 到C 的过程中,由动能定理得:221122BC C B mgL mv mv μ-=- 解得:222B C BC v v L g μ-= 从C 点到落地的时间:020.8h t s g== B 到P 的水平距离:2202B C C v v L v t gμ-=+代入数据,联立并整理可得:214445C C L v v =-+ 由数学知识可知,当 1.6/C v m s =时,P 到B 的水平距离最大,为:L=3.36m【点睛】该题结合机械能守恒考查平抛运动以及竖直平面内的圆周运动,解题的关键就是对每一个过程进行受力分析,根据运动性质确定运动的方程,再根据几何关系求出最大值.5.如图所示,半径为4l ,质量为m 的小球与两根不可伸长的轻绳a ,b 连接,两轻绳的另一端分别固定在一根竖直光滑杆的A ,B 两点上.已知A ,B 两点相距为l ,当两轻绳伸直后A 、B 两点到球心的距离均为l ,重力加速度为g .(1)装置静止时,求小球受到的绳子的拉力大小T ;(2)现以竖直杆为轴转动并达到稳定(轻绳a ,b 与杆在同一竖直平面内).①小球恰好离开竖直杆时,竖直杆的角速度0ω多大?②轻绳b 伸直时,竖直杆的角速度ω多大?【答案】(1)415T =(2)①ω0=15215g l②2g l ω≥【解析】【详解】 (1)设轻绳a 与竖直杆的夹角为α15cos α=对小球进行受力分析得 cos mg T α=解得: 415T mg = (2)①小球恰好离开竖直杆时,小球与竖直杆间的作用力为零。
圆周运动高考题(含答案)

匀速圆周运动二、匀速圆周运动的描述1.线速度、角速度、周期和频率的概念(1)线速度v 是描述质点沿圆周运动快慢的物理量,是矢量,其大小为Tr t s v π2==; 其方向沿轨迹切线,国际单位制中单位符号是m/s ;(2)角速度ω是描述质点绕圆心转动快慢的物理量,是矢量,其大小为Tt πφω2==; 在国际单位制中单位符号是rad /s ;(3)周期T 是质点沿圆周运动一周所用时间,在国际单位制中单位符号是s ;(4)频率f 是质点在单位时间内完成一个完整圆运动的次数,在国际单位制中单位符号是 Hz ;(5)转速n 是质点在单位时间内转过的圈数,单位符号为r /s ,以及r /min .2、速度、角速度、周期和频率之间的关系线速度、角速度、周期和频率各量从不同角度描述质点运动的快慢,它们之间有关系v =r ω.f T 1=,Tv π2=,f πω2=。
由上可知,在角速度一定时,线速度大小与半径成正比;在线速度一定时,角速度大小与半径成反比.三、向心力和向心加速度1.向心力(1)向心力是改变物体运动方向,产生向心加速度的原因.(2)向心力的方向指向圆心,总与物体运动方向垂直,所以向心力只改变速度的方向.2.向心加速度(1)向心加速度由向心力产生,描述线速度方向变化的快慢,是矢量.(2)向心加速度方向与向心力方向恒一致,总沿半径指向圆心;向心加速度的大小为22224T r r rv a n πω=== 公式:1.线速度V =s/t =2πr/T2.角速度ω=Φ/t =2π/T =2πf3.向心加速度a =V 2/r =ω2r =(2π/T)2r4.向心力F 心=mV 2/r =m ω2r =mr(2π/T)2=m ωv=F 合5.周期与频率:T =1/f6.角速度与线速度的关系:V =ωr7.角速度与转速的关系ω=2πn (此处频率与转速意义相同)8.主要物理量及单位:弧长s:米(m);角度Φ:弧度(rad );频率f :赫(Hz );周期T :秒(s );转速n :r/s ;半径r :米(m );线速度V :(m/s );角速度ω:(rad/s );向心加速度:(m/s 2)。
高考专题复习:圆周运动(最新整理)

一端固定在
A,
一个竖直放置的圆锥筒可绕其中心轴
和
另一端固定
匀速转动
求转盘转动的
2。
处有一个小孔,用细绳穿过小孔,绳两端各细一个小球A
球保持静止状态,
A
O
F N
A.6.0 N拉力
7、A、B两球质量分别为
相连,置于水平光滑桌面上,
的匀速圆周运动,空气对飞机作用力的大小等于( )
所示.已知小球
的小球,甩动手腕,
后落地,如图所示.已知,忽略手的运动半径和空气阻力.
的小滑块。
当圆盘转动
段斜面倾角为53°,BC段斜
R 1R 2R 3A B
C
D
v
第一圈轨道
第二圈轨道
第三圈轨道
L
L
L 1
在轨道最低处第n 次碰撞刚结束时各自。
高考物理圆周运动经典练习题

圆周运动水平圆周运动【例题】如图所示,在匀速转动的圆筒内壁上,有一物体随圆筒一起转动而未滑动。
当圆筒的角速度增大以后,下列说法正确的是( D )A 、物体所受弹力增大,摩擦力也增大了B 、物体所受弹力增大,摩擦力减小了C 、物体所受弹力和摩擦力都减小了D 、物体所受弹力增大,摩擦力不变【例题】如图为表演杂技“飞车走壁”的示意图.演员骑摩托车在一个圆桶形结构的内壁上飞驰,做匀速圆周运动.图中a 、b 两个虚线圆表示同一位演员骑同一辆摩托,在离地面不同高度处进行表演的运动轨迹.不考虑车轮受到的侧向摩擦,下列说法中正确的是( B )A .在a 轨道上运动时角速度较大B .在a 轨道上运动时线速度较大C .在a 轨道上运动时摩托车对侧壁的压力较大D .在a 轨道上运动时摩托车和运动员所受的向心力较大【例题】长为L 的细线,拴一质量为m 的小球,一端固定于O 点,让其在水平面内做匀速圆周运动(这种运动通常称为圆锥摆运动),如图所示,当摆线L 与竖直方向的夹角是α时,求:(1)线的拉力F ;(2)小球运动的线速度的大小; (3)小球运动的角速度及周期。
★解析:做匀速圆周运动的小球受力如图所示,小球受重力mg 和绳子的拉力F 。
因为小球在水平面内做匀速圆周运动,所以小球受到的合力指向圆心O 1,且是水平方向。
由平行四边形法则得小球受到的合力大小为mgtanα,线对小球的拉力大小为F=mg/cosα由牛顿第二定律得mgtanα=mv 2/r 由几何关系得r=Lsinα 所以,小球做匀速圆周运动线速度的大小为an sin v gLt αα=a bLα O小球运动的角速度小球运动的周期2cos 2L T gπαπ==ω点评:在解决匀速圆周运动的过程中,弄清物体圆形轨道所在的平面,明确圆心和半径是一个关键环节,同时不可忽视对解题结果进行动态分析,明确各变量之间的制约关系、变化趋势以及结果涉及物理量的决定因素。
1、竖直平面内:(1)、如图所示,没有物体支撑的小球,在竖直平面内做圆周运动过最高点的情况:①临界条件:小球达最高点时绳子的拉力(或轨道的弹力)刚好等于零,小球的重力提供其做圆周运动的向心力,即rmv mg 2临界=⇒rg =临界υ(临界υ是小球通过最高点的最小速度,即临界速度)。
高考物理生活中的圆周运动答题技巧及练习题(含答案)含解析

高考物理生活中的圆周运动答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,BC 为半径r 225=m 竖直放置的细圆管,O 为细圆管的圆心,在圆管的末端C 连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m =0.5kg 的小球从O 点正上方某处A 点以v 0水平抛出,恰好能垂直OB 从B 点进入细圆管,小球过C 点时速度大小不变,小球冲出C 点后经过98s 再次回到C 点。
(g =10m/s 2)求:(1)小球从O 点的正上方某处A 点水平抛出的初速度v 0为多大? (2)小球第一次过C 点时轨道对小球的支持力大小为多少?(3)若将BC 段换成光滑细圆管,其他不变,仍将小球从A 点以v 0水平抛出,且从小球进入圆管开始对小球施加了一竖直向上大小为5N 的恒力,试判断小球在BC 段的运动是否为匀速圆周运动,若是匀速圆周运动,求出小球对细管作用力大小;若不是匀速圆周运动则说明理由。
【答案】(1)2m/s (2)20.9N (3)2N 【解析】 【详解】(1)小球从A 运动到B 为平抛运动,有:r sin45°=v 0t 在B 点有:tan45°0gt v =解以上两式得:v 0=2m/s (2)由牛顿第二定律得: 小球沿斜面向上滑动的加速度: a 14545mgsin mgcos m μ︒+︒==g sin45°+μg cos45°=22小球沿斜面向下滑动的加速度: a 24545mgsin mgcos mμ︒-︒==g sin45°﹣μg cos45°=2m/s 2设小球沿斜面向上和向下滑动的时间分别为t 1、t 2, 由位移关系得:12a 1t 1212=a 2t 22又因为:t 1+t 298=s 解得:t 138=s ,t 234=s小球从C 点冲出的速度:v C =a 1t 1=32m/s在C 点由牛顿第二定律得:N ﹣mg =m 2Cv r解得:N =20.9N(3)在B 点由运动的合成与分解有:v B 045v sin ==︒22m/s 因为恒力为5N 与重力恰好平衡,小球在圆管中做匀速圆周运动。
高考物理生活中的圆周运动题20套(带答案)

高考物理生活中的圆周运动题20套(带答案)一、高中物理精讲专题测试生活中的圆周运动1.有一水平放置的圆盘,上面放一劲度系数为k的弹簧,如图所示,弹簧的一端固定于轴O上,另一端系一质量为m的物体A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求:(1)盘的转速ω0多大时,物体A开始滑动?(2)当转速缓慢增大到2ω0时,A仍随圆盘做匀速圆周运动,弹簧的伸长量△x是多少?【答案】(1)glμ(2)34mglkl mgμμ-【解析】【分析】(1)物体A随圆盘转动的过程中,若圆盘转速较小,由静摩擦力提供向心力;当圆盘转速较大时,弹力与摩擦力的合力提供向心力.物体A刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力提供向心力,根据牛顿第二定律求解角速度ω0.(2)当角速度达到2ω0时,由弹力与摩擦力的合力提供向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x.【详解】若圆盘转速较小,则静摩擦力提供向心力,当圆盘转速较大时,弹力与静摩擦力的合力提供向心力.(1)当圆盘转速为n0时,A即将开始滑动,此时它所受的最大静摩擦力提供向心力,则有:μmg=mlω02,解得:ω0=g l μ即当ω0=glμA开始滑动.(2)当圆盘转速达到2ω0时,物体受到的最大静摩擦力已不足以提供向心力,需要弹簧的弹力来补充,即:μmg+k△x=mrω12,r=l+△x解得:34mgl xkl mgμμ-V=【点睛】当物体相对于接触物体刚要滑动时,静摩擦力达到最大,这是经常用到的临界条件.本题关键是分析物体的受力情况.2.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离【答案】(1)160N (2)2 【解析】 【详解】(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =12mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:2Bv N mg m R-=联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:2Dv mg m R=可得:v D =2m/s设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,2R =12gt 2解得:x =0.8m则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x ==3.如图所示,一根长为0.1 m 的细线,一端系着一个质量是0.18kg 的小球,拉住线的另一端,使球在光滑的水平桌面上做匀速圆周运动,当小球的转速增加到原转速的3倍时,细线断裂,这时测得线的拉力比原来大40 N .求: (1)线断裂的瞬间,线的拉力; (2)这时小球运动的线速度;(3)如果桌面高出地面0.8 m,线断裂后小球沿垂直于桌子边缘的方向水平飞出去落在离桌面的水平距离.【答案】(1)线断裂的瞬间,线的拉力为45N;(2)线断裂时小球运动的线速度为5m/s;(3)落地点离桌面边缘的水平距离2m.【解析】【分析】【详解】(1)小球在光滑桌面上做匀速圆周运动时受三个力作用;重力mg、桌面弹力F N和细线的拉力F,重力mg和弹力F N平衡,线的拉力提供向心力,有:F N=F=mω2R,设原来的角速度为ω0,线上的拉力是F0,加快后的角速度为ω,线断时的拉力是F1,则有:F1:F0=ω2: 2ω=9:1,又F1=F0+40N,所以F0=5N,线断时有:F1=45N.(2)设线断时小球的线速度大小为v,由F1=2vmR,代入数据得:v=5m/s.(3)由平抛运动规律得小球在空中运动的时间为:t 220.810hsg⨯==0.4s,则落地点离桌面的水平距离为:x=vt=5×0.4=2m.4.如图所示,半径R=0.40m的光滑半圆环轨道处于竖起平面内,半圆环与粗糙的水平地面相切于圆环的端点A.一质量m=0.10kg的小球,以初速度V0=7.0m/s在水平地面上向左做加速度a=3.0m/s2的匀减速直线运动,运动4.0m后,冲上竖直半圆环,最后小球落在C 点.求(1)小球到A 点的速度 (2)小球到B 点时对轨道是压力(3)A 、C 间的距离(取重力加速度g=10m/s 2).【答案】(1) 5/A V m s = (2) 1.25N F N = (3)S AC =1.2m 【解析】 【详解】(1)匀减速运动过程中,有:2202A v v as -=解得:5/A v m s =(2)恰好做圆周运动时物体在最高点B 满足: mg=m 21Bv R,解得1B v =2m/s假设物体能到达圆环的最高点B ,由机械能守恒:12mv 2A =2mgR+12mv 2B 联立可得:v B =3 m/s因为v B >v B1,所以小球能通过最高点B .此时满足2N v F mg m R+=解得 1.25N F N =(3)小球从B 点做平抛运动,有:2R=12gt 2 S AC =v B ·t得:S AC =1.2m . 【点睛】解决多过程问题首先要理清物理过程,然后根据物体受力情况确定物体运动过程中所遵循的物理规律进行求解;小球能否到达最高点,这是我们必须要进行判定的,因为只有如此才能确定小球在返回地面过程中所遵循的物理规律.5.如图所示,轨道ABCD 的AB 段为一半径R =0.2 m 的光滑1/4圆形轨道,BC 段为高为h =5 m 的竖直轨道,CD 段为水平轨道.一质量为0.2 kg 的小球从A 点由静止开始下滑,到达B 点时速度的大小为2 m /s ,离开B 点做平抛运动(g =10 m /s 2),求:(1)小球离开B 点后,在CD 轨道上的落地点到C 点的水平距离; (2)小球到达B 点时对圆形轨道的压力大小;(3)如果在BCD 轨道上放置一个倾角θ=45°的斜面(如图中虚线所示),那么小球离开B 点后能否落到斜面上?如果能,求它第一次落在斜面上的位置距离B 点有多远.如果不能,请说明理由.【答案】(1)2 m (2)6 N (3)能落到斜面上,第一次落在斜面上的位置距离B 点1.13 m 【解析】①.小球离开B 点后做平抛运动,212h gt =B x v t =解得:2m x =所以小球在CD 轨道上的落地点到C 的水平距离为2m ②.在圆弧轨道的最低点B ,设轨道对其支持力为N由牛二定律可知:2Bv N mg m R-=代入数据,解得3N N =故球到达B 点时对圆形轨道的压力为3N ③.由①可知,小球必然能落到斜面上根据斜面的特点可知,小球平抛运动落到斜面的过程中,其下落竖直位移和水平位移相等212B v t gt ⋅''=,解得:0.4s t '= 则它第一次落在斜面上的位置距B 点的距离为20.82m B S v t ='=.6.某工厂在竖直平面内安装了如图所示的传送装置,圆心为O 的光滑圆弧轨道AB 与足够长倾斜传送带BC 在B 处相切且平滑连接,OA 连线水平、OB 连线与竖直线的夹角为37θ=︒,圆弧的半径为 1.0m R =,在某次调试中传送带以速度2m/s v =顺时针转动,现将质量为13kg m =的物块P (可视为质点)从A 点位置静止释放,经圆弧轨道冲上传送带,当物块P 刚好到达B 点时,在C 点附近某一位置轻轻地释放一个质量为21kg m =的物块Q 在传送带上,经时间 1.2s t =后与物块P 相遇并发生碰撞,碰撞后粘合在一起成为粘合体A .已知物块P 、Q 、粘合体S 与传送带间的动摩擦因数均为0.5μ=,重力加速度210m/s g =,sin370.6︒=,cos370.8︒=.试求:(1)物块P 在B 点的速度大小; (2)传送带BC 两端距离的最小值;(3)粘合体回到圆弧轨道上B 点时对轨道的压力.【答案】(1)4m/s (2)3.04m (3)59.04N ,方向沿OB 向下。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆周运动一、匀速圆周运动的描述1.线速度、角速度、周期和频率的概念(1)线速度v 是描述质点沿圆周运动快慢的物理量,是矢量,其大小为Trt s v π2==; 其方向沿轨迹切线,国际单位制中单位符号是m/s ;(2)角速度ω是描述质点绕圆心转动快慢的物理量,是矢量,其大小为Ttπφω2==; 在国际单位制中单位符号是rad /s ;(3)周期T 是质点沿圆周运动一周所用时间,在国际单位制中单位符号是s ;(4)频率f 是质点在单位时间内完成一个完整圆运动的次数,在国际单位制中单位符号是 Hz ; (5)转速n 是质点在单位时间内转过的圈数,单位符号为r /s ,以及r /min . 2、速度、角速度、周期和频率之间的关系线速度、角速度、周期和频率各量从不同角度描述质点运动的快慢,它们之间有关系v =r ω.f T 1=,Tv π2=,f πω2=。
由上可知,在角速度一定时,线速度大小与半径成正比;在线速度一定时,角速度大小与半径成反比.二、向心力和向心加速度 1.向心力(1)向心力是改变物体运动方向,产生向心加速度的原因.(2)向心力的方向指向圆心,总与物体运动方向垂直,所以向心力只改变速度的方向. 2.向心加速度(1)向心加速度由向心力产生,描述线速度方向变化的快慢,是矢量.(2)向心加速度方向与向心力方向恒一致,总沿半径指向圆心;向心加速度的大小为22224T r r rv a n πω=== 公式:1.线速度V =s/t =2πr/T2.角速度ω=Φ/t =2π/T =2πf3.向心加速度a =V 2/r =ω2r =(2π/T)2r4.向心力F 心=mV 2/r =m ω2r =mr(2π/T)2=m ωv=F 合 5.周期与频率:T =1/f6.角速度与线速度的关系:V =ωr7.角速度与转速的关系ω=2πn (此处频率与转速意义相同)8.主要物理量及单位:弧长s:米(m);角度Φ:弧度(rad );频率f :赫(Hz );周期T :秒(s );转速n :r/s ;半径r :米(m );线速度V :(m/s );角速度ω:(rad/s );向心加速度:(m/s 2)。
三、向心力和加速度1、大小F =m ω2r rv m F 2=向心加速度a :(1)大小:a =ππω442222===r Tr r v 2 f 2r (2)方向:总指向圆心,时刻变化(3)物理意义:描述线速度方向改变的快慢。
四、应用举例(临界或动态分析问题)提供的向心力 需要的向心力rv m 2= 圆周运动 > 近心运动< 离心运动 =0 切线运动1、火车转弯如果车轮与铁轨间无挤压力,则向心力完全由重力和支持力提供rv m mg 2tan =ααtan gr v =⇒,v 增加,外轨挤压,如果v 减小,内轨挤压问题:飞机转弯的向心力的来源2、汽车过拱桥rv m N mg 2cos =-θmg sin θ = f 如果在最高点,那么rv m N mg 2=- 此时汽车不平衡,mg ≠N说明:F =mv 2/ r 同样适用于变速圆周运动,F 和v 具有瞬时意义,F随v 的变化而变化。
3、圆锥问题θωωθωθθtan tan cos sin 22r g rgr m N mgN =⇒=⇒== 例:小球在半径为R 的光滑半球内做水平面内的匀速圆周运动,试分析图中的θ(小球与半球球心连线跟竖直方向的夹角)与线速度v 、周期T 的关系。
NmgNmg22sin sin tan θωθθmR R mv mg ==,由此可得:gh g R T gR v πθπθθ2cos 2,sin tan ===,4、绳杆球这类问题的特点是:由于机械能守恒,物体做圆周运动的速率时刻在改变,物体在最高点处的速率最小,在最低点处的速率最大。
物体在最低点处向心力向上,而重力向下,所以弹力必然向上且大于重力;而在最高点处,向心力向下,重力也向下,所以弹力的方向就不能确定了,要分三种情况进行讨论。
①弹力只可能向下,如绳拉球。
这种情况下有mg Rmv mg F ≥=+2即gR v ≥,否则不能通过最高点。
②弹力只可能向上,如车过桥。
在这种情况下有:gR v mg Rmv F mg ≤∴≤=-,2,否则车将离开桥面,做平抛运动。
③弹力既可能向上又可能向下,如管内转(或杆连球、环穿珠)。
这种情况下,速度大小v 可以取任意值。
但可以进一步讨论:①当gR v >时物体受到的弹力必然是向下的;当gR v <时物体受到的弹力必然是向上的;当gR v =时物体受到的弹力恰好为零。
②当弹力大小F <mg 时,向心力有两解:mg ±F ;当弹力大小F >mg 时,向心力只有一解:F +mg ;当弹力F =mg 时,向心力等于零。
五、牛顿运动定律在圆周运动中的应用(圆周运动动力学问题)1.向心力 (1)大小:R f m R Tm R m R v m ma F 22222244ππω=====向 (2)方向:总指向圆心,时刻变化2.处理方法:一般地说,当做圆周运动物体所受的合力不指向圆心时,可以将它沿半径方向和切线方向正交分解,其沿半径方向的分力为向心力,只改变速度的方向,不改变速度的大小;其沿切线方向的分力为切向力,只改变速度的大小,不改变速度的方向。
分别与它们相应的向心加速度描述速度方向变化的快慢,切向加速度描述速度大小变化的快慢。
做圆周运动物体所受的向心力和向心加速度的关系同样遵从牛顿第二定律:F n =ma n 在列方程时,根据物体的受力分析,在方程左边写出外界给物体提供的合外力,右边写出物体需要的向心力(可选用R T m R m R mv 2222⎪⎭⎫ ⎝⎛πω或或等各种形式)。
N F θ绳 FG G F【例1】如图所示的装置是在竖直平面内放置光滑的绝缘轨道,处于水平向右的匀强电场中,以带负电荷的小球从高h的A处静止开始下滑,沿轨道ABC运动后进入圆环内作圆周运动。
已知小球所受到电场力是其重力的3/4,圆滑半径为R,斜面倾角为θ,s BC=2R。
若使小球在圆环内能作完整的圆周运动,h至少为多少?六、综合应用例析【例2】如图所示,用细绳一端系着的质量为M=的物体A静止在水平转盘上,细绳另一端通过转盘中心的光滑小孔O吊着质量为m=的小球B,A的重心到O点的距离为.若A与转盘间的最大静摩擦力为f=2N,为使小球B保持静止,求转盘绕中心O旋转的角速度ω的取值范围.【例3】一内壁光滑的环形细圆管,位于竖直平面内,环的半径为R(比细管的半径大得多).在圆管中有两个直径与细管内径相同的小球(可视为质点).A球的质量为m1,B球的质量为m2.它们沿环形圆管顺时针运动,经过最低点时的速度都为v0.设A球运动到最低点时,B球恰好运动到最高点,若要此时两球作用于圆管的合力为零,那么m1、m2、R与v0应满足的关系式是______.【例5】如图所示,滑块在恒定外力作用下从水平轨道上的A点由静止出发到B点时撤去外力,又沿竖直面内的光滑半圆形轨道运动,且恰好通过轨道最高点C,滑块脱离半圆形轨道后又刚好落到原出发点A,试求滑块在AB段运动过程中的加速度.如图所示,小球从光滑的圆弧轨道下滑至水平轨道末端时,光电装置被触动,控制电路会使转筒立刻以某一角速度匀速连续转动起来.转筒的底面半径为R,已知轨道末端与转筒上部相平,与转筒的转轴距离为L,且与转筒侧壁上的小孔的高度差为h;开始时转筒静止,且小孔正对着轨道方向.现让一小球从圆弧轨道上的某处无初速滑下,若正好能钻入转筒的小孔(小孔比小球略大,小球视为质点,不计空气阻力,重力加速度为g),求:(1)小球从圆弧轨道上释放时的高度为H;(2)转筒转动的角速度ω.【例1】 解析:小球所受的重力和电场力都为恒力,故可两力等效为一个力F ,如图所示。
可知F =,方向与竖直方向左偏下37º,从图6中可知,能否作完整的圆周运动的临界点是能否通过D 点,若恰好能通过D 点,即达到D 点时球与环的弹力恰好为零。
由圆周运动知识得:R v m F D 2= 即:Rv m mg D225.1=由动能定理:221)37sin 2cot (43)37cos (D mv R R h mg R R h mg =︒++⨯-︒--θ 联立①、②可求出此时的高度h 。
【例2】解析:要使B 静止,A 必须相对于转盘静止——具有与转盘相同的角速度.A 需要的向心力由绳拉力和静摩擦力合成.角速度取最大值时,A 有离心趋势,静摩擦力指向圆心O ;角速度取最小值时,A 有向心运动的趋势,静摩擦力背离圆心O .对于B ,T =mg 对于A ,21ωMr f T =+ 22ωMr f T =-5.61=ωrad/s 9.22=ωrad/s 所以 rad/s 5.6≤≤ωrad/s解析:A 球通过圆管最低点时,圆管对球的压力竖直向上,所以球对圆管的压力竖直向下.若要此时两球作用于圆管的合力为零,B 球对圆管的压力一定是竖直向上的,所以圆管对B 球的压力一定是竖直向下的.最高点时20222221221v m R g m v m =⋅+ 根据牛顿运动定律对于A 球,R v m g m N 2111=- 对于B 球,Rv m g m N 2222=+【例5】解析:设圆周的半径为R ,则在C 点:mg =m RvC 2①离开C 点,滑块做平抛运动,则2R =gt 2/2 ② v C t =s AB ③由B 到C 过程: mv C 2/2+2mgR =mv B 2/2 ④由A 到B 运动过程: v B 2=2as AB ⑤ 由①②③④⑤式联立得到: a =5g /4又 N 1=N 2 解得 0)5()(212021=++-g m m Rv m m 解析:(1)设小球离开轨道进入小孔的时间为t ,则由平抛运动规律得h =12gt 2,L -R =v 0t小球在轨道上运动过程中机械能守恒,故有mgH =12mv 2联立解得:t =2hg ,H =(L -R )24h.(2)在小球做平抛运动的时间内,圆筒必须恰好转整数转,小球才能钻进小孔,即ωt=2nπ(n=1,2,3…).所以ω=nπ2gh(n=1,2,3…)答案:(1)(L-R)24h(2)nπ2gh(n=1,2,3…)。