第四章 数学规划模型

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 数学规划模型

【教学目的】:深刻理解线性规划,非线性规划,动态规划方法建模的基本特点,并能熟练建立一些实际问题的数学规划模型;熟练掌握用数学软件(Matlab ,Lindo ,Lingo 等)求解优化问题的方法。 【教学重点难点】:

教学重点:线性规划和非线性规划的基本概念和算法,解决数学规划问题的一般思路和

方法,线性规划模型、整数规划模型、非线性规划模型的构建及其Matlab 与Lingo 实现。

教学难点:区分线性规划模型和非线性模型适用的实际问题,以及何时采用线性模型,

何时采用非线性模型,线性模型与非线性模型的转化。

【课时安排】:10学时

【教学方法】:采用多媒体教学手段,配合实例教学法,通过对典型例题的讲解启发学生思维,并给与学生适当的课后思考讨论的时间,加深知识掌握的程度。安排一定课时的上机操作。 【教学内容】:

在众多实际问题中,常常要求决策(确定)一些可控制量的值,使得相关的量(目标)达到最佳(最大或最小)。这些问题就叫优化问题,通常需要建立规划模型进行求解。称这些可控制量为决策变量,相关的目标量为目标函数;一般情况下,决策变量x 的取值是受限制的,不妨记为x ∈Ω,Ω称为可行域,优化问题的数学模型可表示为

Max(或Min)f(x), x ∈Ω

一般情况下,x 是一个多元变量,f(x)为多元函数,可行域比较复杂,一般可用一组不等式组来表示,这样规划问题的一般形式为

()

x

Min f x .

()0,1,2,,i st g x i m

≤=

虽然,该问题属于多元函数极值问题,但变量个数和约束条件比较多,一般不能用微分法进行解决,而通过规划方法来求解;这里讨论的不是规划问题的具体算法,主要是讨论如何将一个实际问题建立优化模型,并利用优化软件包进行求解。

根据目标函数和约束函数是否为线性,将规划模型分为线性规划和非线性规划。 4.1线性规划

线性规划(LP)研究的实际问题多种多样的,它在工农业生产、经济管理、优化设计与控

制等领域都有广泛应用。如资源分配问题、生产计划问题、物资运输问题、合理下料问题、库存问题、劳动力安排问题、最优设计问题等等。线性规划模型的求解方法目前仍以单纯形法为主要方法,该方法于1947年由美国数学家丹茨格(G .B.Dantzig )提出,经过60多年的发展完善,已经形成比较成熟的算法,同时配合计算机技术的广泛应用使得该方法得到空前的普及应用。目前,大多数数学软件都可以求解一般线性规划模型,这一节主要采用Matlab 和Lindo 软件。 4.1.1奶制品的生产与销售 例1 加工奶制品的生产计划

【问题描述】一奶制品加工厂用牛奶生产1A ,2A 两种奶制品,1桶牛奶可以在设备甲上用12小时加工成3公斤1A ,或者在设备乙上用8小时加工成4公斤2A .根据市场需求,生产的1A ,2A 全部能售出,且每公斤1A 获利24元,每公斤2A 获利16元.现在加工厂每天能得到50桶牛奶的供应,每天正式工人总的劳动时间为480小时,并且设备甲每天至多能加工100公斤1A ,设备乙的加工能力没有限制.试为该厂制订一个生产计划,使每天获利最大,并进一步讨论以下3个附加问题:

1)若用35元可以买到1桶牛奶,应否作这项投资?若投资,每天最多购买多少桶牛奶? 2)若可以聘用临时工人以增加劳动时间,付给临时工人的工资最多是每小时几元? 3)由于市场需求变化,每公斤1A 的获利增加到30元,应否改变生产计划?

【问题分析】这个优化问题的目标是使每天的获利最大,要作的决策是生产计划,即每天用多少桶牛奶生产1A ,用多少桶牛奶生产2A (也可以是每天生产多少公斤1A ,多少公斤2A ),决策受到3个条件的限制:原料(牛奶)供应、劳动时间、设备甲的加工能力。

【模型假设】1) 1A ,2A 两种奶制品每公斤的获利是与它们各自产量无关的常数,每桶牛奶加工出1A ,2A 的数量和所需的时间是与它们各自的产量无关的常数;

2) 1A ,2A 每公斤的获利是与它们相互间产量无关的常数,每桶牛奶加工出1A ,2A 的数量和所需的时间是与它们相互间产量无关的常数;

3)加工1A ,2A 的牛奶的桶数可以是任意实数.

【模型建立】设每天用1x 桶牛奶生产1A ,用2x 桶牛奶生产2A . 设每天获利为z 元.1x 桶牛奶可生产31x 公斤1A ,获利 24⨯31x ,2x 桶牛奶可生产42x 公斤2A ,获利16⨯42x ,故目标函数为:z=721x +642x .

由题目可以得到如下约束条件:

原料供应: 生产1A ,2A 的原料(牛奶)总量不得超过每天的供应,即1x +2x ≤50桶; 劳动时间: 生产1A ,2A 的总加工时间不得超过每天正式工人总的劳动时间,即121x +82x ≤480小时;

设备能力: 1A 的产量不得超过设备甲每天的加工能力,即31x ≤100; 非负约束: 1x +2x 均不能为负值,即1x ≥0,2x ≥0. 综上可得该问题的数学模型为:

⎪⎪⎩⎪⎪⎨⎧≥≥≤≤+≤++0

x 0,x 1003x 4808x 12x 50

x x s.t.64x 72x max 21121

2121 由于目标函数和约束条件对于决策变量而言都是线性的,所以称为线性规划(LinearProgramming ,简记作LP)。

【模型求解】(图解法):这个线性规划模型的决策变量为2维,用图解法既简单,又便于直观地把握线性规划的基本性质.将约束条件中的不等号改为等号,可知它们是1Ox ,2x 平面上的5条直线,依次记为1L ~5L ,如图1.其中4L ,5L 分别是工2x 轴和1x 轴,并且不难判断,(2)~(5)式界定的可行域是5条直线上的线段所围成的5边形OABCD .容易算出,5个顶点的坐标为:O(0,0),A(0,50),B(20,30),C(100/3,10),D(100/3,0).

目标函数中的z 取不同数值时,在图1中表示一组平行直线(虚线),称等值线族.如z=0是过O 点的直线,z=2400是过D 点的直线,z=3040是过C 点的直线,….可以看出,当这族平行线向右上方移动到过B 点时,z=3360,达到最大值,所1,5[B 点的坐标(20,30)即为最优解:1x =20,2x =30.

图1 图解法示意图

我们直观地看到,由于目标函数和约束条件都是线性函数,在2维情形,可行域为直线段围成的凸多边形,目标函数的等值线为直线,于是最优解一定在凸多边形的某个顶点取得.推广到n 维情形,可以猜想,最优解会在约束条件所界定的一个凸多面体 (可行域)的某个顶点取得.

(软件求解)在LINDO 软件中输入如下程序:

max 72x1+64x2 st

2)x1+x2<50

相关文档
最新文档