七年级数学上册月考试卷(带答案和解释)
七年级数学上册月考试卷【含答案】

七年级数学上册月考试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 如果一个三角形的两边分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 23厘米C. 17厘米D. 7厘米2. 下列哪个数是质数?A. 21B. 37C. 39D. 273. 一个长方体的长、宽、高分别是10厘米、6厘米和4厘米,那么它的体积是多少立方厘米?A. 240立方厘米B. 120立方厘米C. 60立方厘米D. 48立方厘米4. 下列哪个角是锐角?A. 120°B. 45°C. 180°D. 90°5. 如果一个数的平方是64,那么这个数可能是多少?A. 8B. -8C. 7D. 9二、判断题(每题1分,共5分)1. 任何两个偶数相加的和都是偶数。
()2. 一个正方形的对角线长度等于它的边长的平方根。
()3. 在三角形中,最大的角对应最长的边。
()4. 任何两个奇数相乘的积都是奇数。
()5. 1是质数。
()三、填空题(每题1分,共5分)1. 如果一个四边形的对边平行且相等,那么这个四边形是______。
2. 一个数的立方根是指这个数乘以自己两次后得到的结果,记作______。
3. 如果一个数既是4的倍数又是6的倍数,那么这个数至少是______。
4. 在平面直角坐标系中,点(3, 4)的横坐标是______,纵坐标是______。
5. 一个圆的半径是5厘米,那么这个圆的直径是______厘米。
四、简答题(每题2分,共10分)1. 请简述勾股定理的内容。
2. 什么是因数分解?请给出一个例子。
3. 请解释什么是算术平均数。
4. 请说明如何计算一个三角形的面积。
5. 请解释什么是比例尺。
五、应用题(每题2分,共10分)1. 一个长方形的长是15厘米,宽是8厘米,求这个长方形的面积。
2. 如果一个数加上50后等于它的3倍,求这个数。
3. 一个圆锥的底面半径是4厘米,高是6厘米,求这个圆锥的体积。
七年级上册数学第三次月考试卷【含答案】

七年级上册数学第三次月考试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 25D. 272. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 一个长方体的长、宽、高分别是2dm、3dm、4dm,那么它的体积是多少?A. 24立方分米B. 20立方分米C. 18立方分米D. 22立方分米4. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 4/8D. 5/105. 如果a=3,那么2a+5的值是多少?A. 6B. 11C. 8D. 14二、判断题(每题1分,共5分)1. 两个质数相乘,其结果一定还是质数。
()2. 一个三角形的内角和一定是180度。
()3. 长方体的六个面都是相同的。
()4. 分子和分母相同的分数是最简分数。
()5. 如果a是正数,那么-a一定是负数。
()三、填空题(每题1分,共5分)1. 2的平方根是______。
2. 一个等边三角形的三个角都是______度。
3. 长方体的体积公式是______。
4. 如果一个分数的分子和分母同时乘以同一个数,那么这个分数的值______。
5. 如果a=2,那么3a-4的值是______。
四、简答题(每题2分,共10分)1. 请解释质数和合数的区别。
2. 请写出三角形的内角和定理。
3. 请解释长方体和正方体的区别。
4. 请解释分数的约分。
5. 请解释代数式的值是如何计算的。
五、应用题(每题2分,共10分)1. 一个长方体的长、宽、高分别是10cm、6cm、8cm,求它的体积。
2. 如果一个三角形的两边长分别是5cm和12cm,求第三边的长度。
3. 请将分数3/9约分到最简。
4. 如果a=4,求2a+3的值。
5. 请计算(3+4)×2的值。
六、分析题(每题5分,共10分)1. 请分析一个长方体的表面积和体积的关系。
七年级上册数学第一册月考试卷(含答案)

一、选择题(本大题共10小题,共30.0分)1.若x与3互为相反数,则等于()A. 0B. 1C. 2D. 32.已知a<0、b>0且|a|>|b|,则a、b、−a、−b的大小关系是()A. b>−a>a>−bB. −b>a>−a>bC. a>−b>−a>bD. −a>b>−b>a3.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km,用科学记数法表示1.496亿是()A. 1.496×107B. 14.96×108C. 0.1496×108D. 1.496×1084.一种巧克力的质量标识为“100±0.25克”,则下列合格的是()A. 99.80克B. 100.30克C. 100.51克D. 100.70克5.下列各对数中,互为相反数的是()A. −(−2)3与|−2|3B. (−2)3与−23C. −22与+(−2)2D. −(−2)与|−2|6.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,用你所发现的规律得出22017+22018的末位数字是()A. 2B. 4C. 8D. 67.按一定规律排列的单项式:a,−a2,a3,−a4,a5,−a6,……,第n个单项式是()A. a nB. −a nC. (−1)n+1a nD. (−1)n a n8.下列说法正确的是()A. 1和−0.125不互为相反数 B. −m不可能等于08C. 正数和负数互为相反数D. 任何一个数都有相反数9.如图,数轴上有A、B、C、D四个整数点(即各点均表示整数),且3AB=BC=2CD。
若A、D两点所表示的数分别是−6和5,则线段AC的中点所表示的数是()A. −3B. −2C. −1D. +110.若有理数a,b,c满足abc=2003,a+b+c=0,则a,b,c中负数的个数是()A. 3B. 2C. 1D. 0二、填空题(本大题共3小题,共9.0分)11.−21和它的相反数之间的整数有______个.212.如图,数轴上A、B两点所表示的数分别为a、b,下列各式中:①(a−1)(b−1)>0;②(a−1)(b+1)>0;③(a+1)(b+1)>0.其中,正确式子的序号是____.13.一个两位数,个位数字是x,十位数字比个位数字大3,则这个两位数是______.三、计算题(本大题共2小题,共12.0分)14.先在数轴上表示下列各数,再把它们按从小到大的顺序用“<”连接起来.|−3|,−|−2|,0,−1.5,−(−4),112.15.一辆出租车从A地出发,在一条东西走向的街道上往返,每次行驶的路程(记向东为正)记录如下(x>9且x<26,单位:km)第一次第二次第三次第四次x−12x x−52(9−x)(1)说出这辆出租车每次行驶的方向.(2)求经过连续4次行驶后,这辆出租车所在的位置.(3)这辆出租车一共行驶了多少路程?四、解答题(本大题共7小题,共56.0分)16.已知数轴上三点M、O、N对应的数分别为−1、0、3.点P为数轴上任意一点,且表示的数为x.(1)则MN的长为______个单位长度;(2)如果点P到点M、点N的距离相等,那么x的值是______;(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x的值:若不存在,请说明理由.17.观察下列各式:……(1)猜想________.(2)根据上面的规律,计算18.小欢和小樱都十分喜欢唱歌,她们两个一起参加社区的文艺会演,在会演前,主持人让她们自己确定出场顺序,可她们俩都争着先出场,最后主持人出了一个主意(如图所示):19.如图,将边长为a的小正方形和边长为b的大正方形放在同一水平面上(b>a>0)(1)用a,b表示阴影部分的面积;(2)计算当a=3,b=5时,阴影部分的面积.20.已知a,b互为相反数,c,d互为倒数,m−3的相反数是−4,求a+b+m的值.cd21.观察下面三行数:−2、4、−8、16、−32、64、……①0、6、−6、18、−30、66、……②5、−1、11、−13、35、−61、……③(1)第①行数的第7个数是__________;(2)设第②行数中有一个数为a,第③行数中对应位置的数为b,则a和b之间等量关系为__________;设第①行数的第n个数为x,取每行的第n个数,这三个数的和是__________;(3)根据(2)中的结论,若取每行的第9个数,计算这三个数的和22.动脑筋、找规律.邱老师给小明出了下面的一道题,如图所示,请根据数字排列的规律,探索下列问题:(1)在A处的数是正数还是负数?(2)负数排在A,B,C,D中的什么位置?(3)第2020个数是正数还是负数?排在对应于A,B,C,D中的什么位置?【解析】【分析】本题考查的是绝对值,相反数,熟知0的绝对值是0是解答此题的关键.先求出x的值,进而可得出结论.【解答】解:∵x与3互为相反数,∴x=−3,∴|x+3|=|−3+3|=0.故选A.2.【答案】D【解析】解:依题意在数轴上表示出a、b、、得根据它们在数轴上的位置可得:故选D3.【答案】D【解析】【解答】解:数据1.496亿用科学记数法表示为1.496×108,故选:D.【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解析】【分析】此题考查了正数和负数,解题的关键是:求出巧克力的质量标识的范围,计算巧克力的质量标识的范围:在100−0.25和100+0.25之间,即:从99.75到100.25之间,然后逐项判断即可.【解答】解:100−0.25=99.75(克),100+0.25=100.25(克),所以巧克力的质量标识范围是在99.75到100.25之间,只有99.80克在巧克力的质量标识范围,故A正确.故选:A.5.【答案】C【解析】【分析】本题主要考查的是相反数、绝对值、有理数的乘方的运算,先化简各数,然后根据相反数的定义判断即可.【解答】解:A.−(−2)3=−(−8)=8,|−2|3=23=8,不符合题意;B.(−2)3=−8;−23=−8,不符合题意;C.−22=−4;(−2)2=4,符合题意;D.−(−2)=2,|−2|=2,不符合题意.故选C.6.【答案】D【解析】【试题解析】【分析】本题考查了尾数特征的应用,关键是能根据题意得出规律,利用规律解决问题,因为21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,观察发现:2n 的个位数字是2,4,8,6四个一循环,所以根据2017÷4=504…1,2018÷4=504…2,得出22017的个位数字与21的个位数字相同是2,22018的个位数字与22的个位数字相同是4,进一步求解即可. 【解答】解:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…. 2017÷4=504…1, 2018÷4=504…2,∴22017的个位数字与21的个位数字相同是2, 22018的个位数字与22的个位数字相同是4, 2+4=6.故22017+22018的末位数字是6. 故选:D .7.【答案】C【解析】 【分析】本题考查了单项式,数字的变化类,注意字母a 的指数为奇数时,符号为正;系数字母a 的指数为偶数时,符号为负.观察字母a 的系数、次数的规律即可写出第n 个单项式. 【解答】解:a ,−a 2,a 3,−a 4,a 5,−a 6,……,(−1)n+1⋅a n . 故选C .8.【答案】D【解析】−0.125=−18,与18只有符号不同,它们互为相反数,故A 不正确; 因为m 是字母,可能等于0,所以−m 可能等于0,故B 不正确;正数和负数除符号不同外,其他也可能不同,如−2和3,所以正数和负数不一定互为相反数,故C 不正确,故选D .9.【答案】B【解析】解:∵A、D两点所表示的数分别是−6和5,∴AD=11,∵3AB=BC=2CD,∴112AB=11,∴AB=2,∴BC=6,CD=3,∴AC=8,∴C点表示的数是2,∴AC的中点表示的数是−2。
七年级上册数学月考试卷【含答案】

七年级上册数学月考试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 一个长方体的长、宽、高分别是2dm、3dm和4dm,那么它的体积是多少?A. 24立方分米B. 20立方分米C. 18立方分米D. 22立方分米4. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 4/8D. 5/105. 如果一个等腰三角形的底边长是10厘米,腰长是13厘米,那么这个三角形的周长是多少?A. 32厘米B. 36厘米C. 26厘米D. 30厘米二、判断题(每题1分,共5分)1. 任何一个偶数都不是质数。
()2. 一个等边三角形的三个角都是60度。
()3. 一个长方体的六个面都是长方形。
()4. 0.3333是一个无限循环小数。
()5. 任何一个正方体的体积都可以用底面积乘以高来计算。
()三、填空题(每题1分,共5分)1. 2的平方根是______。
2. 一个等腰三角形的底角是45度,那么顶角的度数是______。
3. 如果一个正方形的边长是6厘米,那么它的面积是______平方厘米。
4. 3/8可以化成小数______。
5. 一个长方体的长、宽、高分别是2dm、3dm和4dm,那么它的体积是______立方分米。
四、简答题(每题2分,共10分)1. 请简述勾股定理的内容。
2. 请解释等边三角形的性质。
3. 请描述正方体的特征。
4. 请解释最简分数的概念。
5. 请简述长方体体积的计算方法。
五、应用题(每题2分,共10分)1. 一个长方体的长、宽、高分别是10厘米、6厘米和4厘米,求它的体积。
2. 一个等腰三角形的底边长是12厘米,腰长是15厘米,求这个三角形的周长。
3. 一个正方形的边长是8厘米,求它的面积。
七年级上册数学第一次月考试卷【含答案】

七年级上册数学第一次月考试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边分别是8cm和15cm,那么第三边的长度可能是多少?A. 3cmB. 10cmC. 23cmD. 17cm3. 下列哪个数是偶数?A. 101B. 102C. 103D. 1044. 一个正方形的边长是5cm,那么它的面积是多少平方厘米?A. 10cm²B. 15cm²C. 20cm²D. 25cm²5. 下列哪个角是锐角?A. 90°B. 100°C. 80°D. 120°二、判断题(每题1分,共5分)1. 2是最大的质数。
()2. 三角形的内角和总是等于180°。
()3. 0是偶数。
()4. 面积相等的两个图形一定是相似的。
()5. 对角线相等的四边形一定是矩形。
()三、填空题(每题1分,共5分)1. 100的因数有______个。
2. 一个等边三角形的每个内角是______度。
3. 两个质数相乘得到的一个数是______。
4. 一个长方形的长是8cm,宽是4cm,面积是______平方厘米。
5. 一个圆的半径是3cm,它的直径是______cm。
四、简答题(每题2分,共10分)1. 解释什么是因数和倍数。
2. 简述平行四边形的性质。
3. 什么是等腰三角形?给出一个例子。
4. 解释面积和周长的区别。
5. 简述圆的周长公式。
五、应用题(每题2分,共10分)1. 一个长方形的长是10cm,宽是5cm,求它的面积。
2. 一个三角形的两个内角分别是45°和90°,求第三个内角的度数。
3. 列出6的所有因数。
4. 一个圆的半径是4cm,求它的直径。
5. 如果一个数的因数有1、2、3、4、6,那么这个数是什么?六、分析题(每题5分,共10分)1. 画出一个边长为6cm的正方形,并标出它的对角线。
人教版七年级上册数学第一次月考试题(含答案)

2020-2021学年七年级(上)第一次月考数学试卷一、选择题(每小题3分,共30分)1.下列各数中,是负数的为()A.﹣1B.0C.0.2D.2.下面这个图形绕虚线旋转一周形成的哪个几何体()A.B.C.D.3.下列说法不正确的是()A.长方体是四棱柱B.八棱柱有8个面C.六棱柱有12个顶点D.经过棱柱的每个顶点有3条棱4.下列各组数中,相等的是()A.﹣9和﹣B.﹣|﹣9|和﹣(﹣9)C.9和|﹣9|D.﹣9和|﹣9|5.在一个不透明的布袋中,装有一个简单几何体模型,甲乙两人在摸后各说出了它的一个特征,甲:它有曲面;乙:它有顶点.该几何体模型可能是()A.球B.三棱锥C.圆锥D.圆柱6.下列叙述正确的是()A.互为相反数的两数的乘积为1B.所有的有理数都能用数轴上的点表示C.绝对值等于本身的数是0D.n个有理数相乘,负因数的个数为奇数个时,积为负7.某正方体的每个面上都有一个汉字.它的一种平面展开图如图所示,那么在原正方体中,与“筑”字所在面相对的面上的汉字是()A.抗B.疫C.长D.城8.下列运算过程中,有错误的是()A.(3﹣4)×2=3﹣4×2B.﹣4×(﹣7)×(﹣125)=﹣(4×125×7)C.9×16=(10﹣)×16=160﹣D.[3×(﹣25)]×(﹣2)=3×[(﹣25)×(﹣2)]9.若干个相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数不可能是()A.7B.8C.9D.1010.把有理数a代入|a+4|﹣10得到a1,称为第一次操作,再将a1作为a的值代入得到a2,称为第二次操作,…若a=23,经过第2023次操作后得到的数是()A.﹣7B.﹣1C.5D.11二、填空题(每小题3分,共18分)11.2019年女排世界杯共12支队伍参赛.东道主日本11场比赛中输5场记为﹣5,那么夺得本届世界杯冠军的中国女排11战全胜可记为.12.用平面去截球体与圆柱,如果得到的截面形状相同,那么截面的形状是.13.在﹣8,2020,3,0,﹣5,+13,,﹣6.9中,正整数有m个,负数有n个,则m+n 的值为.14.已知|a|=6,|b|=8,且a<0,b>0,那么ab的值为.15.小强用5个大小一样的正方形制成如图所示的拼接图形(阴影部分),若在图中只添加一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子,这样的拼接方式有种.16.若|x|=11,|y|=14,|z|=20,且|x+y|=x+y,|y+z|=﹣(y+z),则x+y﹣z=.三.解答题(共52分)17.计算(1)+(﹣)+(﹣)+(﹣);(2)(﹣20)﹣(﹣18)+(﹣14)﹣13;(3)(﹣8)×(﹣+);(4)(﹣8)×(﹣)×(﹣0.125)×.18.如图,是一个由若干个小正方体组成的几何体的从三个方向看到的形状图.则该几何体最少可由()个小正方体组合而成.A.8个B.9个C.10个D.11个19.若有理数x,y,z满足(|x+1|+|x﹣2|)(|y﹣1|+|y﹣3|)(|z﹣3|+|z+3|)=36,则x+2y+3z 的最小值是.20.如图1,在平整的地面上,用8个棱长都为1cm的小正方体堆成一个几何体.(1)请利用图2中的网格画出这个几何体从正面看、从左面看和从上面看到的形状图.(一个网格为小立方体的一个面)(2)图1中8个小正方体搭成的几何体的表面积(包括与地面接触的部分)是cm2.21.已知x,y为有理数,现规定一种新运算“*”,满足x*y=xy﹣5例如:1*2=1×2﹣5=﹣3(1)请仿照上面的例题计算下列各题:①2*(﹣3);②(4*5)*(﹣);(2)任意选择两个有理数,分别填入下列□和〇中,并比较它们的运算结果;多次重复以上过程,你发现:□*〇〇*□(用“>”“<”或“=”填空).22.已知a,b,c,d,x,y均为有理数,按要求解答下列问题:(1)已知a,b互为相反数,c,d互为倒数,则a+b=,cd=;(2)在(1)的条件下,若x,y满足|x+|+|y﹣|=0,求﹣2(a+b)﹣cd+x﹣y的值.四.附加题(共20分)23.如图①,是一个边长为10cm正方形,按要求解答下列问题:(1)如图②,若将该正方形沿粗黑实线剪下4个边长为cm的小正方形,拼成一个大正方形作为直四棱柱的一个底面,余下部分按虚线折叠成一个无盖直四棱柱,最后把两部分拼在一起,组成一个完整的直四棱柱,它的表面积等于原正方形的面积;(2)若该正方形是一个圆柱的侧面展开图,求该圆柱的体积.(结果保留π)24.下表记录的是黑河今年某一周内的水位变化情况,上周末(上个星期日)的水位已达到15米,(正号表示水位比前一天上升,负号表示水位比前一天下降)星期一二三四五六日+0.2+0.8﹣0.4+0.2+0.3﹣0.5﹣0.2水位变化(米)(1)本周最高水位是米,最低水位是米;(2)与上周末相比,本周末河流的水位是.(填“上升了”或“下降了”)(3)由于下周将有大降雨天气,工作人员预测水位将会以每小时0.05米的速度上升,当水位达到16.8米时,就要开闸泄洪,请你计算一下,再经过多少个小时工作人员就需要开闸泄洪?25.如图,在数轴上点A、B表示的数分别为﹣2、4.(1)若点M到点A、点B的距离相等,那么点M所对应的数是.(2)若点M从点B出发,以1个单位/秒的速度向左运动,同时点N恰好从点A出发,以2个单位/秒的速度向右运动,设M、N两点在数轴上的点E相遇,则点E对应的数是.(3)若点D是数轴上一动点,当动点D到点A的距离与到点B的距离之和等于10时,则点D对应的数是.(4)若点M从A点出发以每秒5个单位长度的速度沿数轴向右匀速运动,点N从B点出发以每秒4个单位长度的速度沿数轴匀速运动,设点M、N同时出发,运动时间为t 秒,经过多少秒后,M、N两点间的距离为24个单位长度.参考答案与试题解析一.选择题(共10小题)1.下列各数中,是负数的为()A.﹣1B.0C.0.2D.【分析】利用正数与负数的定义判断即可.【解答】解:﹣1是负数;0既不是正数也不是负数;0.2是正数;是正数.故选:A.2.下面这个图形绕虚线旋转一周形成的哪个几何体()A.B.C.D.【分析】根据面动成体得到选转后的几何体的形状,然后选择答案即可.【解答】解:旋转后是底面是圆柱体上面是圆锥体的组合体,纵观各选项,只有B选项图形符合.故选:B.3.下列说法不正确的是()A.长方体是四棱柱B.八棱柱有8个面C.六棱柱有12个顶点D.经过棱柱的每个顶点有3条棱【分析】根据四、六、八棱柱的特点可得答案.【解答】解:A、长方体是四棱柱,选项说法正确,不符合题意;B、八棱柱有8+2=10个面,选项说法错误,符合题意;C、六棱柱有2×6=12个顶点,选项说法正确,不符合题意;D、经过棱柱的每个顶点有3条棱,选项说法正确,不符合题意;故选:B.4.下列各组数中,相等的是()A.﹣9和﹣B.﹣|﹣9|和﹣(﹣9)C.9和|﹣9|D.﹣9和|﹣9|【分析】根据相反数的定义,绝对值的性质对各选项分别进行计算,然后利用排除法求解.【解答】解:A、﹣9≠﹣,故本选项不符合题意;B、﹣|﹣9|=﹣9,﹣(﹣9)=9,﹣9≠9,故本选项不符合题意;C、|﹣9|=9,故本选项符合题意;D、|﹣9|=9,9≠﹣9,故本选项不符合题意.故选:C.5.在一个不透明的布袋中,装有一个简单几何体模型,甲乙两人在摸后各说出了它的一个特征,甲:它有曲面;乙:它有顶点.该几何体模型可能是()A.球B.三棱锥C.圆锥D.圆柱【分析】根据圆锥的特点,可得答案.【解答】解:A、球有曲面,但是没有顶点,故这个选项不符合题意;B、三棱锥有顶点,但是没有曲面,故这个选项不符合题意;C、圆锥既有曲面,又有顶点,故这个选项符合题意;D、圆柱有曲面,但是没有顶点,故这个选项不符合题意;故选:C.6.下列叙述正确的是()A.互为相反数的两数的乘积为1B.所有的有理数都能用数轴上的点表示C.绝对值等于本身的数是0D.n个有理数相乘,负因数的个数为奇数个时,积为负【分析】根据相反数、有理数、绝对值的定义即可判断.【解答】解:A、互为相反数的两个数和为0,故A错误.B、实数和数轴一一对应,故所有的有理数都能用数轴上的点表示.故B正确.C、绝对值等于本身的是0和正数,故C错误.D、n个有理数相乘,负因数的个数为奇数个时,积为负,但0除外,故D错误、故选:B.7.某正方体的每个面上都有一个汉字.它的一种平面展开图如图所示,那么在原正方体中,与“筑”字所在面相对的面上的汉字是()A.抗B.疫C.长D.城【分析】利用正方体及其表面展开图的特点解题.【解答】解:这是一个正方体的平面展开图,共有六个面,其中与“筑”字所在面相对的面上的汉字是疫.故选:B.8.下列运算过程中,有错误的是()A.(3﹣4)×2=3﹣4×2B.﹣4×(﹣7)×(﹣125)=﹣(4×125×7)C.9×16=(10﹣)×16=160﹣D.[3×(﹣25)]×(﹣2)=3×[(﹣25)×(﹣2)]【分析】各式计算得到结果,即可作出判断.【解答】解:A、原式=3×2﹣×2=6﹣9=﹣3,符合题意;B、原式=﹣(4×125×7),不符合题意;C、原式=(10﹣)×16=160﹣,不符合题意;D、原式=3×[(﹣25)×(﹣2)],不符合题意.故选:A.9.若干个相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数不可能是()A.7B.8C.9D.10【分析】根据三视图的知识,易得这个几何体共有2层,2行,3列,先看右边一列的可能的最少或最多个数,再看中间一列正方体的个数,再看左边一列的可能的最少或最多个数,相加即可.【解答】解:综合俯视图和主视图,这个几何体的右边一列最少有3个正方体,最多有4个正方体,中间一列有2个正方体,左边一列最少有3个正方体,最多有4个正方体,所以组成这个几何体的小正方块最多有10块,最少有8块.则组成这个几何体的小正方体的个数不可能是7.故选:A.10.把有理数a代入|a+4|﹣10得到a1,称为第一次操作,再将a1作为a的值代入得到a2,称为第二次操作,…若a=23,经过第2023次操作后得到的数是()A.﹣7B.﹣1C.5D.11【分析】把23代入|a+4|﹣10中,进行计算,把所得结果再代入|a+4|﹣10中,经过多次计算可发现规律,即可得出答案.【解答】解:第1次操作,a1=|23+4|﹣10=17;第2次操作,a2=|17+4﹣10=11;第3次操作,a3=|11+4|﹣10=5;第4次操作,a4=|5+4﹣10=﹣1;第5次操作,a5=l﹣1+4﹣10=﹣7;第6次操作,a6=l﹣7+4|﹣10=﹣7;第7次操作,a7=|﹣7+4|﹣10=﹣7;…第2020次操作,a2020=l﹣7+4|﹣10=﹣7.故选:A.二.填空题(共6小题)11.2019年女排世界杯共12支队伍参赛.东道主日本11场比赛中输5场记为﹣5,那么夺得本届世界杯冠军的中国女排11战全胜可记为+11.【分析】根据题意输掉1场比赛记为﹣1,那么赢1场比赛应记为+1,据此分析即可.【解答】解:在比赛中输5场记为﹣5,那么输1场记为﹣1.则赢1场比赛应记为+1,所以11战全胜应记为+11.故答案为+11.12.用平面去截球体与圆柱,如果得到的截面形状相同,那么截面的形状是圆.【分析】根据球体与圆柱用一个平面截一下,看看符合条件的图形是什么图形即可.【解答】解:∵用一个平面去截球体与圆柱,得到的截面形状相同,∴这个截面的形状是圆,故答案为:圆.13.在﹣8,2020,3,0,﹣5,+13,,﹣6.9中,正整数有m个,负数有n个,则m+n 的值为5.【分析】根据正整数,负分数的定义得出它们的个数,再代入计算即可.【解答】解:正整数有2020,+13,共2个;负数有﹣8,﹣5,﹣6.9,共3个;∴m=2,n=3,∴m+n=2+3=5.故答案为:5.14.已知|a|=6,|b|=8,且a<0,b>0,那么ab的值为﹣48.【分析】首先根据|a|=6,|b|=8可得:a=±6,b=±8然后根据a<0,b>0,可得:a =﹣6,b=8,据此求出ab的值为多少即可.【解答】解:∵|a|=6,|b|=8,∴a=±6,b=±2;∵a<0,b>0,∴a=﹣6,b=8,∴ab=﹣6×8=﹣48.故答案为:﹣48.15.小强用5个大小一样的正方形制成如图所示的拼接图形(阴影部分),若在图中只添加一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子,这样的拼接方式有2种.【分析】结合正方体的平面展开图的特征,只要折叠后能围成正方体即可.【解答】解:根据正方体的表面展开图可得共有2种,如图:16.若|x|=11,|y|=14,|z|=20,且|x+y|=x+y,|y+z|=﹣(y+z),则x+y﹣z=45或23.【分析】先根据绝对值的意义及绝对值的非负性综合确定x、y、z的值,再代入计算即可.【解答】解:∵|x|=11,|y|=14,|z|=20,∴x=±11,y=±14,z=±20.∵|x+y|=x+y,|y+z|=﹣(y+z),∴x+y≥0,y+z≤0.∵x+y≥0.∴x=±11,y=14.∵y+z≤0,∴z=﹣20.当x=11,y=14,z=﹣20时,x+y﹣z=11+14+20=45;当x=﹣11,y=14,z=﹣20时,x+y﹣z=﹣11+14+20=23.故答案为:45或23.三.解答题17.计算(1)+(﹣)+(﹣)+(﹣);(2)(﹣20)﹣(﹣18)+(﹣14)﹣13;(3)(﹣8)×(﹣+);(4)(﹣8)×(﹣)×(﹣0.125)×.【分析】(1)原式结合后,相加即可求出值;(2)原式利用减法法则变形,计算即可求出值;(3)原式利用乘法分配律计算即可求出值;(4)原式结合后,相乘即可求出值.【解答】解:(1)原式=﹣﹣﹣=﹣1=﹣;(2)原式=﹣20+18﹣14﹣13=﹣47+18=﹣29;(3)原式=﹣8×﹣8×(﹣)﹣8×=﹣1+2﹣4=﹣3;(4)原式=﹣8×0.125××=﹣.18.如图,是一个由若干个小正方体组成的几何体的从三个方向看到的形状图.则该几何体最少可由()个小正方体组合而成.A.8个B.9个C.10个D.11个【分析】由已知中的几何体的三视图,我们可以判断出这个立体图形由一些相同的小正方体构成,其中根据俯视图我们可以判断该立体图形共有3层小正方体组成,然后我们根据正视图和左视图,分别推算每层小正方体的个数,即可得到答案.【解答】解:由已知中的正视图和左视图,我们可得:该立体图形共有3层小正方体组成,由正视图和左视图我们可知,第3层只有一个小正方体,由侧视图我们可知,第1层有6个小正方体,由正视图和左视图我们可知,第2层最少有2个小正方体,故该几何体最少可由1+6+2=9个小正方体组合而成.故选:B.二.填空题(共1小题)19.若有理数x,y,z满足(|x+1|+|x﹣2|)(|y﹣1|+|y﹣3|)(|z﹣3|+|z+3|)=36,则x+2y+3z 的最小值是﹣8.【分析】根据绝对值的性质分别得出|x+1|+|x﹣2|,|y﹣1|+|y﹣3|,|z﹣3|+|z+3|的取值范围,进而得出x,y,z的取值范围进而得出答案.【解答】解:当x<﹣1时,m=﹣(x+1)﹣(x﹣2)=﹣2x+1>3,当﹣1≤x≤2时,m=x+1﹣(x﹣2)=3,当x>2时,m=x+1+x﹣2=2x﹣1>3,所以可知|x+1|+|x﹣2|≥3,同理可得:|y﹣1|+|y﹣3|≥2,|z﹣3|+|z+3|≥6,所以(|x+1|+|x﹣2|)(|y﹣1|+|y﹣3|)(|z﹣3|+|z+3|)≥3×2×6=36,所以|x+1|+|x﹣2|=3,|y﹣1|+|y﹣3|=2,|z﹣3|+|z+3|=6,所以﹣1≤x≤2,1≤y≤3,﹣3≤z≤3,∴x+2y+3z的最大值为:2+2×3+3×3=17,x+2y+3z的最小值为:﹣1+2×1+3×(﹣3)=﹣8.故答案为:﹣8.三.解答题(共6小题)20.如图1,在平整的地面上,用8个棱长都为1cm的小正方体堆成一个几何体.(1)请利用图2中的网格画出这个几何体从正面看、从左面看和从上面看到的形状图.(一个网格为小立方体的一个面)(2)图1中8个小正方体搭成的几何体的表面积(包括与地面接触的部分)是32cm2.【分析】(1)根据三视图的画法画出图形即可.(2)分前后,左右,上下三个方向统计正方形的个数即可.【解答】解:(1)三视图如图所示:(2)表面积=5+5+5+5+6+6=32(cm2).故答案为:32.21.已知x,y为有理数,现规定一种新运算“*”,满足x*y=xy﹣5例如:1*2=1×2﹣5=﹣3(1)请仿照上面的例题计算下列各题:①2*(﹣3);②(4*5)*(﹣);(2)任意选择两个有理数,分别填入下列□和〇中,并比较它们的运算结果;多次重复以上过程,你发现:□*〇=〇*□(用“>”“<”或“=”填空).【分析】(1)各式利用题中的新定义计算即可求出值;(2)利用题中的新定义判断即可.【解答】解:(1)①根据题中的新定义得:原式=2×(﹣3)﹣5=﹣6﹣5=﹣11;②根据题中的新定义得:原式=(4×5﹣5)*(﹣)=15*(﹣)=15×(﹣)﹣5=﹣﹣5=﹣;(2)设□和〇的数字分别为有理数a,b,根据题意得:a*b=ab﹣5,b*a=ab﹣5,即a*b=b*a,则□*〇=〇*□.故答案为:=.22.已知a,b,c,d,x,y均为有理数,按要求解答下列问题:(1)已知a,b互为相反数,c,d互为倒数,则a+b=0,cd=1;(2)在(1)的条件下,若x,y满足|x+|+|y﹣|=0,求﹣2(a+b)﹣cd+x﹣y的值.【分析】(1)根据题意,可得:a+b=0,cd=1;(2)根据x,y满足|x+|+|y﹣|=0,可得:x+=0,y﹣=0,据此求出x、y的值是多少,即可求出﹣2(a+b)﹣cd+x﹣y的值是多少.【解答】解:(1)∵a,b互为相反数,c,d互为倒数,∴a+b=0,cd=1;故答案为:0、1.(2)∵x,y满足|x+|+|y﹣|=0,∴x+=0,y﹣=0,解得x=﹣,y=,∴﹣2(a+b)﹣cd+x﹣y=﹣2×0﹣1+(﹣)﹣=0﹣1﹣1=﹣2.23.如图①,是一个边长为10cm正方形,按要求解答下列问题:(1)如图②,若将该正方形沿粗黑实线剪下4个边长为 2.5cm的小正方形,拼成一个大正方形作为直四棱柱的一个底面,余下部分按虚线折叠成一个无盖直四棱柱,最后把两部分拼在一起,组成一个完整的直四棱柱,它的表面积等于原正方形的面积;(2)若该正方形是一个圆柱的侧面展开图,求该圆柱的体积.(结果保留π)【分析】(1)利用剪下部分拼成的图形的边长等于棱柱的底面边长求解即可;(2)正方形的边长是圆柱的底面圆周长,代入圆柱的体积公式即可.【解答】解:(1)设粗黑实线剪下4个边长为xcm的小正方形,根据题意列方程2x=10÷2解得x=2.5,故答案为:2.5;(2)∵正方形边长为10cm,∴圆柱的底面半径是=(cm),∴圆柱的体积是•10=(cm3).答:圆柱的体积是cm3.24.下表记录的是黑河今年某一周内的水位变化情况,上周末(上个星期日)的水位已达到15米,(正号表示水位比前一天上升,负号表示水位比前一天下降)星期一二三四五六日+0.2+0.8﹣0.4+0.2+0.3﹣0.5﹣0.2水位变化(米)(1)本周最高水位是16.1米,最低水位是15.2米;(2)与上周末相比,本周末河流的水位是0.3.(填“上升了”或“下降了”)(3)由于下周将有大降雨天气,工作人员预测水位将会以每小时0.05米的速度上升,当水位达到16.8米时,就要开闸泄洪,请你计算一下,再经过多少个小时工作人员就需要开闸泄洪?【分析】(1)根据有理数的加法,有理数的大小比较,可得答案;(2)根据有理数的减法,可得答案;(3)根据水位差除以上升的速度,可得答案.【解答】解:(1)周一:15+0.2=15.2(m),周二:15.2+0.8=16(m),周三:16﹣0.4=15.6(m),周四:15.6+0.2=15.8(m),周五:15.8+0.3=16.1(m),周六:16.1﹣0.5=15.6(m),周日:15.6﹣0.2=15.4(m),周五水位最高是16.1m,周一水位最低是15.2m.故答案为:16.1;15.2;(2)15.4﹣15=0.4m,和上周末相比水位上升了0.4m,故答案为:0.3;(3)(16.8﹣15.4)÷0.05=28(小时),答:再经过28个小时工作人员就需要开闸泄洪.25.如图,在数轴上点A、B表示的数分别为﹣2、4.(1)若点M到点A、点B的距离相等,那么点M所对应的数是1.(2)若点M从点B出发,以1个单位/秒的速度向左运动,同时点N恰好从点A出发,以2个单位/秒的速度向右运动,设M、N两点在数轴上的点E相遇,则点E对应的数是2.(3)若点D是数轴上一动点,当动点D到点A的距离与到点B的距离之和等于10时,则点D对应的数是﹣4或6.(4)若点M从A点出发以每秒5个单位长度的速度沿数轴向右匀速运动,点N从B点出发以每秒4个单位长度的速度沿数轴匀速运动,设点M、N同时出发,运动时间为t 秒,经过多少秒后,M、N两点间的距离为24个单位长度.【分析】(1)求出AB的长度,再根据点M到点A、点B的距离相等可得M对应的数;(2)根据点M和点N的运动方向和速度分别用含t的代数式表示出来,再列方程即可;(3)设点D对应的数是x,分D在A的左边和B的右边两种情况求解即可;(4)分别用含t的代数式表示出M、N对应的数,再根据两点距离公式列出方程可得答案.【解答】解:(1)∵点M到点A、点B的距离相等,∴点M是线段AB的中点,∵点A、B对应的数分别为﹣2、4,∴点M对应的数是1;故答案为:1;(2)t秒后,点M表示4﹣t,点N表示﹣2+2t,若两点相遇则4﹣t=﹣2+2t,解得t=2,4﹣2=2,所以点E对应的数是2.故答案为:2;(3)设点D对应的数是x,∵AB=6,∴点D不可能在线段AB上.①点D在A的左边时,DA=﹣2﹣x,DB=4﹣x,(﹣2﹣x)+(4﹣x)=10,解得x=﹣4;②点D在B的右边时,DA=2+x,DB=x﹣4,(2+x)+(x﹣4)=10,解得x=6;故答案为:﹣4或6;(4)①若点N向右运动,t秒后,点M对应的数是5t﹣2,点N对应的数是4+4t,MN=|(5t﹣2)﹣(4+4t)|=|t﹣6|=24,解得t=30或﹣18(舍去);②若点N向左运动,t秒后,点M对应的数是5t﹣2,点N对应的数是4﹣4t,MN=|(5t﹣2)﹣(4﹣4t)|=|9t﹣6|=24,解得t=或﹣2(舍去);答:经过30秒或秒后,M、N两点间的距离为24个单位长度.。
2024-2025学年北师大版七年级数学上册第一次月考测试卷及答案

2024-2025学年七年级数学上学期第一次月考卷02(考试时间:120分钟;满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:第一章---第二章。
5.难度系数:0.69。
第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.《九章算术》中注“今两算得失相反,要令正负以名之”,意思是:有两数若其意义相反,则分别叫做正数和负数.若气温为零上10℃记作+10℃,则﹣8℃表示气温为()A.零上8℃B.零下8℃C.零上2℃D.零下2℃2.将下列平面图形绕轴旋转一周,可得到图中所示的立体图形的是()A.B.C.D.3.中国信息通信研究院测算,2020~2025年,中国5G商用带动的信息消费规模将超过8万亿元,直接带动经济总产出达10.6万亿元.其中数据10.6万亿用科学记数法表示为()A.10.6×104B.1.06×1013C.10.6×1013D.1.06×1084.用一个平面去截下列几何体,截面不可能是圆形的是()A. B.C. D.5.将一把刻度尺按如图所示的方式放在数轴上(数轴的单位长度是1cm),刻度尺上的“1cm”和“6cm”分别对应数轴上“﹣1.2cm”和“xcm”,则x的值为()A.3.8B.2.8C.4.8D.66.乐乐在数学学习中遇到了神奇的“数值转换机”,按如图所示的程序运算,若输入一个有理数x,则可相应的输出一个结果y.若输入x的值为﹣1,则输出的结果y为()A.6B.7C.10D.127.如图是一个正方体的表面展开图,则在原正方体中,相对两个面上的数字之和的最小值是()A.5B.6C.7D.88.若a是最大的负整数,b是绝对值最小的有理数,c是倒数等于它本身的自然数,则a2024+2023b﹣c2023的值为()A.2024B.2022C.2023D.09.实数a,b满足a<0,a2>b2,下列结论:①a<b,②b>0,③1aa<1bb,④|a|>|b|.其中所有正确结论的序号是()A.①③B.①④C.②③D.②④10.若|m|=3,n2=4,且|m﹣n|=n﹣m,则m+n的值为()A.﹣1B.﹣1或5C.1或﹣5D.﹣1或﹣5第Ⅱ卷二、填空题(本大题共5小题,每小题3分,共15分)11.若2m+1与﹣2互为相反数,则m的值为.12.如图是由6个棱长均为1的正方体组成的几何体,该几何体的表面积为.13.高明区皂幕山某一天早晨的气温为16℃,中午上升了8℃,夜间又下降了10℃,则这天夜间皂幕山的气温是℃.14.彰武县市场监督管理局规定我县出租车收费标准为:起步价2.50公里5.00元(即2.50公里内收费5.00元),超过2.50公里部分每超过0.60公里加收1.00元(不足0.60公里按0.60公里计算).周末小明和妈妈乘坐出租车去高山台森林公园游玩,已知小明家到高山台森林公园的里程是5.50公里,那么应付车费元.15.定义一个新运算ff(aa,bb)=�aa+bb(aa<bb)aa−bb(aa>bb),已知a2=4,b=1,则f(a,b)=.三、解答题(本大题共9小题,共75分,解答应写出文字说明、证明过程或演算步骤)16.(每小题4分,共8分)计算:(1)(﹣1)2÷12+(7﹣3)×34−|﹣2|;(2)﹣14﹣0.5÷14×[1+(﹣2)2].17.(8分)把下列各数填在相应的大括号里(将各数用逗号分开):+8.3,﹣4,﹣0.8,﹣(﹣10),0,﹣13%,−343,﹣|﹣24|,π,﹣14.整数:{ …};非负数:{ …};分数:{ …};负有理数:{ …};18.(7分)如图,直线上的相邻两点的距离为1个单位,如果点A、B表示的数是互为相反数,请回答下列问题:(1)那么点C表示的数是多少?(2)把如图的直线补充成一条数轴,并在数轴上表示:314,﹣3,﹣(﹣1.5),﹣|﹣1|.(3)将(2)中各数按由小到大的顺序用“<”连接起来.19.(8分)小车司机李师傅某天下午的营运全是在东西走向的常青公路上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+18,﹣7,+7,﹣3,+11,﹣4,﹣5,+11,+6,﹣7,+9(1)李师傅这天最后到达目的地时,距离下午出车时的出发地多远?(2)李师傅这天下午共行车多少千米?(3)若每千米耗油0.6升,则这天下午李师傅用了多少升油?20.(8分)如图,是由6个大小相同的小立方体块搭建的几何体,其中每个小正方体的棱长为1厘米.(1)直接写出这个几何体的表面积(包括底部):;(2)请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.21.(8分)根据下列条件求值:(1)若a、b互为相反数,c、d互为倒数,m的绝对值为6,求aa+bb mm+cccc−mm的值.(2)已知a2b>0,ab<0,a2=9,|b|=1,求a+b的值.22.(8分)某自行车厂为了赶进度,一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入,下表是某周的生产情况(超产为正,减产为负):星期一二三四五六日增减+4﹣2﹣4+13﹣11+15﹣9(1)根据记录可知第二天生产多少辆?(2)产量最多的一天比产量最少的一天多生产多少辆?(3)赶进度期间该厂实行计件工资加浮动工资制度.即:每生产一辆车的工资为60元,超过计划完成任务每辆车则在原来60元工资上再奖励15元;比计划每少生产一辆则在应得的总工资上扣发15元(工资按日统计,每周汇总一次),求该厂工人这一周的工资总额是多少?23.(9分)已知13=1=14×12×22,13+23=9=14×22×32,13+23+33=36=14×32×42,…,按照这个规律完成下列问题:(1)13+23+33+43+53==14×2× 2.(2)猜想:13+23+33+…+n3=.(3)利用(2)中的结论计算:(写出计算过程)113+123+133+143+153+163+…+393+403.24.(11分)如图,在数轴上点A 表示的数是8,若动点P 从原点O 出发,以2个单位/秒的速度向左运动,同时另一动点Q 从点A 出发,以4个单位/秒的速度也向左运动,到达原点后立即以原来的速度返回,向右运动,设运动的时间为t 秒.(1)当0.5=t 时,求点Q 到原点O 的距离; (2)当 2.5t =时,求点Q 到原点O 的距离;(3)当点Q 到点A 的距离为4时,求点P 到点Q 的距离.2024-2025学年七年级数学上学期第一次月考卷02(考试时间:120分钟;满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
人教版2022-2023学年七年级数学上册第一次月考测试题含答案

2022-2023学年七年级(上)第一次月考数学试卷一、选择题(本大题共10小题,每小题2分,共20分)1.(2分)在﹣(﹣8),﹣丨7丨,﹣丨0丨,(﹣2)2,﹣32这四个数中,非负数共有()A.4个B.3个C.2个D.1个2.(2分)最近“新型冠状病毒肺炎”在全球肆虐,截止到4月28日大约有3090000人感染病毒,将3090000用科学记数法可以表示为()A.3.09×106B.3.09×107C.30.9×105D.3.09×104 3.(2分)下列说法错误的是()A.柱体的上、下两个面形状是一样的B.圆柱、圆锥的底面都是圆C.棱柱的侧面不可能是三角形D.棱柱的棱长都相等4.(2分)空心六棱柱螺母按如图所示位置摆放,则它的左视图正确的图形是()A.B.C.D.5.(2分)|﹣2|的绝对值的相反数是()A.﹣2B.2C.﹣3D.36.(2分)数轴上的一个点向左移动3个单位长度,再向右移动7个单位长度,终点表示的数是﹣1,那么原来表示的数是()A.﹣6B.﹣5C.5D.67.(2分)如图,纸板上有10个无阴影的正方形,从中选1个,使得它与图中5个有阴影的正方形一起能折叠成一个正方体的纸盒,选法应该有()A.4种B.5种C.6种D.7种8.(2分)观察下列各式:13=12,13+23=32,13+23+33=62,13+23+33=62,13+23+33+43=102,…,计算13+23+33+…+103的结果是()A.2025B.2500C.3025D.36009.(2分)对于有理数a、b,如果ab<0,a+b>0.则下列各式成立的是()A.a<0,b<0B.a>0,b<0且|b|<aC.a<0,b>0且a<|b|D.a>0,b<0且|b|>a10.(2分)能使式子|5+x|=|5|+|x|成立的数x是()A.任意一个非正数B.任意一个正数C.任意一个非负数D.任意一个负数二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)一个棱柱有10个面,且所有侧棱的和为40cm,则每条侧棱长为cm.12.(3分)如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面积是(结果保留π).13.(3分)如图是由相同大小的小正方体搭成的几何体从不同方向看到的形状图,搭这个几何体共用了个小正方体.14.(3分)如图是一个正方体的平面展开图,相对面上的两个数之和均为5,求x+y+z =.15.(3分)如图所示,数轴的一部分被墨水污染,被污染的部分内含有的整数和为.16.(3分)一个整数816600…0用科学记数法表示为8.166×1010,则原数中“0”的个数为.17.(3分)已知|a|=6,|b|=3,且a<b,则式子ab﹣a=.18.(3分)已知|a+2019|=﹣|b﹣2020|,a+b=.三、计算题(本大题共1小题,每小题24分,共24分)19.(24分)请回答下列问题:(1)(﹣20)+(+3)﹣(﹣5)﹣(+7);(2)﹣(﹣2)+(﹣3)+()﹣丨﹣7丨;(3);(4)﹣(﹣1)+32÷(1﹣4)×2;(5)(﹣1)3﹣丨2﹣(﹣3)2丨÷();(6)﹣22×÷[4÷()2﹣1]+(﹣1)2.四、解答题(本大题共6小题,共52分)20.(10分)如图,一个棱长为10cm的正方体,在它的一个角上挖掉一个棱长是2cm的正方体,求出剩余部分的表面积和体积.21.(10分)把下列各数0,(﹣2)2,﹣|﹣4|,﹣,﹣(﹣1)在数轴上表示出来,并用“<”号把这些数连接起来.22.(10分)若x、y互为相反数,a、b互为倒数,c的绝对值是1,求的值.23.一辆出租车一天上午以某商场为出发地在东西大街上运行,规定向东为正,向西为负,出租车的行驶里程(单位:m)如下:+9,﹣3,﹣5,+4,﹣8,+6,﹣3,﹣6,﹣4,+10.(1)将最后一名乘客送到目的地相对于商场出租车的位置在哪里?(2)这天上午出租车总共行驶了km.(3)已知出租车每行驶1m耗油0.08L,每升汽油的售价为6.5元.如果不计其它成本,出租车司机每m收费2.5元,那么这半天出租车盈利(或亏损)了多少元?24.(10分)由几个相同的边长为1的小立方块搭成的几何体的俯视图如下图,格中的数字表示该位置的小立方块的个数.(1)请在下面方格纸中分别画出这个几何体的主视图和左视图.(2)根据三视图;这个组合几何体的表面积为个平方单位.(包括底面积)(3)若上述小立方块搭成的几何体的俯视图不变,各位置的小立方块个数可以改变(总数目不变),则搭成这样的组合几何体中的表面积最大是为个平方单位.(包括底面积)25.(12分)点A,B在数轴上分别表示有理数4,b,A,B两点之间的距离表示为AB,在数轴上A,B两点之间的距离AB=丨a﹣b丨,利用数形结合思想回答下列问题:(1)数轴上表示1和3两点之间的距离是,数轴上表示﹣12和﹣6的两点之间的距离是.(2)数轴上表示x和﹣4的两点之间的距离表示为.(3)当丨x﹣2丨+丨x+4丨取最小值为时,能使丨x﹣2丨+丨x+4丨取最小值的所有整数x的和是.(4)若数轴上两点A,B对应的数分别是﹣1,3,现在点A,点B分别以2个单位长度/秒和0.5个单位长度/秒的速度同时向右运动,当点A与点B之间的距离为3个单位长度时,点A所对应的数是多少?参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分)1.【分析】先计算各个数,再根据非负数的定义得结论.【解答】解:∵﹣(﹣8)=8,﹣丨7丨=﹣7,﹣丨0丨=0,(﹣2)2,=4,﹣32=﹣9,∴非负数有:﹣(﹣8),﹣丨0丨,(﹣2)2.故选:B.【点评】本题考查了有理数,掌握有理数的分类,乘方运算及相反数、绝对值的意义是解决本题的关键.2.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:3090000=3.09×106.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】根据棱柱和圆柱以及圆锥的底面以及棱柱的棱长关系进而得出即可.【解答】解:A、柱体的上、下两个面形状是一样的,此选项正确,不合题意;B、圆柱、圆锥的底面都是圆,此选项正确,不合题意;C、棱柱的侧面不可能是三角形,此选项正确,不合题意;D、棱柱的棱长不一定都相等,此选项错误,符合题意.故选:D.【点评】此题主要考查了认识立体图形,熟练掌握各图形的形状是解题关键.4.【分析】左视图是从物体左面看,所得到的图形.【解答】解:从左面看,是一列两个正方形,两个正方形的中间有一条横向的虚线,故选:D.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.5.【分析】根据绝对值的性质求出|﹣2|,再根据相反数的定义解答.【解答】解:|﹣2|=2,所以,|﹣2|的绝对值的相反数是﹣2.故选:A.【点评】本题考查了绝对值的性质,相反数的定义,比较简单,熟记性质与概念是解题的关键.6.【分析】根据数轴上的点向左平移减、向右平移加,可得答案;【解答】解:设原来表示的数是x,x﹣3+7=﹣1解得:x=﹣5故选:B.【点评】本题考查了数轴,解决本题的关键是根据数轴上的点向左平移减、向右平移加.7.【分析】利用正方体的展开图即可解决问题,共四种.【解答】解:如图所示:共四种.故选:A.【点评】本题主要考查了正方体的展开图.解题时勿忘记四棱柱的特征及正方体展开图的各种情形.8.【分析】根据13=12,13+23=32,13+23+33=62,13+23+33+43=102,…,可得从1开始的连续自然数的立方和等于它们的和的平方,据此求出计算13+23+33+…+103的结果是多少即可.【解答】解:∵13=12,13+23=32=(1+2)2,13+23+33=62=(1+2+3)2,13+23+33+43=102=(1+2+3+4)2,∴13+23+33+…+103=(1+2+3+…+10)2=552=3025.故选:C.【点评】此题主要考查了有理数的混合运算,要熟练掌握,解答此题的关键是注意总结出规律,并能应用总结出的规律解决实际问题.9.【分析】根据异号得负判断出a、b异号,再根据有理数的加法运算法则判断即可.【解答】解:∵ab<0,∴a、b异号,∵a+b>0,∴a>0,b<0且|b|<a.故选:B.【点评】本题考查了有理数的乘法,有理数的加法,熟记运算法则是解题的关键.10.【分析】根据题意利用特殊值的方法,即可判断出答案.【解答】解:当x=2时,|5+x|=|5+2|=7,而|5|+|x|=5+2=7,故A、D错误;当x=0时,|5+x|=|5+0|=5,而|5|+|x|=5+0=5,当x=﹣2时,|5+x|=|5+(﹣2)|=3,而|5|+|x|=5+2=7,故B错误,C正确;故选:C.【点评】此题主要考查了绝对值,关键是根据题意选择符合条件的数.二、填空题(本大题共8小题,每小题3分,共24分)11.【分析】先根据这个棱柱有10个面,求出这个棱柱是8棱柱,有8条侧棱,再根据所有侧棱的和为40cm,即可得出答案.【解答】解:∵这个棱柱有10个面,∴这个棱柱是8棱柱,有8条侧棱,∵所有侧棱的和为40cm,∴每条侧棱长为40÷8=5(cm);故答案为5.【点评】本题考查了立体图形,主要利用了棱柱面的个数与棱数的关系,是一道基础题.12.【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【解答】解:由三视图可知该几何体是圆柱体,其底面半径是4÷2=2,高是6,圆柱的侧面展开图是一个长方形,长方形的长是圆柱的底面周长,长方形的宽是圆柱的高,且底面周长为:2π×2=4π,∴这个圆柱的侧面积是4π×6=24π.故答案为:24π.【点评】本题考查由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.13.【分析】根据俯视图得出最底层的个数,根据主视图和左视图得出第二层的个数,然后相加即可得出答案.【解答】解:由俯视图易得最底层有3个小正方体,第二层有1个小正方体,那么搭这个几何体共用了3+1=4个.故答案为:4.【点评】本题考查了几何体的三视图及空间想象能力.根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数.14.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,再求出x、y、z,然后相加计算即可得解.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“﹣2”与“y”是相对面,“3”与“z”是相对面,“x”与“10”是相对面,∵相对面上的两个数之和为5,∴x=﹣5,y=7,z=2,∴x+y+z=﹣5+7+2=4.故答案为:4.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.15.【分析】由数轴可知被污染的部分是﹣1.3至2.9.【解答】解:由数轴可知:设被污染的部分的数为x,∴﹣1.3≤x≤2.9∴x=﹣1或0或1或2,∴被污染的部分内含有的整数和:﹣1+0+1+2=2故答案为:2【点评】本题考查数轴,涉及有理数的加法.16.【分析】把8.166×1010写成不用科学记数法表示的原数的形式即可得.【解答】解:∵8.166×1010表示的原数为81660000000,∴原数中“0”的个数为7,故答案是:7.【点评】本题考查了把科学记数法表示的数还原成原数,当n>0时,n是几,小数点就向后移几位.17.【分析】根据绝对值和a<b可得a和b的值,进而可得式子ab﹣a的值.【解答】解:因为|a|=6,|b|=3,所以a=±6,b=±3,因为a<b,所以a=﹣6,b=±3,所以ab﹣a=±18﹣(﹣6)=﹣12或24.故答案为:﹣12或24.【点评】本题考查了有理数的混合运算、绝对值,解决本题的关键是掌握有理数的乘法和绝对值.18.【分析】直接利用绝对值的性质得出b的值,进而得出a的值,即可得出答案.【解答】解:∵|a+2019|=﹣|b﹣2020|,∴b﹣2020=0,∴b=2020,∴a=﹣2019,∴a+b=1.故答案为:1.【点评】此题主要考查了绝对值,正确掌握绝对值的性质是解题关键.三、计算题(本大题共1小题,每小题24分,共24分)19.【分析】(1)先将减法转化为加法,再根据有理数加法法则计算即可;(2)先去括号、化简绝对值,再根据有理数加法法则计算即可;(3)利用乘法分配律计算即可;(4)先算乘方与括号内的运算,再算乘除,最后算加减,同级运算,应按从左到右的顺序进行计算;(5)先算乘方与绝对值,再算除法,最后算加减即可;(6)先算乘方与括号内的运算,再算乘除,最后算加减即可.【解答】解:(1)(﹣20)+(+3)﹣(﹣5)﹣(+7)=﹣20+3+5﹣7=﹣19;(2)﹣(﹣2)+(﹣3)+()﹣丨﹣7丨=2﹣3﹣﹣7=﹣8;(3)=×(﹣12)+×(﹣12)﹣×(﹣12)﹣×(﹣12)=﹣6﹣8+9+10=5;(4)﹣(﹣1)+32÷(1﹣4)×2=1+9÷(﹣3)×2=1﹣6=﹣5;(5)(﹣1)3﹣丨2﹣(﹣3)2丨÷()=﹣1﹣|2﹣9|×(﹣2)=﹣1﹣7×(﹣2)=﹣1+14=13;(6)﹣22×÷[4÷()2﹣1]+(﹣1)2=﹣4×÷(4×﹣1)+1=﹣4×÷(9﹣1)+1=﹣4×÷8+1=﹣+1=.【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.四、解答题(本大题共6小题,共52分)20.【分析】在一个大正方体的上面的一个角上挖出一个棱长2cm的小正方体,那么它的表面积没有发生变化;用原大正方体的体积减去小正方体的体积就得到余下部分的体积.据此解答即可.【解答】解:余下部分的体积:10×10×10﹣2×2×2=1000﹣8=992(cm3);表面积:10×10×6=600(cm2);答:余下部分的体积是992cm3,表面积是600cm2.【点评】此题主要考查了几何体的表面积与体积求法,解答此题的关键是根据挖出立方体后的表面积不变,以及减少的体积;再利用长方体和正方体的表面积和体积公式即可解答.21.【分析】先在数轴上表示各个数,再比较即可.【解答】解:﹣|﹣4|<﹣<0<﹣(﹣1)<(﹣2)2.【点评】本题考查了数轴和有理数的大小比较的应用,能熟记有理数大小比较法则是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.22.【分析】利用相反数,绝对值,以及倒数的性质求出各自的值,代入原式计算即可求出值.【解答】解:根据题意得:x+y=0,ab=1,c=±1,即c2=1,则原式=0﹣1+2=1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.【分析】(1)根据有理数的加法运算,看其结果的正负即可判断其位置;(2)根据绝对值的定义列式计算即可;(3)根据题意列式计算即可.【解答】解:(1)+9+(﹣3)+(﹣5)+(+4)+(﹣8)+(+6)+(﹣3)+(﹣6)+(﹣4)+(+10)=0,所以将最后一名乘客送到目的地,出租车回到了商场处,答:将最后一名乘客送到目的地回到了商场处.(2)|+9|+|﹣3|+|﹣5|+|+4|+|﹣8|+|+6|+|﹣3|+|﹣6|+|﹣4|+|+10|=58.答:这天上午出租车总共行驶了58km.(3)58×2.5﹣58×0.08×6.5=114.84(元),答:那么这半天出租车盈利了114.86元.【点评】本题主要考查了有理数的加减乘除混合运算,注意正负数的意义,熟练掌握运算法则是解题的关键.24.【分析】(1)主视图有2列,每列小正方形数目分别为2,3;左视图有2列,每列小正方形数目分别为3,1;(2)上面共有3个小正方形,下面共有3个小正方形;左面共有4个小正方形,右面共有4个正方形;前面共有5个小正方形,后面共有5个正方形,继而可得出表面积.(3)要使表面积最大,则需满足两正方体重合的最少,画出俯视图,计算表面积即可.【解答】解:(1)主视图有2列,每列小正方形数目分别为2,3;左视图有2列,每列小正方形数目分别为3,1,图形分别如下:(2)由题意可得:上面共有3个小正方形,下面共有3个小正方形;左面共有4个小正方形,右面共有4个正方形;前面共有5个小正方形,后面共有5个正方形,故可得表面积为:1×(3+3+4+4+5+5)=24.(3)要使表面积最大,则需满足两正方体重合的最少,此时俯视图为:这样上面共有3个小正方形,下面共有3个小正方形;左面共有5个小正方形,右面共有5个正方形;前面共有5个小正方形,后面共有5个正方形,表面积为:1×(3+3+5+5+5+5)=26.故答案为:24、26.【点评】此题考查了简单几何体的三视图及几何体的表面积的计算,解答本题的关键是掌握三视图的观察方法,在计算表面积时容易出错,要一个面一个面的进行查找,避免遗漏,有一定难度.25.【分析】(1)由两点之间的距离公式可得答案;(2)由两点之间的距离公式可得答案;(3)当丨x﹣2丨+丨x+4丨取最小值时,x的范围是﹣4≤x≤2;(4)设运动时间是t秒,可得|﹣1+2t﹣(3+0.5t)|=3,即可解得A表示的数是或.【解答】解:(1)数轴上表示1和3两点之间的距离是|1﹣3|=2,数轴上表示﹣12和﹣6的两点之间的距离是|﹣12﹣(﹣6)|=6,故答案为:2,6;(2)数轴上表示x和﹣4的两点之间的距离表示为|x﹣(﹣4)|=|x+4|,故答案为:|x+4|;(3)当丨x﹣2丨+丨x+4丨取最小值为|2﹣(﹣4)|=6时,能使丨x﹣2丨+丨x+4丨取最小值的所有整数x的和2+1+0+(﹣1)+(﹣2)+(﹣3)+(﹣4)=﹣7,故答案为:6,﹣7;(4)设运动时间是t秒,则运动后A表示的数是﹣1+2t,B运动后表示的数是3+0.5t,根据题意得|﹣1+2t﹣(3+0.5t)|=3,即1.5t﹣4=3或1.5t﹣4=﹣3,解得t=或t=,∴﹣1+2t=﹣1+2×=或﹣1+2t=﹣1+2×=,∴A表示的数是或.【点评】本题考查数轴上两点间的距离,解题的关键是读懂题意,能求出数轴上任意两点间的距离.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019 年七年级数学上册月考试卷(带答案和解释) 数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题。
接下来我们一起来练习2019 年七年级数学上册月考试卷。
2019 年七年级数学上册月考试卷(带答案和解释) 一、选择题:(每题4 分,共48 分)
1. - 3的倒数是()
A. -
B.
C. - 3
D.3
2. 如图为我县十二月份某一天的天气预报,该天最高气温比最低气温高()
A. - 3C
B.7 C
C.3 C
D. - 7C
3. 某服装店新开张,第一天销售服装 a 件,第二天比第一天
多销售12 件,第三天的销售量是第二天的2 倍少10 件,则第三天销售了()
A.(2a+2) 件
B.(2a+24) 件
C. (2a+10) 件
D.(2a+14) 件
4. 下列各式计算正确的是()
A. - 2a+5b=3ab
B.6a+a=6a2
C.4m2n- 2mn2=2mn
D.3ab2- 5b2a= - 2ab2
5. 已知代数式3x2- 6x+6 的值为9,则代数式x2- 2x+8 的值为
()
A.18
B.9
C.12
D.7
6. 定义一种新运算“*”,规定:a*b= a- 4b,则12*( - 1)=()
A. - 8
B.8
C. - 12
D.11
7. 已知x=- 2 是方程ax+4x=2 的解,则a 的值是()
A. - 5
B.3
C.5
D. - 3
8. 如果A、B、C三点在同一直线上,线段AB=3cm BC=2cm 那么A、C两点之间的距离为()
A.1cm
B.5cm
C.1cm 或5cm
D. 无法确定
9. 下列事实可以用“两点确定一条直线” 来解释的有() 个
①墙上钉木条至少要两颗钉子才能牢固;
②农民拉绳播秧; ③解放军叔叔打靶瞄准;
④从A地到B地架设电线,总是尽可能沿着线段AB架设.
A.1
B.2
C.3
D.4
10. 在灯塔0处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么/ AOB的大小为()
A.69°
B.111 °
C.141 °
D.159 °
11. 如图,AB是直线,0是直线上一点,OC 0D是两条射线,则图中小于平角的角有()
A.3 个
B.4 个
C.5 个
D.6 个
12. 如图是一个正方体包装盒的表面展开图,若在其中的三个正方
形A, B, C内分别填上适当的数,使得将这个表面展开图沿虚线折成正方体后,相对面上的两数互为相反数,则填在A, B, C内的三个数依次是()
A.1 , 0,- 2
B.0 , 1,- 2
C.0 , - 2, 1
D. - 2, 0, 1
二、填空题:(每空4分,共40 分)
13. 若3a4bm+1=- a3n - 2b2 是同类项,则m- n=.
14. 已知A点在数轴上对应有理数a,现将A右移5个单位长
度后再向左移7 个单位长度到达B 点, B 点在数轴上对应的有理数为,则有理数a=.
15. 计算21° 49’ +49° 21 =.
16. 一件服装标价200 元,以6 折销售,可获利20%,这件服装的进价是元.
17. 若关于x 的方程k(x2+1)+x2=x|k|+3 为一元一次方程,那么k=.
18. 已知OC平分/ AOB 若/ AOB=60 , / COD=10 ,则/AOD 的度数为.
19. 地球上的陆地面积约为149000000 平方千米这个数字用科学记数法表示应为.
20. 在看中央电视台“动物世界”节目时我们可以看到这样的画面:非洲雄狮在广阔的草原上捕食鹿时总是沿直线狂奔其中蕴含的数学知识是.
21. 假设有足够多的黑白围棋子按照一定的规律排成一行:
请问第2019 个棋子是黑的还是白的?答:.
22. 下列说法中:①若ax=ay,则x=y(其中a是有理数);② 若,则a。