数学规划模型例题

合集下载

数学建模例题题

数学建模例题题

数学建模试题一、传染病模型医学科学的发展已经能够有效地预防和控制许多传染病,但是仍然有一些传染病暴发或流行,危害人们的健康和生命。

社会、经济、文化、风俗习惯等因素都会影响传染病的传播,而最直接的因素是:传染者的数量及其在人群中的分布、被传染者的数量、传播形式、传播能力、免疫能力等。

一般把传染病流行范围内的人群分成三类:S类,易感者(Susceptible),指未得病者,但缺乏免疫能力,与感染者接触后容易受到感染;I类,感病者(Infective),指染上传染病的人,它可以传播给S类成员;R类,移出者(Removal),指被隔离或因病愈而具有免疫力的人。

要求:请建立传染病模型,并分析被传染的人数与哪些因素有关?如何预报传染病高潮的到来?为什么同一地区一种传染病每次流行时,被传染的人数大致不变?二、线性规划模型—销售计划问题某商店拟制定某种商品7—12月的进货、售货计划,已知商店仓库最大容量为1500件,6月底已存货300件,年底的库存以不少于300件为宜,以后每月初进货一次,假设各月份该商品买进、售出单价如下表。

要求:若每件每月的库存费用为0.5元,问各月进货、售货各为多少件,才能使净收益最多?建立数学模型,并用软件求解。

【注】线性规划在MATLAB的库函数为:linprog。

语法为:x = linprog(f,A,b)x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options)[x,fval,exitflag,output,lambda] = linprog(...)例如:线性规划目标函数的系数:f = [-5; -4; -6]约束方程的系数及右端项:A = [1 -1 13 2 43 2 0];b = [20; 42; 30];lb = zeros(3,1);调用线性规划程序linprog求解,得:[x,fval,exitflag,output,lambda] = linprog(f,A,b,[],[],lb);x= 0.000015.00003.0000三、一阶常微分方程模型—人口模型与预测 下表列出了中国1982-1998年的人口统计数据,取1982年为起始年(0=t ),1016540=N 万人,200000=m N 万人。

规划模型

规划模型
3. 每架飞机都有立即进入跑道口的通道,各飞机从离开自己的通 道口到达跑道口所需的时间都一样,且飞机只能在为其指定的小时 间段上才能离开自己的通道口。
产品 1:机床 1 → 机床 3 → 机床 4 产品 2:机床 1 → 机床 2 → 机床 4 产品 3:机床 2 → 机床 3
解:
设 xij 表示产品 i 在机床 j 上的开始加工时间( i = 1,2,3);
下面将逐步列出问题的整数规划模型。
1、同一件产品在不同机床上的加工顺序约束
对于同一件产品,在下一台机床上加工的开始时间不得早于 在上一台机床上加工的结束时间,故应有:
⎪⎩
xij = 0或1
i = 1,2,L,n j = 1,2,L,n i = 1,2,L,n; j = 1,2,L,n
例6 某城市消防总部将全市划分为11个防火区,设有4个消 防站,下图中表示了各防火区域与消防站的位置,其中① ,②,③,④表示消防站,1,2,3,……,11表示消防区 域。根据历史资料证实,各消防站可在事先规定的允许时 间内对所负责的地区火灾予以消灭,图中虚线即表示各地 区由哪个消防站负责(没有虚线连接就表示不负责),现 在总部提出,在同样负责全市消防的前提下,是否可以减 少消防站的数目?如果可以,应当关闭哪个?
工结束时间分别为x14+a14, x24+a24, x33+a33,故全部产品的 实际加工结束时间为:
W = max { x14 + a14 , x24 + a24 , x33 + a33 }
转化为线性表达式: min Z = W
⎧W ⎪⎨W
≥ ≥
x a + 14
14
x a + 24
24

数学建模线性规划上机题

数学建模线性规划上机题

例1 (任务安排)某厂计划在下月内生产4种产品B1,B2,B3,B4。

每种产品都可用三条流水作业线A1,A2,A3中旳任何一条加工出来.每条流水线(Ai)加工每件产品(Bj)所需旳工时数(i=1,2,3,j=1,2,3,4)、每条流水线在下月内可供运用旳工时数及多种产品旳需求均列表于4.1中.又A1,A2,A3三条流水线旳生产成本分别为每小时7,8,9元。

现应怎样安排各条流水线下月旳生产任务,才能使总旳生产成本至少?例2 (外购协议)某企业下月需要B1,B2,B3,B4四种型号旳钢板分别为1000,1200,1500,2023吨。

它准备向生产这些钢板旳A1,A2,A3三家工厂订货。

该企业掌握了这三家工厂生产多种钢板旳效率(吨/小时)及下月旳生产能力(小时),如表4.2所示。

而它们销售多种型号钢板旳价格如表4.3所示。

该企业当然但愿能以至少旳代价得到自己所需要旳多种钢板,那么,它应当向各钢厂订购每种钢板各多少吨?假设该企业订购时采用如下原则,要么不订购,要么至少订购100吨以上。

该怎样处理这个问题。

若至少订购50吨,怎样处理?例3 (广告方式旳选择) 中华家电企业近来生产了一种新型洗衣机.为了推销这种新产品,该企业销售部决定运用多种广告宣传形式来使顾客理解新洗衣机旳长处。

通过调查研究,销售部经理提出了五种可供选择旳宣传方式.销售部门并搜集了许多数据。

如每项广告旳费用,每种宣传方式在一种月内可运用旳最高次数以及每种广告宣传方式每进行一次所期望得到旳效果等.这种期望效果以一种特定旳相对价值来度量、是根据长期旳经验判断出来旳.上述有关数据见表4.8中华家电企业拨了20230元给销售部作为第一种月旳广告预算费、同步提出,月内至少得有8个电视商业节目,15条报纸广告,且整个电视广告费不得超过12023元,电台广播至少隔日有一次,现问该企业销售部应当采用怎样旳广告宣传计划,才能获得最佳旳效果?例4 长城家电企业近来研制了一种新型电视机.准备在三种类型旳商场即一家航空商场、一家铁路商场和一家水上商场进行销售.由于三家商场旳类型不同样,它们旳批发价和推销费都不同样。

线性规划经典例题

线性规划经典例题

线性规划经典例题【问题描述】某工厂生产两种产品A和B,每天的生产时间为8小时。

产品A每件需要2小时的生产时间,产品B每件需要3小时的生产时间。

产品A的利润为200元/件,产品B的利润为300元/件。

每天的生产量不能超过100件。

工厂希翼最大化每天的利润。

【数学建模】设工厂每天生产的产品A的件数为x,产品B的件数为y。

根据题目条件,可以得到以下数学模型:目标函数:最大化利润Maximize Z = 200x + 300y约束条件:1. 生产时间限制:2x + 3y ≤ 82. 产量限制:x + y ≤ 1003. 非负性约束:x ≥ 0,y ≥ 0【求解过程】将目标函数和约束条件转化为标准形式,得到如下线性规划模型:Maximize Z = 200x + 300ysubject to2x + 3y ≤ 8x + y ≤ 100x ≥ 0,y ≥ 0使用线性规划求解器进行求解,得到最优解。

【求解结果】经过计算,得到最优解为:x = 50(产品A的件数)y = 16.67(产品B的件数,近似值)此时,工厂每天的最大利润为:Z = 200 * 50 + 300 * 16.67 = 33333.33 元(近似值)【结果分析】根据最优解,工厂每天应该生产50件产品A和16.67件产品B,以达到每天最大利润33333.33元。

由于生产时间和产量限制,工厂无法达到每天生产更多的产品。

【结论】根据线性规划模型的最优解,工厂每天生产50件产品A和16.67件产品B,可以获得每天最大利润33333.33元。

这个结果可以作为工厂生产计划的参考,以实现最大化利润的目标。

【备注】以上的数学模型和求解结果仅为示例,实际问题中的数值和约束条件可能有所不同。

为了得到准确的结果,需要根据具体情况进行调整和求解。

12345模型的经典例题

12345模型的经典例题

12345模型的经典例题12345模型是一种常见的数学模型,其基本思想是将一个问题分成五个步骤,分别是:问题描述、建立假设、分析模型、解决问题、检验结果。

下面是一道经典的12345模型例题:某公司生产两种产品,产品A和产品B,它们的生产成本分别是每个单位120元和150元。

市场需求量为每天2000个单位。

在市场需求满足的情况下,为了获得最大的利润,应该生产多少个产品A和多少个产品B?1. 问题描述:该公司需要在市场需求满足的情况下,生产最大利润的产品A和产品B的数量。

2. 建立假设:假设产品A和产品B的售价相同,都为每个单位200元。

假设市场需求量为每天2000个单位。

3. 分析模型:设产品A和产品B分别生产a个和b个,利润可表示为:利润 = 总收入 - 总成本总收入 = 200(a+b)总成本 = 120a + 150b利润 = 80a + 50b4. 解决问题:为了获得最大利润,需要求出利润函数的极值。

可以将利润函数对a和b求偏导数,得到:利润/a = 80利润/b = 50因此,利润函数在a和b的取值都为0时取得最小值,而在其他取值时取得极值。

由于生产的产品数量必须是非负整数,利润函数的极值点只能取整数值。

可以通过求解利润函数的整数线性规划问题,得到最大利润对应的生产量。

5. 检验结果:假设生产a=800个产品A和b=1200个产品B,总收入为320000元,总成本为228000元,利润为92000元。

如果生产其他数量的产品A和产品B,利润都不会超过92000元。

因此,生产a=800个产品A和b=1200个产品B是获得最大利润的最佳方案。

线性规划模型例题——数学模型

线性规划模型例题——数学模型

Reduced Cost 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 1.350000 0.3500000 0.3500000 Dual Price 1.000000 1.300000 0.8000000 1.300000 -1.000000 0.000000
3
22
+0.4 x +0.5 x
3
23
<=0 <=0
-0.5 x -0.5 x
3
31
3
32
3
33
(1) 、在 LINGO 软件中输入如下程序:
model: max=0.9*x11+1.4*x12+1.9*x13+0.45*x21+0.95*x22+1.45*x23-0.05*x31+0.45* x32+0.95*x33; x11+x21+x31<2000; x12+x22+x32<2500; x13+x23+x33<1200; 0.4*x11-0.6*x12-0.6*x13>0; -0.2*x11-0.2*x12+0.8*x13<0; 0.85*x21-0.15*x22-0.15*x23>0; -0.6*x21-0.6*x22+0.4*x23<0; -0.5*x31-0.5*x32+0.5*x33<0; end
线性规划例题线性规划模型高中数学线性规划非线性规划模型数学建模非线性规划数学线性规划数学建模线性规划线性规划数学题一元线性回归例题线性代数例题
规划模型
模型假设:

数学规划模型练习题

数学规划模型练习题
作业
某厂生产 A、B、C 三种产品,其所需劳动力、材料等有关数据见下表。要求: (1)确定获利最大的产品生产计划;(2)产品 A 的利润在什么范围内变动时,上述最 优计划不变;(3)如果设计一种新产品 D,单件劳动力消耗为 8 单位,材料消耗为 2 单位,每件可获利 3 元,问该种产品是否值得生产?(d)如果劳动力数量不增,材料 不足时可从市场购买,每单位 0.4 元。问该厂要不要购进原材料扩大生产,以购多 少为宜。 (利用数学软件算出结果)
分组情况组别ຫໍສະໝຸດ 第一 组 第二 组 第三 组 第四 组 第五 组 曹开 启 古华 吴世 辉 郑亚 军 钟飞 赖鹏 辉 付臣 何德 兴 李书 陈智 坤
成员
邓秀 娟 廖芬 刘催 难 王媛 燕 钟卫 霞 何佳 君 凌宏 森 符梦 云 徐熹 刘金 亭
消耗额 劳动力 材料 产品利润(原/件)
A 6 3 3
B 3 4 1
C 5 5 5
可用量(单位) 45 30
作业
• 设有两个煤厂A,B,每月分别进煤60吨, 100吨,它们担负供应三个居民区用煤任务. 这三个居民区每月需用煤分别为45吨,75 吨,40吨.A厂离这三个居民区分别为10公里, 5公里,6公里,B厂离这三个居民区分别为 4公里,8公里,15公里,问这两煤厂如何 分配供煤,才使运输量最小?

线性规划经典例题

线性规划经典例题

线性规划经典例题一、问题描述某公司生产两种产品A和B,每个产品的生产需要消耗不同的资源。

现在公司希望通过线性规划来确定每种产品的生产数量,以最大化利润。

已知产品A每个单位的利润为10元,产品B每个单位的利润为15元。

同时,产品A每个单位需要消耗2个资源X和3个资源Y,产品B每个单位需要消耗4个资源X和1个资源Y。

公司总共有40个资源X和30个资源Y可供使用。

二、数学建模1. 假设产品A的生产数量为x,产品B的生产数量为y。

2. 目标函数:最大化利润。

利润可以表示为10x + 15y。

3. 约束条件:a) 资源X的约束条件:2x + 4y ≤ 40b) 资源Y的约束条件:3x + y ≤ 30c) 非负约束条件:x ≥ 0,y ≥ 0三、求解过程1. 根据数学建模中的目标函数和约束条件,可以得到如下线性规划模型:最大化:10x + 15y约束条件:2x + 4y ≤ 403x + y ≤ 30x ≥ 0,y ≥ 02. 使用线性规划求解方法,可以得到最优解。

通过计算,得到最优解为x = 6,y = 6,利润最大化为180元。

四、结果分析根据最优解,可以得知最大利润为180元,其中产品A的生产数量为6个,产品B的生产数量为6个。

同时,资源X还剩余28个,资源Y还剩余24个。

五、灵敏度分析对于线性规划问题,灵敏度分析可以帮助我们了解目标函数系数和约束条件右端项的变化对最优解的影响。

1. 目标函数系数的变化:a) 如果产品A的利润提高到12元,产品B的利润保持不变,重新求解线性规划模型可以得到新的最优解。

新的最优解为x = 8,y = 4,利润最大化为168元。

b) 如果产品A的利润保持不变,产品B的利润提高到20元,重新求解线性规划模型可以得到新的最优解。

新的最优解为x = 4,y = 7,利润最大化为190元。

2. 约束条件右端项的变化:a) 如果资源X的数量增加到50个,资源Y的数量保持不变,重新求解线性规划模型可以得到新的最优解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

约 l2 : 12x1 8x2 480 束 12x1 8x2 480 l4 条 3x1 100 l3 : 3x1 100 件 c l4 : x1 0, l5 : x2 0 x1 , x2 0 目标 函数
l1 : x1 x2 50
x2 A
l1 B l2 C Z=3600 l3
结果解释
每天销售168 千克A2 和19.2 千克B1, 利润3460.8(元) 8桶牛奶加工成A1,42桶 牛奶加工成A2, 将得到的24千克A1全部 加工成B1 除加工能力外均 为紧约束
30元可增加1桶牛奶,3元可增加1小时时间, 应否投资?现投资150元,可赚回多少?
结果解释
OBJECTIVE FUNCTION VALUE x1 x5 x2 x6 2 ) 50 1) 3460.800 3 4 VARIABLE VALUE REDUCED COST X1 0.000000 1.680000 2) 4x1 3x2 4x5 3x6 600 X2 168.000000 0.000000 X3 19.200001 0.000000 增加1桶牛奶使利润增 X4 0.000000 0.000000 长3.16×12=37.92 X5 24.000000 0.000000 增加1小时时间使利 X6 0.000000 1.520000 ROW SLACK OR SURPLUS DUAL PRICES 润增长3.26 2) 0.000000 3.160000 投资150元增加5桶牛奶, 3) 0.000000 3.260000 4) 76.000000 0.000000 可赚回189.6元。(大于 5) 0.000000 44.000000 增加时间的利润增长) 6) 0.000000 32.000000
53.333332 INFINITY
6.666667
80.000000 40.000000
原料最多增加10
时间最多增加53
• 35元可买到1桶牛奶,每天最多买多少? 最多买10桶!
例2 奶制品的生产销售计划 在例1基础上深加工
1桶 牛奶 或 3千克A1 12小时 1千克 获利24元/公斤
2小时,3元 获利16元/公斤 8小时 4公斤A2 1千克 获利32元/千克 0.75千克B2 50桶牛奶, 480小时 2小时,3元
1) 3360.000 VALUE 20.000000 30.000000 REDUCED COST 0.000000 0.000000 DUAL PRICES
结果解释
最优解下“资源”增加 1单位时“效益”的增 量
VARIABLE X1 X2
ROW SLACK OR SURPLUS
影子价格
2)
3) 4)
RANGES IN WHICH THE BASIS IS UNCHANGED: OBJ COEFFICIENT RANGES VARIABLE CURRENT ALLOWABLE ALLOWABLE COEF INCREASE DECREASE X1 X2 ROW 72.000000 24.000000 8.000000
结果解释
max 72x1+64x2
st 2)x1+x2<50
OBJECTIVE FUNCTION VALUE 1) 3360.000
VARIABLE
X1 X2
VALUE
20.000000 30.000000
REDUCED COST
0.000000 0.000000
3)12x1+8x2<480
4)3x1<100 end 三 种 资 源 原料无剩余
REDUCED COST
0.000000 0.000000
ROW SLACK OR SURPLUS DUAL PRICES
2) 3) 0.000000 0.000000 48.000000 2.000000
4)
40.000000
2
0.000000
NO. ITERATIONS=
20桶牛奶生产A1, 30桶生产A2,利润3360元。
例1 加工奶制品的生产计划
1桶 牛奶 或 12小时 8小时 3公斤A1 获利24元/公斤
4公斤A2
获利16元/公斤
每天: 50桶牛奶
时间480小时 至多加工100公斤A1
制订生产计划,使每天获利最大 • 35元可买到1桶牛奶,买吗?若买,每天最多买多少? • 可聘用临时工人,付出的工资最多是每小时几元? • A1的获利增加到 30元/公斤,应否改变生产计划?
决策变量个数n和 多元函数 约束条件个数m较大 条件极值 最优解在可行域 的边界上取得
重点在模型的建立和结果的分析
2.1 奶制品的生产与销售
企业生产计划 空间层次
工厂级:根据外部需求和内部设备、人力、原料等 条件,以最大利润为目标制订产品生产计划;
车间级:根据生产计划、工艺流程、资源约束及费 用参数等,以最小成本为目标制订生产批量计划。 时间层次 若短时间内外部需求和内部资源等不随时间变化,可 制订单阶段生产计划,否则应制订多阶段生产计划。 本节课题
第二部分
数学规划模型
2.1 奶制品的生产与销售
2.2
自来水输送与货机装运
y
数学规划模型
实际问题中 的优化模型 x~决策变量
Min(或Max) z f ( x), x ( x1 ,x n ) s.t. g i ( x) 0, i 1,2, m
f(x)~目标函数
T
gi(x)0~约束条件 数 学 规 划 线性规划 非线性规划 整数规划
x1 x5 x 2 x6 加工能力 50 3 4 附加约束 4( x1 x5 ) 2( x2 x6 )
x1 x5 100
原料 供应
劳动 时间
x3 0.8x5
2 x5 2 x6 480
非负约束
x4 0.75x6 x1 , x6 0
OBJECTIVE FUNCTION VALUE 1) 3460.800 软件实现 LINDO 6.1 VARIABLE VALUE REDUCED COST x1 x5 x2 x6 X1 0.000000 1.680000 2) 50 X2 168.000000 0.000000 3 4 X3 19.200001 0.000000 0.000000 0.000000 2) 4x1 3x2 4x5 3x6 600 X4 X5 24.000000 0.000000 X6 0.000000 1.520000 3) 4( x1 x5 ) 2( x2 x6 ) ROW SLACK OR SURPLUS DUAL PRICES 2 x5 2 x6 480 2) 0.000000 3.160000 0.000000 3.260000 3) 4x1 2x2 6x5 4x6 480 3) 4) 76.000000 0.000000 5) 0.000000 44.000000 DO RANGE 6) 0.000000 32.000000 (SENSITIVITY) NO. ITERATIONS= 2 ANALYSIS? No
模型求解
OBJECTIVE FUNCTION VALUE 1) 3460.800 VARIABLE VALUE REDUCED COST X1 0.000000 1.680000 X2 168.000000 0.000000 X3 19.200001 0.000000 X4 0.000000 0.000000 X5 24.000000 0.000000 X6 0.000000 1.520000 ROW SLACK OR SURPLUS DUAL PRICES 2) 0.000000 3.160000 3) 0.000000 3.260000 4) 76.000000 0.000000 5) 0.000000 44.000000 6) 0.000000 32.000000 NO. ITERATIONS= 2
8小时 每天 50桶牛奶 时间480小时 至多加工100公斤A1 决策变量 x1桶牛奶生产A1 x2桶牛奶生产A2
1桶 牛奶 或
12小时
3公斤A1
4公斤A2
获利24元/公斤
获利16元/公斤
目标函数
获利 24×3x1 获利 16×4 x2 每天获利 Max z 72x1 64x2 原料供应ES IN WHICH THE BASIS IS UNCHANGED: 数系数允许变化范围
OBJ COEFFICIENT RANGES VARIABLE CURRENT ALLOWABLE ALLOWABLE COEF INCREASE DECREASE X1 X2 ROW 72.000000 24.000000 8.000000
DO RANGE(SENSITIVITY) ANALYSIS?
Yes
(约束条件不变) x1系数范围(64,96)
64.000000 8.000000 16.000000 x2系数范围(48,72) RIGHTHAND SIDE RANGES CURRENT ALLOWABLE ALLOWABLE RHS INCREASE DECREASE
0.8千克B1
获利44元/千克
至多100公斤A1
制订生产计划,使每天净利润最大
• 30元可增加1桶牛奶,3元可增加1小时时间,应否投 资?现投资150元,可赚回多少? • B1,B2的获利经常有10%的波动,对计划有无影响?
1桶 牛奶 或
12小时
3千克 A1 1千克
获利24元/千克
0.8千克 B1
(目标函数不变)
64.000000 8.000000 16.000000 RIGHTHAND SIDE RANGES CURRENT ALLOWABLE ALLOWABLE RHS INCREASE DECREASE
相关文档
最新文档