井身结构

合集下载

钻井工程-19-井身结构讲解

钻井工程-19-井身结构讲解

Sf

D31 D2

Sk
2.15 0.036 0.03 D31 0.06 3200
试取 D31 =3900m,得 pper 2.01g / cm3
由ρp曲线,p3900 1.94 pper 2.01g / cm3
故确定初选点 D31 = 3900 m.
21
(4)校核是否会卡尾管 计算压差:
钻井工程
井身结构
中国石油大学(北京)
1
oil zone
一开 表层套管
二开 中间套管
(技术套管)
三开 生产套管
(油层套管)
2
井身结构—油井基础,全井骨架 固井工程—套管柱设计和注水泥 不仅关系全井能否顺利钻进完井, 而且关系能否顺利生产和寿命。
3
井身结构设计 内容:套管层次; 每层套管下深; 套管和井眼尺寸配合。
Dpmin ——最小地层孔隙压力所处的井深,m
f min ——裸眼段最小地层破裂压力的当量泥浆密度, g / cm3
fc1 ——套管鞋处地层破裂压力的当量泥浆密度, g / cm3
Dc1 ——套管下入深度,m
11
五、井身结构设计方法
1、求中间套管下入深度初选点 D21 (1)不考虑发生井涌
一、套管的分类及作用 二、井身结构设计原则 三、井身结构设计基础数据 四、裸眼井段应满足力学平衡 五、井身结构设计方法(举例) 六、套管尺寸和井眼尺寸选择
4
一、套管的分类及作用
1、表层套管—Surface casing 封隔地表浅水层及浅部疏松和复杂层 安装井口、悬挂及支撑后续各层套管
2、中间套管—Intermediate casing 表层和生产套管间因技术要求下套管 可以是一层、两层或更多层 主要用来分隔井下复杂地层

第二章井身结构设计

第二章井身结构设计

第二章井身结构设计井身结构设计是钻井工程的基础设计。

它的主要任务是确定套管的下入层次、下入深度、水泥浆返深、水泥环厚度、生产套管尺寸及钻头尺寸。

基础设计的质量是关系到油气井能否安全、优质、高速和经济钻达目的层及保护储层防止损害的重要措施。

由于地区及钻探目的层的不同,钻井工艺技术水平的高低,国内外各油田井身结构设计变化较大。

选择井身结构的客观依据是地层岩性特征、地层压力、地层破裂压力。

主观条件是钻头、钻井工艺技术水平等。

井身结构设计应满足以下主要原则:1.能有效地保护储集层;2.避免产生井漏、井塌、卡钻等井下复杂情况和事故。

为安全、优质、高速和经济钻井创造条件;3.当实际地层压力超过预测值发生溢流时,在一定范围内,具有处理溢流的能力。

本章着重阐明地下各种压力概念及评价方法,井身结构设计原理、方法、步骤及应用。

第一节地层压力理论及预测方法地层压力理论和评价技术对天然气及石油勘探开发有着重要意义。

钻井工程设计、施工中,地层压力、破裂压力、井眼坍塌压力是合理钻井密度设计;井身结构设计;平衡压力钻井;欠平衡压力钻井及油气井压力控制的基础。

一、几个基本概念1.静液柱压力静液柱压力是由液柱自身重量产生的压力,其大小等于液体的密度乘以重力加速度与液柱垂直深度的乘积,即0.00981h P H r = (2-1) 式中:P h ——静液柱压力,MPa ;ρ——液柱密度,g/cm 3;H ——液柱垂直高度,m 。

静液柱压力的大小取决于液柱垂直高度H 和液体密度ρ,钻井工程中,井愈深,静液柱压力越大。

2.压力梯度指用单位高度(或深度)的液柱压力来表示液柱压力随高度(或深度)的变化。

ρ00981.0==HP G hh (2-2) 式中:G h ——液柱压力梯度,MPa/m ; P h ——液柱压力,MPa ; H ——液柱垂直高度,m 。

石油工程中压力梯度也常采用当量密度来表示,即 HP h00981.0=ρ (2-3)式中:ρ——当量密度梯度,g/cm 3; 3.有效密度钻井流体在流动或被激励过程中有效地作用在井内的总压力为有效液柱压力,其等效(或当量)密度定义为有效密度。

描述一口井井身结构数据信息的句子

描述一口井井身结构数据信息的句子

描述一口井井身结构数据信息的句子
【原创实用版】
目录
1.井身结构概述
2.井身数据信息详细描述
正文
【井身结构概述】
一口井的井身结构通常由井口、井颈、井身、井底等部分组成。

井口是井的最上部,通常为圆形或方形,其大小和形状取决于井的设计和用途。

井颈是井口向下延伸的部分,通常呈锥形或圆柱形,用于支撑井壁和稳定井身。

井身是井的主体部分,通常呈圆柱形或圆锥形,用于容纳井水和支撑井壁。

井底是井的最下部,通常为平底或锥形,用于防止井水外溢和支撑井身。

【井身数据信息详细描述】
井身数据信息主要包括井口直径、井颈直径、井身直径、井底直径、井深等。

井口直径是指井口的宽度,通常以厘米或米为单位。

井颈直径是指井颈的宽度,也通常以厘米或米为单位。

井身直径是指井身的宽度,通常以厘米或米为单位。

井底直径是指井底的宽度,通常以厘米或米为单位。

井深是指井口到井底的垂直距离,通常以米或英尺为单位。

第1页共1页。

第4节 井身结构与钻井工艺.ppt

第4节 井身结构与钻井工艺.ppt
第四节 井身结构与钻井工艺
• 一、井字的发明 • 二、井身结构 • 三、钻井工艺
一、井字的发明
古人傍水而居,河流两岸成为了人类的发源地。当人类需要摆脱江河湖 沼等天然水源的限制,向更广阔的生存空间发展时,水井就应运而生了。 甲骨文中的井字是由井的形状演变而来,井字表示井的主体及井壁的形
状,井字是一口井的俯视图。
• 探井试油气主要是了解地层的真实情况和生产
能力,为勘探的情况和生产能力做出评价。探
井试油气一般采用分层测试,从下到上,试完 一层封闭一层。如果试油气有生产价值,可保 持该油气井,进行临时弃井作业。
4、 完井
• 5.完井试油气
• 一般情况下,对于有自喷能力的油层,通过在井口更换3~4 个不同直径的油嘴进行测试,测试时油嘴直径的更换应该由 小到大。每一油嘴测试的时间为2~3天,直到油井的产量和 井底压力稳定为止。每个油嘴都要测得日产油量、日产气量 、日产水量、含砂量、井底压力。最后还要用一个小直径的 油嘴测试,以便进行深井取样。 • 待这些工作完了之后,还要将压力计下到油层部位关井,测 压力恢复及地层压力。关井时间一般需要3~5天,然后将压 力计取到地面上来,并从压力计中取出压力记录卡片。最后 ,将3~4个不同油嘴取得的各项资料和压力恢复资料,进行 整理分析,从而可以评价油井的产油能力,计算油层渗透率 以及其他油层参数等。
钻井工艺
钻 进 工 程
下表 层 套管 注水 泥 施工 二开施 工
一 开 钻 进
三开施 工
井身结 构
3、 固井 • 套管的种类
• 按使用目的不同分为:
• 表层套管固井起的是“泥浆通路 ,油气门户”的作用。
• 技术套管固井,它起的是“巩固
后方,安全探路”的作用。 • 油层套管起的是“严密封隔,油 气门户”的作用。

第二章井身结构设计

第二章井身结构设计

第二章 井身结构设计井身结构设计就是钻井工程得基础设计。

它得主要任务就是确定套管得下入层次、下入深度、水泥浆返深、水泥环厚度、生产套管尺寸及钻头尺寸。

基础设计得质量就是关系到油气井能否安全、优质、高速与经济钻达目得层及保护储层防止损害得重要措施。

由于地区及钻探目得层得不同,钻井工艺技术水平得高低,国内外各油田井身结构设计变化较大。

选择井身结构得客观依据就是地层岩性特征、地层压力、地层破裂压力。

主观条件就是钻头、钻井工艺技术水平等。

井身结构设计应满足以下主要原则:1.能有效地保护储集层;2.避免产生井漏、井塌、卡钻等井下复杂情况与事故。

为安全、优质、高速与经济钻井创造条件;3.当实际地层压力超过预测值发生溢流时,在一定范围内,具有处理溢流得能力。

本章着重阐明地下各种压力概念及评价方法,井身结构设计原理、方法、步骤及应用。

第一节 地层压力理论及预测方法地层压力理论与评价技术对天然气及石油勘探开发有着重要意义。

钻井工程设计、施工中,地层压力、破裂压力、井眼坍塌压力就是合理钻井密度设计;井身结构设计;平衡压力钻井;欠平衡压力钻井及油气井压力控制得基础。

一、几个基本概念1.静液柱压力静液柱压力就是由液柱自身重量产生得压力,其大小等于液体得密度乘以重力加速度与液柱垂直深度得乘积,即0.00981hP H (2-1)式中:P h ——静液柱压力,MPa;r ——液柱密度,g/cm 3; H ——液柱垂直高度,m 。

静液柱压力得大小取决于液柱垂直高度H 与液体密度r ,钻井工程中,井愈深,静液柱压力越大。

2.压力梯度指用单位高度(或深度)得液柱压力来表示液柱压力随高度(或深度)得变化。

ρ00981.0==HP G hh (2-2) 式中:G h ——液柱压力梯度,MPa/m; P h ——液柱压力,MPa; H ——液柱垂直高度,m 。

石油工程中压力梯度也常采用当量密度来表示,即HP h00981.0=ρ (2-3)式中:r ——当量密度梯度,g/cm 3; 3.有效密度钻井流体在流动或被激励过程中有效地作用在井内得总压力为有效液柱压力,其等效(或当量)密度定义为有效密度。

井身结构图绘制

井身结构图绘制

02 井身结构图绘制前准备工 作
收集相关资料和数据
井身结构设计资料
包括井身结构类型、各层 套管尺寸和下入深度等。
地质资料
收集地层岩性、厚度、倾 角等地质信息,以便在图 中准确表示。
工程数据
获取钻井、完井等工程数 据,如井深、井径、井斜 等。
确定绘图比例和尺寸范围
根据实际井深和图纸尺寸,选择合适 的绘图比例,确保图纸清晰易读。
01 确保绘图软件或工具设置正确的比例尺;
02
对比实际井身尺寸与图纸尺寸,调整图形比 例;
03
使用专业的绘图软件或插件,以确保比例准 确;
04
在绘制过程中定期检查比例,避免误差累积 。
关键元素缺失或错误纠正
核对井身结构图所需的关键元素 清单,如井口、井底、套管、油 管等;
对于缺失或错误的元素,及 时进行补充和更正;
优化措施
介绍针对井身结构图绘制过程中存在的问题所采取的优化措施, 如改进数据收集方式、优化图层设置等。
效率提升
分析优化措施实施后绘图效率的提升情况,包括缩短绘图时间、减 少修改次数等。
质量改善
评价优化措施实施后井身结构图的质量改善情况,如提高图面清晰 度、增强图件实用性等。
06 井身结构图绘制总结与展 望
05 井身结构图在实际应用中 案例分析
案例一:某油田勘探项目应用实例
项目背景
介绍该油田的地质特征、勘探目的及井身结构图在其中的应用重要 性。
绘图过程
详细描述井身结构图的绘制流程,包括数据收集、图层设置、符号 标注等关键步骤。
应用效果
分析井身结构图在油田勘探中的实际应用效果,如提高钻井效率、优 化开发方案等。
对照实际井身结构和相关规范, 检查图中元素是否齐全、正确;

固井专题(一) 井身结构

固井专题(一) 井身结构

固井专题(一) 井身结构
井身结构的概念
井身结构是指由直径、深度和作用各不相同,且均注水泥封固环形空间而形成的轴心线重合的一组套管与水泥环的组合。

组成及作用
井身结构主要由导管、表层套管、技术套管、油层套管和各层套管外的水泥环等组成。

1.导管:井身结构中下入的第一层套管叫导管。

其作用是保持井口附近的地表层。

2.表层套管:井身结构中第二层套管叫表层套管,一般为几十至几百米。

下入后,用水泥浆固井返至地面。

其作用是封隔上部不稳定的松软地层和水层。

3.技术套管:表层套管与油层套管之间的套管叫技术套管。

是钻井中途遇到高压油气水层、漏失层和坍塌层等复杂地层时为钻至目的地层而下的套管,其层次由复杂层的多少而定。

作用是封隔难以控制的复杂地层,保持钻井工作顺利进行。

4.油层套管:井身结构中最内的一层套管叫油层套管。

油层套管的下入深度取决于油井的完钻深度和完井方法。

一般要求固井水泥返至最上部油气层顶部100~150米。

其作用封隔油气水层,建立一条供长期开采油气的通道。

5.水泥返高:是指固井时,水泥浆沿套管与井壁之间和环形空间上返面到转盘平面之间的距离。

相关术语
1.完钻井深:从转达盘上平面到钻井完成时钻头所钻井的最后位置之间的距离。

2.套管深度:从转盘上平面到套管鞋的深度。

3.人工井底:钻井或试油时,在套管内留下的水泥塞面叫人工井底。

其深度是从转盘上平面到人工井底之间的距离。

第2讲_井身结构设计

第2讲_井身结构设计

测技术得到发展,特别是近平衡钻井的推广和井控技术的掌
握,使井身结构中套管层次和下入深度的设计,逐步总结出 一套较为科学的设计方法。
在“六五”期间,我国开始应用这套方法.首先在中原
油田取得很大效益。如在3500到4700m深井中,使平均事故 时间大幅度下降、建井周期缩短、钻井成本下降。
长江大学石油工程学院钻井工程研究所
5.1、中间套管设计
2.2、发生溢流(井涌)时

f 2
剖面图中最大地层压力梯度点对应的深度(m)

p m ax
Sb S
f

D p m ax D 21
Sk
井涌条件允许值
地层设计破裂压当量密度
激动压力系数
剖面图中最大地层压力对应的当量密度值 破裂压力安全增值 中间套管下入深度的初始假定点深度(m)
长江大学石油工程学院钻井工程研究所
3、井身结构设计中所需要的基础数据
地层破裂安全增值Sf由地区统计资料得到,一般取 0.031 g/cm3; 井涌条件允许值Sk由地区统计资料得到,一般取 0.051-0.10 g/cm3; 最大回压pwh由工艺条件决定,一般取2.0-4.0MPa;
. 钻压差允许值 卡
7、水泥返深设计
对于油层,生产套管的管外水泥返深至少应该在油 层顶部200m以上。对于气层,生产套管的管外水泥 返深至少应该在油层顶部300m以上;
中间套管的管外水泥返深至少应该在复杂或大断层
100m以上; 尾管的管外水泥返深至少在尾管的悬挂器以上;
表层套管的管外水泥返到地面。
长江大学石油工程学院钻井工程研究所
长江大学石油工程学院钻井工程研究所
5.1、中间套管设计
(2)中间套管下入深度 的初始假定点D21 在压力剖面图的横坐标 上,找出前面已经确定的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

井身结构
石油和天然气的开采过程中需要在地面和地下油气层之间建立一条油气通道,这条通道就是井。

这条数十米或是几千米的油气通道需要用多层套管和水泥环进行固定、封闭。

井身结构是指由直径、深度和作用各不相同,且均注水泥封固环形空间而形成的轴心线重合的一组套管与水泥环的组合。

主要由导管、表层套管、技术套管、油层套管和各层套管外的水泥环等组成。

是钻井中途遇到高压油气水层、漏失层和坍塌层等复杂地层时为钻至目的地层而下的套管,其层次由复杂层的多少而定。

井身结构主要由导管、表层套管、技术套管、油层套管和各层套管外的水泥环等组成。

1.导管:井身结构中下入的第一层套管叫导管。

其作用是保持井口附近的地表层不被冲垮,建立起泥浆循环,引导钻具的钻进,保证井眼钻凿的垂直等。

技术要求:①下入深度一般取决于地表层的深度,通常导管下入深度为2—40m。

导管直径一般450mm和375mm。

②管外用水泥封牢固。

2.表层套管:井身结构中第二层套管叫表层套管,一般为几十至几百米。

下入后,用水泥浆固井返至地面。

其作用是封隔上部不稳定的松软地层和水层以利于后续钻进、防止后续钻进中井壁垮塌和钻井液对上部淡水层的污染、安装防止井喷用的设备、支撑技术套管和生产套管的重量。

技术要求:①表层套管的下入深度一般取决于上部疏松岩层的位置,下入深度一般为30—150m(或300—400m)。

直径尺寸400mm和324mm。

②管外用水泥浆封固牢,水泥上返至地面。

3.技术套管:表层套管与油层套管之间的套管叫技术套管。

是钻井中途遇到高压油气水层、漏失层和坍塌层等复杂地层时为钻至目的地层而下的套管,其层次由复杂层的多少而定。

作用是封隔难以控制的复杂地层,保持钻井工作顺利进行。

技术要求:下入技术套管的层次、深度以及水泥上返高度,以能够封住复杂的地层为基本原则。

其局限性是增大了钻井成本,故现实中很少采用。

4.油层套管:井身结构中最内的一层套管叫油层套管。

其作用保护和加固井壁,封隔油、气、水层,建立一条供长期开采油气的通道,保证能够长时期生产和增值措施的要求。

技术要求:①油层套管的下入深度取决于目的油层(生产层)和完井方法,必须满足封固住所有油、气、水层,下入深度一般应超过油层地界30m以上,井在最下一个油层底部要有一个足够的沉沙袋。

②管外用水泥浆封固牢,一般要求固井水泥返至最上部油气层顶部100~150米。

5.水泥返高:是指固井时,水泥浆沿套管与井壁之间和环形空间上返面到转盘平面之间的距离。

相关文档
最新文档