第3讲---数学规划模型
数学建模中的优化模型ppt课件

2
3
4
• 制订月生产计划,使工厂的利润最大.
• 如果生产某一类型汽车,则至少要生产80辆,
那么最优的生产计划应作何改变? 15
汽车厂生产计划
模型建立
设每月生产小、中、大型 汽车的数量分别为x1, x2, x3
小型 钢材 1.5 时间 280 利润 2
中型 3
250 3
大型 5
400 4
现有量 600 60000
p(t)w(t) p(t)w(t) 4
每天利润的增值 每天投入的资金
保留生猪直到利润的增值等于每天的费用时出售
由 S(t,r)=3 若 1.8 w 2.2(10%), 则 7 t 13(30%) 建议过一周后(t=7)重新估计 p, p, w, w, 再作计算。
13
研究 r, g变化时对模型结果的影响 估计r=2, g=0.1
• 设r=2不变
t 3 20 g , 0 g 0.15 g
t 对g的(相对)敏感度 30
t
S(t, g) Δ t / t dt g 20 Δ g / g dg t
S(t, g) 3 3 3 20 g
7
常用优化软件
1. LINGO软件 2. MATLAB优化工具箱 3. EXCEL软件的优化功能 4. SAS(统计分析)软件的优化功能 5. 其他
8
2.简单的优化模型
——生猪的出售时机
问 饲养场每天投入4元资金,用于饲料、人力、设 题 备,估计可使80千克重的生猪体重增加2公斤。
市场价格目前为每千克8元,但是预测每天会降 低 0.1元,问生猪应何时出售。
均为整数,重新求解. 17
模型求解 整数规划(Integer Programming,简记IP)
什么是几何?什么是线性规划

有影响的数学家Marianne Freiberger关键词:数学家引言作为一门学科,数学有简朴之美的声誉——它对某些人产生共鸣,就像美丽的日出日落、动听的交响乐或漂亮的图画可能对其他人产生共鸣一样。
然而,数学也有其应用的一面。
如果没有20世纪发展的数学,我们不会有正在从根本上改变我们21世纪初生活方式的手机。
与数学的美感及适用性双重背景相比较的是这样的感觉:数学前沿与非数学使用者能掌握的东西越走越远。
数学证明已经变得越来越长、越来越复杂,并且在某些情况下,重要定理已经整体上需要计算机的帮助。
这方面的例子有Wolfgang Haken和Kenneth Appel计算机证明了四色定理这一猜想以及Thomas Hale计算机证实球体可以挤进三维空间并能达到最大密度。
由于许多数学家的工作以及他们对数学的热爱,以及清晰的洞察,使我们可以更清楚地看到数学的美感与适用性这两方面。
在这方面做出杰出贡献的数学家很多,在这里,我想介绍前几年去世的美国几何学家Victor Klee的工作。
Victor Klee是美国最杰出的几何学家之一。
他的去世(2007年8月)是数学界的重大损失。
他出版的作品包括几本书和超过240篇的研究论文。
Klee于1925年出生在旧金山,在Pomona学院修了数学和化学两个专业。
虽然20世纪之前,几乎所有的数学家(如牛顿、高斯、欧拉、拉普拉斯等)不仅在数学,而且在物理或一些其他科学分支均有贡献,但由于专业化的压力,现在这很难得了。
虽然Klee的工作大部分集中在几何上,出于理论与应用的考虑,他的工作横跨的兴趣广泛。
他在弗吉尼亚大学跟随著名的拓扑学家Edward McShane学习,获得博士学位。
他1949年的博士论文题目是“线性空间中的凸集”。
Klee的早期训练和研究是在拓扑学领域——这个学科关注几何对象属性的研究,它超越了角度、距离和与欧几里得几何有关的领域的传统。
因此,从拓扑的观点看,直线段和曲线段是一样的,正方形和(欧几里得)椭圆也是一样的,但线段和圆不是一样的。
第三章线性规讲义划模型

Min W= Yb
YA - YS= C Y,YS≥0
➢ 若两个互为对偶问题之一有最优解,则另一个必有最优解, 且目标函数值相等(Z*=W*),最优解满足CX*=Y*b。
第三章 线性规划模型
▪ 线性规划问题的提出 ▪ 线性规划问题的建模 ▪ 典型特征和基本条件 ▪ 一般模型和标准模型 ▪ 线性规划的图解方法 ▪ 影子价格与敏感分析 ▪ 线性规划模型的应用
第三章 线性规划模型
• 对偶问题的提出
某厂生产甲、乙两 种产品,消耗A、B两 种原材料 。生产一件 甲产品可获利2元,生 产乙产品获利3元。问 在 以 下条件下如何安 排生产?
设备 A 设备 B 设备 C 利润(元/件)
产品 产品 产品 产品 甲乙丙丁 1.5 1.0 2.4 1.0 1.0 5.0 1.0 3.5 1.5 3.0 3.5 1.0 5.24 7.30 8.34 4.18
设备能力 (小时)
2000 8000 5000
第三章 线性规划模型
▪ 建立的模型如下:
z=12737.06(元)
▪ 请注意最优解中利润率最高的产品丙在最优生产计 划中不安排生产。说明按产品利润率大小为优先次 序来安排生产计划的方法有很大局限性。尤其当产 品品种很多,设备类型很多的情况下,用手工方法 安排生产计划很难获得满意的结果。另外,变量是 否需要取整也是需要考虑的问题。
第三章 线性规划模型
用线性规划制订使总利润最大的生产计划。
每件产品占用的 产品 产品 产品 产品 设备能力
机时数(小时/件) 甲 乙 丙 丁 (小时)
设备 A
1.5 1.0 2.4 1.0
2000
设备 B
1.0 5.0 1.0 3.5
数学建立模型知识点总结

数学建立模型知识点总结一、数学建立模型的基本概念1. 模型的定义模型是对于特定对象或系统的数学表达式或描述。
它是一个用来代表真实事物、预测未来情况或解决实际问题的简化抽象。
模型可以是数学方程、图表、图形或者计算机程序等形式。
2. 模型的分类根据模型的形式和特点,可以将模型分为不同的类别,主要包括数学模型、物理模型、统计模型、仿真模型等。
3. 建立模型的目的建立模型的目的是为了更好地理解现实世界中的复杂问题,预测未来的发展趋势,进行决策分析和问题求解等。
二、数学建立模型的方法1. 建立模型的一般步骤通常建立模型的一般步骤包括问题分析、模型建立、模型求解、模型验证和结果分析等。
2. 建立模型的数学方法建立数学模型的数学方法主要包括差分方程模型、微分方程模型、优化模型、概率模型和统计模型等。
三、数学模型的应用1. 数学模型在自然科学领域的应用数学模型在物理学、化学、生物学等领域都有着广泛的应用,例如在物理学中用来研究物体的运动规律、在生物学中用来研究生物体的生长和繁殖规律等。
2. 数学模型在社会科学领域的应用数学模型在经济学、管理学、社会学等领域也有很多应用,例如在经济学中用来研究市场供求关系、在管理学中用来研究企业运营规律等。
3. 数学模型在工程技术领域的应用数学模型在工程技术领域中常常用来研究工程结构、流体力学、材料科学等诸多问题,例如在建筑工程中用来研究房屋结构的稳定性、在交通工程中用来研究交通流量规律等。
四、数学建立模型的典型案例1. 鱼群扩散模型鱼群扩散模型是用来研究在外界环境条件下鱼群扩散的问题,通常采用微分方程模型进行描述。
2. 物体自由落体模型物体自由落体模型是用来研究物体在重力作用下的运动规律,通常采用差分方程模型进行描述。
3. 经济增长模型经济增长模型常用来研究经济系统的增长规律,通常采用优化模型进行描述。
五、数学建立模型的发展趋势1. 多学科交叉融合数学建立模型的发展趋势是多学科交叉融合,即将数学模型与物理、化学、生物、经济、管理等学科相结合,以更好地解决现实世界中的复杂问题。
数学规划模型——线性规划问题

数学规划模型——线性规划问题title: 数学规划模型——线性规划问题date: 2020-02-26 20:08:59categories: 数学建模tags: [MATLAB, 数学规划模型]Matlab 中线性规划的标准型标准型min C T X s .t . AX <=b 不等式约束Aeg ∗x =beg 等式约束lb <=x <=ub 上下界约束(也可以当成不等式约束)向量的内积 ,c =C 1C 2...C n x =x 1x 2...x n ,n 是决策变量的个数练习题min->maxm 加负号不等式约束的标准是<=,>=需要转换变量如果不在约束条件,⽤inf 与-inf 巧妙转换Matlab 求解线性规划 的函数[x ,fval] = linprog [ c, A, b, Aeq, beq, lb, ub, X0]① X0 表⽰给定Matlab迭代求解的初始值 ( ⼀般不⽤给)② c, A, b, Aeq, beq, lb, ub的意义和 标准型中的意义⼀致③ 若不存在不等式约束, 可⽤ " [ ] " 替代 A和b④ 若不存在等式约束, 可⽤ " [ ] "替代 Aeq 和 beq⑤ 苦某个 x⽆下界或上界, 则设置lb(i)=-inf,ub(i)=+inf⑥ 返回的 x表⽰⼩值处的 x取值 ; fval表⽰优解处时取得的最⼩值7.不是所有的线性规划都有唯⼀解,可能⽆解或有⽆穷多的解。
8.如果求的是最⼤值,别忘在最后给fval加⼀个负号。
上⾯三个题的代码 :[x, fval]=linprog[c, A, b, [], [], lb][x, fval]=linprog[c, A, b,Aeg, beg, lb][x, fval]=linprog[c, A, b,Aeg, beg, lb]fval=-fval代码%% Matlab 求解线性规划% [x fval] = linprog(c, A, b, Aeq, beq, lb,ub, x0)% c 是⽬标函数的系数向量,A 是不等式约束Ax<=b 的系数矩阵,b 是不等式约束Ax<=b 的常数项% Aeq 是等式约束Aeq x=beq 的系数矩阵,beq 是等式约束Aeq x=beq 的常数项% lb 是X 的下限,ub 是X 的上限,X 是向量[x1,x2,...xn]' , 即决策变量。
最优化问题数学模型

• 进入该区域的飞机在到达区域边缘时,与区域内 飞机的距离应在60km以上;
根据当年竞赛题目给出的数据,可以验证 新进入的飞机与区域内的飞机的距离超过 60公里。
• 最多需考虑六架飞机;
cij xij 表示该队员的成 目标函数:当队员i入选泳姿j时, 绩,否则 cij xij 0 。于是接力队的成绩可表示为
f cij xij .
j 1 i 1
4
5
约束条件:根据接力队要求, xij 满足约束条件
a. 每人最多只能入选4种泳姿之一,即
x
j 1
4
ij
1.
b. 每种泳姿必须有1人而且只能有一人入选,即
分析,对实际问题进行合理的假设、简化,首先考虑用
线性规划模型,若线性近似误差较大时,则考虑用非线 性规划.
例题讲解
例1 1995年全国数学建模A题:飞行管理问题 在约1万米的高空的某边长为160km的正方 形区域内,经常有若干架飞机作水平飞行,区 域内每架飞机的位置和速度向量均由计算机记 录其数据,以便进行飞行管理。当一架欲进入 该区域的飞机到达区域边缘时,计算机记录其 数据后,要立即计算并判断是否会发生碰撞。 若会发生碰撞,则应计算如何调整各架飞机 (包括新进入的飞机)飞行的方向角,以避免 碰撞,且使飞机的调整的幅度尽量小,
目标:求函数极值或最值,求取得极值时变量的取值。
x
1.线性规划
问题:某工厂在计划期内要安排生产I、II两种产品,已 知生产单位产品所需的设备台时及A、B两种原材料的消 耗,如下表所示
I 设备 1 II 2 8台时
线性规划

M1 : 目标函数: max z c 1 x 1 c 2 x 2 c n x n a 11 x 1 a 12 x 2 a 1 n x n b1 a x a 22 x 2 a 2 n x n b 2 21 1 约束条件: a x a x a x b m2 2 mn n n m1 1 x 1 , x 2 , , x n 0
24
第2节 应用举例
最终计算表(第3次计算)
c j→ CB 0.1 -0.3 0 XB x2 x4 x1 c j -z j b 10 50 30 0 x1 0 0 1 0 0.1 x2 1 0 0 0 0.2 x3 -1 1 1 0 0.3 x4 0 1 0 0 0.8 x5 -9/10 1/3 13/10 -0.74 -M x6 3/5 0 -1/5 -M + 0.06 -M x7 -3/10 1/3 1/10 -M + 0.12 -M x8 -1/5 0 2/5 -M -0.02 θ
27
第2节 应用举例
表1-7表明这些原材料供应数量的限额。加入到产品A、 B、D的原材料C总量每天不超过100kg,P的总量不超过 100kg,H总量不超过60kg。
表1-7
原材料名称 C P H 每 天 最 多 供 应 量 ( kg) 100 100 60 单 价 /(元 /kg) 65 25 35
29
第2节 应用举例
约束条件可表示为:
1 2 1 4 x1 x1 1 2 3 4 x2 x2 1 2 1 4 x3 x3 x1 x2 x3 x1 , , x 9 0 3 4 1 2 x4 x4 1 4 1 2 x5 x5 1 4 1 2 x6 x6 x7 x5 x6 x8 0 0 0 0 100 100 x 9 60
第三讲 线性规划(二)

定理:若检验数全小于等于零,且某一个非基变量 的检验数为0,则线性规划问题有无穷多最优解。 (无穷多最优解情况) 证明:设通过迭代已得最优解 X 0
按前述规则将非基变量 xm k 换入基变量中, 得到新基可行解 ,可知 仍为最优解。于是 X X 与 X 0连线上所有的点都是最优解。 X 命题成立。
B=(P3,P4 ,P5 )=
1 0 0
0
0
1 0
0 1
x3, x4 , x5是基变量,x1,
x2,是非基变量。
用非基变量表示的方程: x3 = 8- x1 - 2x2 x4 = 16- 4x1 (I) x5 = 12 - 4x2 S = 0+ 2x1 +3x2 称(I) 为消去系统,
令非基变量 ( x1 , x2)T=(0,0) T 得基础可行解: x(1)=(0,0,8,16,12) T S1=0 经济含义:不生产产品甲乙,利润为零。 分析:S = 0+ 2x1 + 3x2 (分别增加单位产品甲、乙,目标函数 分别增加2、3,即利润分别增加2百元、 3百元。) 增加单位产品对目标函数的贡献, 这就是检验数的概念。
x1 = 2-x3+(1/2)x5 x4 = 8+ 4x3 -2 x5 x2 =3-(1/4) x5 S = 13-2x3+(1/4)x5
令新的非基变量( x3,x5 )=(0,0)T 得到新的基础可行解: x(3)=(2,3,0, 16 , 0) T S3=13 经济含义:生产甲产品2个,乙产品3个, 获得利润1300元。
增加单位产品甲(x2)比乙对目标函数 的贡献大(检验数最大),把非基变量 x2换成基变量,称x2为换入基变量,而 把基变量x5换成非基变量,称x5为换出 基变量。 (在选择出基变量时,一定保证消去系 统为正消去系统)(最小比值原则)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结果解释
最优解下“资源”增加 1单位时“效益”的增 量
VARIABLE X1 X2
ROW SLACK OR SURPLUS
影子价格
2)
3) 4)
线性规划模型
A1,A2每公斤的获利是与各 自产量无关的常数 每桶牛奶加工出A1,A2的数量 和时间是与各自产量无关的常 数 A1,A2每公斤的获利是与相 互产量无关的常数 每桶牛奶加工出A1,A2的数量和 时间是与相互产量无关的常数 加工A1,A2的牛奶桶数是实数
模型求解
x1 x2 50
图解法
0.000000
0.000000 40.000000
48.000000
2.000000 0.000000
原料增加1单位, 利润增长48
时间增加1单位, 利润增长2 加工能力增长不影响利润
NO. ITERATIONS=
2
• 35元可买到1桶牛奶,要买吗?
35 <48, 应该买!
• 聘用临时工人付出的工资最多每小时几元? 2元!
T
规划问题包含3个组成要素: f(x)~目标函数 决策变量个数n和 多元函数 约束条件个数m较大 条件极值 最优解在可行域 的边界上取得 x~决策变量 gi(x)0~约束条件 数 学 规 划 线性规划 非线性规划 整数规划
当目标函数和约束条件都是决策变量的线性函数时,称为线性规划 问题, 否则称为非线性规划问题。
4.1 奶制品的生产与销售
企业生产计划 空间层次 工厂级:根据外部需求和内部设备、人力、原料等 条件,以最大利润为目标制订产品生产计划; 车间级:根据生产计划、工艺流程、资源约束及费 用参数等,以最小成本为目标制订生产批量计划。 时间层次 若短时间内外部需求和内部资源等不随时间变化,可 制订单阶段生产计划,否则应制订多阶段生产计划。 本节课题
x1 x5 100
原料 供应
劳动 时间
x3 0.8x5
2 x5 2 x6 480
非负约束
x4 0.75x6 x1 , x6 0
OBJECTIVE FUNCTION VALUE 软件实现 LINDO 6.1 1) 3460.800 VARIABLE VALUE REDUCED COST x1 x5 x2 x6 2) 50 X1 0.000000 1.680000 3 4 X2 168.000000 0.000000 X3 19.200001 0.000000 2) 4x1 3x2 4x5 3x6 600 X4 0.000000 0.000000 X5 24.000000 0.000000 3) 4( x1 x5 ) 2( x2 x6 ) X6 0.000000 1.520000 ROW SLACK OR SURPLUS DUAL PRICES 2 x5 2 x6 480 2) 0.000000 3.160000 3) 0.000000 3.260000 3) 4x1 2x2 6x5 4x6 480 4) 76.000000 0.000000 5) 0.000000 44.000000 DO RANGE 6) 0.000000 32.000000 (SENSITIVITY) NO. ITERATIONS= 2
0.000000 0.000000
ROW SLACK OR SURPLUS DUAL PRICES
2) 3) 0.000000 0.000000 48.000000 2.000000
4)
40.000000
2
0.000000
NO. ITERATIONS=
20桶牛奶生产A1, 30桶生产A2,利润3360元。
第四章
4.2
数学规划模型
4.1 奶制品的生产与销售
自来水输送与货机装运
4.3
4.4 4.5
汽车生产与原油采购
接力队选拔 饮料厂的生产(自学)
4.6 钢管下料
y
优化问题:
与最大、最小、最长、最短等等有关的问题。 解决最优化问题的数学方法: 运筹学
运筹学主要分支:
线性规划、非线性规划、动态规划、 图与网络分析、存贮论、排队伦、 对策论、决策论。
Max z 72x1 64x2
z=c (常数) ~等值线
0
l5
Z=0
x1 D Z=2400
在B(20,30)点得到最优解 最优解一定在凸多边 形的某个顶点取得。
目标函数和约束条件是线性函数 可行域为直线段围成的凸多边形 目标函数的等值线为直线
模型求解
Max=72*x1+64*x2; x1+x2<50;
最优解不变时目标函 (约束条件不变)
X1 X2 ROW
72.000000
24.000000
8.000000
x1系数范围(64,96)
64.000000 8.000000 16.000000 x2系数范围(48,72) RIGHTHAND SIDE RANGES CURRENT ALLOWABLE ALLOWABLE RHS INCREASE DECREASE
原料最多增加10
时间最多增加53
• 35元可买到1桶牛奶,每天最多买多少? 最多买10桶!
例2 奶制品的生产销售计划
1桶 牛奶 或 12小时 3千克A1 1千克
在例1基础上深加工
获利44元/千克
获利24元/公斤
0.8千克B1
2小时,3元 获利16元/公斤 8小时 4公斤A2 50桶牛奶, 480小时 1千克 获利32元/千克 0.75千克B2 2小时,3元
(目标函数不变)
X2
ROW 2 3 4
64.000000 8.000000 16.000000 RIGHTHAND SIDE RANGES CURRENT ALLOWABLE ALLOWABLE RHS INCREASE DECREASE
50.000000 480.000000 100.000000 10.000000 53.333332 INFINITY 6.666667 80.000000 40.000000
例 家具生产的安排
一家具公司生产桌子和椅子,用于生产的全部劳力共 计450个工时,共有4立方的木材。 每张桌子要使用15个工时,0.2立方木材,售价80元。 每张椅子使用10个工时,0.05立方木材,售价45元。 问为达到最大的收益,应如何安排生产?
• 分析: • 1. 求什么? • 生产多少桌子? • 生产多少椅子? • 2. 优化什么? • 收益最大 • 3. 限制条件? • 原料总量 • 劳力总数
1)
软件实现
OBJECTIVE FUNCTION VALUE 3360.000
12*x1+8*x2<480;
3*x1<100; end DO RANGE (SENSITIVITY) ANALYSIS? No
VARIABLE
X1 X2
VALUE
20.000000 30.000000
REDUCED COST
x1 x2 50
12x1 8x2 480
约束条件
劳动时间 加工能力 非负约束
3x1 100 x1 , x2 0
线性 规划 模型 (LP)
模型分析与假设
比 xi对目标函数的 例 “贡献”与xi取值 性 成正比 xi对约束条件的 “贡献”与xi取值 成正比 xi对目标函数的 可 “贡献”与xj取值 加 无关 性 xi对约束条件的 “贡献”与xj取值 无关 连续性 xi取值连续
至多100公斤A1
制订生产计划,使每天净利润最大
• 30元可增加1桶牛奶,3元可增加1小时时间,应否投 资?现投资150元,可赚回多少?
1桶 牛奶 或
12小时
3千克 A1 1千克
获利24元/千克
0.8千克 B1
2小时,3元 获利16元/kg 8小时 4千克 A2
1千克
获利44元/千克
决策 变量 目标 函数 约束 条件
例1 加工奶制品的生产计划
1桶 牛奶 或 12小时 8小时 3公斤A1 获利24元/公斤
4公斤A2
获利16元/公斤
每天: 50桶牛奶
时间480小时 至多加工100公斤A1
制订生产计划,使每天获利最大 • 35元可买到1桶牛奶,买吗?若买,每天最多买多少? • 可聘用临时工人,付出的工资最多是每小时几元? • A1的获利增加到 30元/公斤,应否改变生产计划?
DO RANGE(SENSITIVITY) ANALYSIS?
Yes
RANGES IN WHICH THE BASIS IS UNCHANGED: 数系数允许变化范围 OBJ COEFFICIENT RANGES VARIABLE CURRENT ALLOWABLE ALLOWABLE
COEF INCREASE(增加量) DECREASE(较少量)
ROW SLACK OR SURPLUS DUAL PRICES
2) 3) 0.000000 0.000000 48.000000 2.000000
4)
40.000000
2
0.000000
NO. ITERATIONS=
“资源” 剩余为零的约束为紧约束(有效约束)
OBJECTIVE FUNCTION VALUE
结果解释
max 72x1+64x2
st 2)x1+x2<50
OBJECTIVE FUNCTION VALUE 1) 3360.000
VARIABLE
X1 X2
VALUE
20.000000 30.000000