2014-2015学年九年级上下学期数学期末测试题(含答案)

合集下载

2014-2015学年度上学期期末联考试卷九年级数学(含答案)

2014-2015学年度上学期期末联考试卷九年级数学(含答案)

座位号:2014-2015学年度上学期期末联考试卷九年级数学(全卷共23题,满分100分,时间120分钟)一、选择题(本题8个小题,每小题3分,共24分) 1、下列图形既是轴对称图形又是中心对称图形的是( )2、对于二次函数2)1(22-+=x y 的描述正确的是( ) A 、对称轴是直线1=x B 、顶点坐标)2,1(-- C 、顶点坐标)2,1(- D 、开口向下,有最大值-23、方程02092=+-x x 的两根分别是⊙1O 和⊙2O 的半径,且两圆相切,则圆心距21O O 为( )A 、 1B 、9C 、4或5D 、1或9 4、下列叙述正确的是( )A 、口袋中装有2个红球和1个白球,从中摸出2个球,其中必有红球B 、“如果b a ,是实数,那么a b b a +=+”是不确定事件C 、为了了解一批炮弹的杀伤力,采用普查的方式比较合适D 、两个相似图形一定是位似图形5、⊙O 的半径为5cm ,弦AB//CD ,且AB=8cm,CD=6cm,则AB 与CD 之间的距离为( ) A 、 1 cm B 、 7cm C 、 3 cm 或4 cm D 、 1cm 或7cm6、如图,在ABC ∆中,点D 、E 、F 分别是边AB 、AC 、BC 上的点,DE ∥BC ,EF ∥AB ,且AD :DB=3:5,那么CF :CB 等于( ) A 、3:8 B 、3:5 C 、5:8 D 、2:57、如图,直线b x y +-=与双曲线xky =交于点A 、B ,则不等式组0≥+->b x x k 的解集为( )A 、x <﹣1或x >2B 、﹣1<x ≤1C 、﹣1<x <0D 、﹣1<x <1 8、某种手机经过四、五月份连续两次降价,每部手机由3200元降到2500元。

设平均每月降价的百分率为x ,则根据题意列出的方程是( ) A 、 2500)1(32002=-x B 、2500)1(32002=+xC 、2500)21(3200=-xD 、250032002=-x二、填空题(本题6个小题,每小题3分,共18分)9、如图,在△ABC 中,∠C=120°,AB=4cm ,两等圆⊙A 与⊙B 外切,则图中两个扇形的面积之和(即阴影部分)为 cm 2(结果保留π)。

新人教版2014-2015年九年级上学期期末考试数学试题及答案

新人教版2014-2015年九年级上学期期末考试数学试题及答案

新人教版2014-2015年上学期期末考试九年级数学试题(考试时间:120分钟 满分:150分)一、选择题(本题共10道题,每小题3分,共30分)1.下列方程中,是一元二次方程的是( )A. 221x x y ++=B. 2110x x+-= C. 20x = D. 2(1)(3)1x x x ++=- 2.下列汽车标志中,既是轴对称又是中心对称图形的是( )3.下列说法中正确的是( )A.不确定事件发生的概率是不确定的B.事件发生的概率可以等于事件不发生的概率C.事件发生的概率不可能等于0D.抛掷一只均匀的骰子两次,朝上一面的点数之和一定大于24.如图45,15中,∠=∠=O CBO CAO ,则AOB ∠的度数是( )A.75 B.30 C.45 D.60 5.掷一枚六面分别标有1到6的均匀骰子,向上一面的点数大于2且小于5的概率为1P ,抛两枚硬币,正面均朝上的概率为2P ,则( )A.12P P <B.12P P >C.12P P =D.不能确定6.在同圆中,下列四个命题:○1圆心角是顶点在圆心的角;○2两个圆心角相等,它们所对的弦也相等;○3两条弦相等,所对的劣弧也相等;○4等弧所对的圆心角相等。

其中真命题有( )A.4个B.3个C.2个D.1个7.抛物线22(1)3y x =---与y 轴交点的纵坐标为( )A.3-B. 4-C.5-D.1-8.用配方法解关于x 的方程20x px q ++=,方程可变形为( ) A.224()24p p q x -+= B.224()24p q p x -+= C.224()24p p q x +-= 第4题D.224()24p p q x --= 9.如图,E 、F 分别是正方形ABCD 的边BC 、CD 上的点,BE=CF ,连接AE 、BF ,将△ABE 绕正方形的中心按逆时针方向旋转到BCF △,旋转角为()0180a a <<,则a =( )A.60 B.90 C.120 D.4510.已知二次函数2y ax bx c =++的图象如图所示,其对称轴为直线1x =-,给出下列结论(1)24b ac >; (2)0abc >; (3)20a b +=; (4)0a b c ++>; (5)420a b c -+<.则正确的结论有( )A. 2个B. 3个C. 4个D. 5个第9题C第16题第17题B二、填空题(本大题共8小题,每小题3分,共24分)11.方程2x =的根是 .12.众所周知,手机的电话号码是由11位数字组成的,某人的手机号码位于中间的数字为5的概率是13.在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是54002cm ,设金色纸边的宽为,那么x 满足的方程是14.如果函数232(3)1k k y k x kx -+=-++是二次函数,那么k 值为15.一个圆锥的侧面展开图是半径为1的半圆,该圆锥的底面半径是16.二次函数2y x bx c =-++的图象如图所示,则一次函数y bx c =+的图象不经过第 象限. 17.如图所示,一条公路的转变处是一段圆弧(图中的弧AB )点O 是这段弧的圆心,C 是AB 上一点,,OC AB ⊥ 垂足为D ,AB=300m ,CD=50m ,则这段弯路的半径是18.观察下列一组数:13579,,,,,27142334⋅⋅⋅它们是按一定规律排列的,那么这一组数的第n 个数是三、解答题(本大题共96分)19.解方程:(10分)(1) 2660x x --=(2) 22760x x -+=20.△ABC 在平面直角坐标系中的位置如图所示(A 、B 、C 三点在格点上),把△ABC 绕原点O 顺时针旋转90,A 、B 、C 旋转后的对应点分别是1A 、1B 、1C(1)画出旋转后的111△ABC ,并直接写出1A、1B 、1C 的坐标; (2)在旋转过程中,求点A 到点1A 所经过的路径的长.(12分)21.某汽车经销商推出A 、B 、C 、D 四种型号的小轿车共1000辆进行展销。

2014-2015房山区九年级第一学期期末数学试题及答案

2014-2015房山区九年级第一学期期末数学试题及答案

房山区2014—2015学年度第一学期终结性检测试题九年级数学一、选择题(本题共32分,每小题4分)下列各题均有四个选项,其中有且只有一个..是符合题意的.请将正确选项前的字母填在下表中相应1. 抛物线()225=--+y x 的顶点坐标是 A .()2,5-B .()2,5C .()25,--D .()52,- 2.如图,⊙O 是△ABC 的外接圆,若AB=OA=OB ,则∠C 等于A .30°B .40°C .60°D .80° 3.在 Rt △ABC 中,∠C =90°,AC =8,BC =6,则sin B 的值等于A . 34B .43C .35D .454. 已知点P (-3,2)是反比例函数图象上的一 点,则该反比例函数的表达式为A.xy 3=B.5yx =- C. 6y x =D.6y x =-5.已知△ABC ∽△A′B′C′,相似比为1:2,则△ABC 与△A′B′C′ 的面积的比为 A .1:2 B . 2:1 C . 1:4 D .4:16. 如图,弦AB ⊥ OC ,垂足为点C ,连接OA ,若OC =2,AB =4,则OA 等于 A ....7. 在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为A . 10mB . 12mC . 15mD .40m8. 如图,⊙O 的半径为2,点P 是半径OA 上的一个动点,过点P 作直线MN 且∠APN =60°,过点A 的切线AB 交MN 于点B . 设OP =x ,△P AB 的面积为 y ,则下列图象中, 能表示y 与x 的函数关系的图象大致是二、填空题(本题共16分,每小题4分)9.如图,在△ABC 中,D 、E 分别是AB 、AC 边上的点,且 DE ∥BC , 若AD =5,DB =3,DE =4,则BC 等于 .10.如图,⊙O 的半径为2,4=OA ,AB 切⊙O 于B ,弦BC OA ∥连结AC , 则图中阴影部分的面积为 .11. 如图,⊙O 的直径CD 过弦AB 的中点E ,∠BCD =15°,⊙O 的半径为10,则AB = .12. 抛物线()()2211-11n y x x n n n n +=+++(其中n 是正整数)与x 轴交于A n 、B n 两点,若以A n B n 表示这两点间的距离,则A B _________=11; A B A B __________+=1122; n n A B A B A B A B ____________.+++⋅⋅⋅+=112233(用含n 的代数式表示) 二、解答题(本题共30分,每小题5分) 13.计算: 0111)2cos30()8--︒-+解:A E D xDC B ADC14.如图,C 为线段BD 上一点,AC CE ⊥,AB BD ⊥,ED BD ⊥.求证:AB BC CDDE=.解:15.已知二次函数12)3(2++-=x x k y 的图象与x 轴有交点,求k 的取值范围. 解:16. 如图,在ABC ∆中,90C ︒∠=,52sin =A ,D 为AC 上一点,45BDC ︒∠=,6=DC ,求AD 的长. 解:17. 小红想要测量校园内一座教学楼CD 的高度. 她先在A 处测得楼顶C 的仰角=α30°,再向楼的方向直行10米到达B 处,又测得楼顶C 的仰角=β60°,若小红的目高(眼睛到地面的高度)AE 为1.60米,请你帮助她计算出这座教学楼CD 的高度(结果精确到0.1米)参考数据:41.12≈,73.13≈,24.25≈解:EDCB ABAβαG F E CB18. 如图,直线y =3x 与双曲线ky x=的两个交点分别为A (1 , m )和B . (1)直接写出点B 坐标,并求出双曲线ky x=的表达式; (2)若点P 为双曲线ky x=上的点(点P 不与A 、B 重合),且满足PO=OB ,直接写出点P 坐标. 解:四、解答题(本题共20分,每小题5分)19. 抛物线2y x bx c =++与x 轴分别交于点A (-1,0)和点B ,与y 轴的交点C 坐标为(0,-3). (1)求抛物线的表达式;(2)点D 为抛物线对称轴上的一个动点,若DA +DC 的值最小,求点D 的坐标. 解:20. 如图是一个古代车轮的碎片,小明为求其外圆半径,连结外圆上的两点A 、B ,并使AB 与车轮内圆相切于点D ,做CD ⊥AB 交外圆于点C .测得CD =10cm ,AB =60cm ,求这个车轮的外圆半径长.解:21.如图,AB 是⊙O 的直径, 点C 在⊙O 上,CE ⊥ AB 于E , CD 平分∠ECB , 交过 点B 的射线于D , 交AB 于F , 且BC=BD . (1)求证:BD 是⊙O 的切线; (2)若AE =9, CE =12, 求BF 的长. 解:22. 阅读下面的材料:小明在数学课外小组活动中遇到这样一个“新定义”问题:()()()0210.ab ba ab bb ⎧⎪⎪⎨⎪-⎪⎩=->;定义运算“: ※”求为※※<的值.小明是这样解决问题的:由新定义可知a =1,b =-2,又b <0,所以1※(-2)= 12.请你参考小明的解题思路,回答下列问题: (1) 计算:2※3= ;(2) 若5※m =56,则m = .(3) 函数y =2※x (x ≠0)的图象大致是( )五、解答题(本题共22分,其中23题7分,24题7分,25题8分)23. 直线y =﹣3x +3与x 轴交于点A , 与y 轴交于点B ,抛物线y =a (x ﹣2)2+k 经过点A 、B ,与x 轴的另一交点为C . (1)求a ,k 的值;(2)若点M 、N 分别为抛物线及其对称轴上的点, 且以A ,C ,M ,N 为顶点的四边形为平行四边形,请直接写出点M 的坐标.y x OyxOA B C DDAB24. 如图,⊙O 是△ABC 的外接圆,AC 是直径,过点O 作OD ⊥AB 于点D ,延长DO 交⊙O 于点P ,过点P 作PE ⊥AC 于点E ,作射线DE 交BC 的延长线于F 点,连接PF . (1)若∠POC =60°,AC =12,求劣弧PC 的长;(结果保留π) (2)求证:OD =OE ;(3)求证:PF 是⊙O 的切线. 解:25. 已知抛物线2154(3)22my x m x -=--+. (1) 求证:无论m 为任何实数,抛物线与x 轴总有两个交点;(2) 若A 2(3,2)n n -+、B 2(1,2)n n -++是抛物线上的两个不同点,求抛物线的表达式和n 的值; (3) 若反比例函数(0,0)ky k x x=>>的图象与(2)中的抛物线在第一象限内的交点的横坐标为0x ,且满足2<0x <3,求k 的取值范围.解:F房山区2014—2015学年度第一学期终结性检测试题九年级数学参考答案和评分参考二、填空题(每题4分)9. 325 10. 23π 11. 10 12. 12231n ;;n +(前两空每1分,最后一空2分) 三、解答题 13. 解:原式=1-2×32-8+2 3 …………………………4分 = 3 -7 ………………………………………5分14. 证明:∵90B ∠=,∴90A ACB ∠+∠=.∵C 为线段BD 上一点,且AC CE ⊥,∴90ACB ECD ∠+∠=.∴A ECD ∠=∠ . …………………………………………………………………2分 ∵B D ∠=∠=90, …………………………………………………………………3分 ∴△ABC ∽△CDE .………………………………………………………………4分 ∴AB BC CDDE=.………………………………………………………………………5分15. 由题意可知:30k -≠⎧⎨∆⎩≥ ……………………2分即()232430k k ≠⎧⎪⎨--⎪⎩≥…………………………3分解得34k k ≠⎧⎨⎩≤……………………………………4分∴ k 的取值范围是:k ≤4且k≠3……………5分16. 解:在BDC ∆中,090=∠C , 045=∠BDC ,6=DC∴tan 451BCDC︒== EDBA∴6BC = …………………………………1分 在ABC ∆中,52sin =A ,∴25BC AB =,……2分 ∴15AB =……………………………………3分∴AC ==…………………4分∴6AD =……………………………5分17. ∵=α30°,=β60°,∴∠ECF =αβ-=30°. ∴10==EF CF .在Rt △CFG 中,.35cos =⋅=βCF CG ……………………………………………3分 ∴3.106.135≈+=+=GD CG CD . ………………………………………………5分 答:这座教学楼的高度约为10.3米.18.(1)点B 坐标为(-1,-3)……………………………………1分∵直线y=3x 过点A(1,m ) ∴m=3×1=3∴A(1,3) ……………………………………………………2分 将A(1,3)代入y=kx中,得 k =xy =1×3=3∴y=3x …………………………………………………………3分(2) P 1(-3,-1), P 2(3,1)………………………………………………5分四、解答题19. 解:(1) 将A(-1,0)和C(0,-3)代入抛物线2y x bx c =++ 中得: 103b c c -+=⎧⎨=-⎩ , 解得:23b c =-⎧⎨=-⎩ (1)∴抛物线的解析式为223y x x =-- (2)由223y x x =--=()()()21413x x x --=+-知抛物线的对称轴为直线x =1,点B (3,0) 连接BC ,交对称轴x =1于点D 可求得直线BC :y =x -3 当x =1时,y =-2∴点D (1,-2)……………………………………………5分20. 如图,设点O 为外圆的圆心,连接OA 和OC ,……1分∵CD=10cm ,AB=60cm ,∴设半径为r ,则OD=r ﹣10,…………………………2分根据题意得:r 2=(r ﹣10)2+302,…………………3分 解得:r=50,…………………………………………5分 ∴这个车轮的外圆半径长为50.21. (1)证明:∵CE AB ⊥,∴ 90CEB ∠=.∵ CD 平分ECB ∠, BC =BD , ∴ 12∠=∠, 2D ∠=∠.∴ 1D ∠=∠. …………………………1分 ∴ CE ∥BD .∴ 90DBA CEB ∠=∠=.∵ AB 是⊙O 的直径,∴ BD 是⊙O 的切线. ………………………………………………………2分 (2)连接AC ,∵ AB 是⊙O 直径,∴ 90ACB ∠=. ∵CE AB ⊥, 可得 2CE AE EB =⋅.∴ .162==AECE EB ………………………………………………………3分 在Rt △CEB 中,∠CEB =90︒, 由勾股定理得20.BC = ……………4分 ∴ 20BD BC ==.∵ 1D ∠=∠, ∠EFC =∠BFD ,∴ △EFC ∽△BFD. ………………………………………………………5分 ∴ BFEFBD EC =. ∴121620BFBF-=. ∴ BF =10. ………………………………………………………………………6分22. 解:(1)23…………………1分 (2) ±6 ……………………3分 (3)D ………………………5分五、解答题(本题共22分,其中23题7分,24题7分,25题8分)23. (1)∵直线33y x =-+与x 轴、y 轴分别交于点A 、B ,∴(1,0)A ,(0,3)B . ……………………………………2分 又抛物线2(2)y a x k =-+经过点(1,0)A ,(0,3)B∴0,43;a k a k +=⎧⎨+=⎩解得1,1.a k =⎧⎨=-⎩即a ,k 的值分别为1,1-. ……………………………4分 (2)()()()1230,3,4,3,2,1M M M - …………………………………7分 24. (1)解:∵AC =12,∴CO =6, ∴==2π;(2)证明:∵PE ⊥AC ,OD ⊥AB ,∠PEA =90°,∠ADO =90° 在△ADO 和△PEO 中,,∴△POE ≌△AOD (AAS ), ∴OD =EO ;(3)证明:如图,连接AP ,PC ,∵OA =OP , ∴∠OAP =∠OP A , 由(1)得OD =EO , ∴∠ODE =∠OED , 又∵∠AOP =∠EOD , ∴∠OP A =∠ODE , ∴AP ∥DF , ∵AC 是直径, ∴∠APC =90°, ∴∠PQE =90° ∴PC ⊥EF , 又∵DP ∥BF , ∴∠ODE =∠EFC , ∵∠OED =∠CEF , ∴∠CEF =∠EFC ,∴CE =CF ,∴PC 为EF 的中垂线,∴∠EPQ =∠QPF ,∵△CEP ∽△CAP∴∠EPQ =∠EAP ,∴∠QPF =∠EAP ,∴∠QPF =∠OP A ,∵∠OP A +∠OPC =90°,∴∠QPF +∠OPC =90°,∴OP ⊥PF ,∴PF 是⊙O 的切线.25.(1)证明:令2154(3)022m x m x ---+=. 得[]2154(3)422m m -∆=---⨯⨯224m m =-+2(1)3m =-+. 不论m 为任何实数,都有(m -1)2+3>0,即△>0. ……………1分∴不论m 为任何实数,抛物线与x 轴总有两个交点. ……………… 2分(2)解:抛物线2154(3)22m y x m x -=--+的对称轴为 ∵抛物线上两个不同点A 2(3,2)n n -+、B 2(1,2)n n -++的纵坐标相同,∴点A和点B 关于抛物线的对称轴对称,则(3)(1)312n n m -+-+-==-. ∴2m =. ……………………………………………………… 3分 ∴抛物线的解析式为21322y x x =+-. ………………… 4分 ∵A 2(3,2)n n -+在抛物线21322y x x =+-上, ∴2213(3)(3)222n n n -+--=+. 化简,得2440n n ++=.∴ 2n =-. ……………………………………………… 5分(3) 当2<x <3时, 对于21322y x x =+-,y 随着x 的增大而增大, 对于(0,0)k y k x x=>>,y 随着x 的增大而减小. (3) 3.122m x m --=-=-⨯所以当02x =时,由反比例函数图象在二次函数图象上方, 得2k >2132222⨯+-, 解得k >5. …………………………………6分 当03x =时,由二次函数图象在反比例函数图象上方, 得2133322⨯+->3k,解得k <18.……………………………………7分 所以k 的取值范围为5<k <18.……………………………8分。

山西省运城市2014-2015年九年级上学期期末联合考试数学试题及答案

山西省运城市2014-2015年九年级上学期期末联合考试数学试题及答案

山西省运城市名校2014-2015上学期期末联合考试数学试题(时间:120分钟 满分:120分)2015、1、13 一、选择题(每题3分,共45分)1.如图所示几何体的主(正)视图是( )A .B .C .D .2.一个口袋中装有 4个白球,1个红球,7个黄球,搅匀后随机从袋中摸出 1个球是白球的概率是( ) A 21 B 31 C 41 D 513.抛物线42-=x y 的顶点坐标是( )A (2,0)B (-2,0)C (1,-3)D (0,-4)4.若x 1,x 2是一元二次方程2560x x -+=的两个根,则12x x +的值是( ) A .1 B .5 C .5- D .65.身高1.6米的小芳站在一棵树下照了一张照片,小明量得照片上小芳的高度是1.2厘米,树的高度为6厘米,则树的实际高度大约是( )A .8米B .4.5米C .8厘米D .4.5厘米6.顺次连结一个四边形各边中点所得的四边形必定是( )。

A 、平行四边形 B 、矩形 C 、菱形 D 、正方形.7. 如图,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A ′处,折痕为CD ,则A DB '∠=( )A .40°B .30°C .20°D .10°8. 如图,在Rt △ABC 中,CD 是斜边AB 上的中线,已知CD =2,AC =3, 则sinB 的值是( )A. 2 3B. 3 2C. 3 4D. 4 39.已知线段AB=1,C 是线段AB 的黄金分割点,则AC 的长度为( ) A.215- B .253- C .215-或253- D .以上都不对10.如图,在菱形ABCD 中,∠ABC =60°.AC =4. 则BD 的长为( )CABD (第8题图)第7题图A 'B DAC(A )38 (B )34 (C )32 (D )8 11. 如图,AB ∥CD ,BO :OC= 1:4,点E 、F 分别是OC , OD 的中点,则EF :AB 的值为( )A 、1B 、2C 、3D 、412.上海世博会的某纪念品原价168元,连续两次降价a %后售价为128元. 下列所列方程中正确的是( )A .128)% 1(1682=+aB .128)% 1(1682=-a C .128)% 21(168=-a D .128)% 1(1682=-a13.已知点A (11x y ,)、B (22x y ,)是反比例函数xky =(0>k )图象上的两点,若210x x <<,则有( )A .210y y <<B .120y y <<C .021<<y yD .012<<y y14.把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为( ).A .2(1)3y x =---B .2(1)3y x =-+-C .2(1)3y x =--+ D .2(1)3y x =-++15.定义[,,a b c ]为函数2y ax bx c =++的特征数, 下面给出特征数为 [2m ,1 – m , –1– m] 的函数的一些结论: ① 当m = – 3时,函数图象的顶点坐标是(31,38); ② 当m > 0时,函数图象截x 轴所得的线段长度大于23; ③ 当m < 0时,函数在x >41时,y 随x 的增大而减小; ④ 当m ≠ 0时,函数图象经过同一个点. 其中正确的结论有( )A. ①②③④B. ①②④C. ①③④D. ②④ 二、填空题(每空3分,共18分)16. 已知点A (2,m )在函数xy 2=的图象上,那么m=_________。

北京市延庆县2014-2015学年第一学期初三数学期末测试卷及答案

北京市延庆县2014-2015学年第一学期初三数学期末测试卷及答案

BA延庆县2014-2015学年第一学期期末测试卷初 三 数 学一、选择题(本题共32分,每小题4分)下列各题均有四个选项,其中只有一个是符合题........意.的. 1. 下列图形中,是中心对称图形的是A .B .C .D .2.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号小于4的概率为A. 15B. 25C. 35D. 453. 抛物线2(2)3y x =-+的顶点坐标是A .(2,3)B .(-2,3)C .(2,-3)D .(-2,-3) 4. 如图,□ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F , 则EF :FC 等于A .1:1B .1:2C .1:3D .2:35.如图,⊙O 的直径AB 垂直于弦CD ,垂足是E ,OC =5,CD =8, 则OE 的长为A .1B .2 C .3D . 4 6.在Rt △ABC 中,∠C =90°,若AB BC =2,则sin B 的值为 A BC .12D .27.二次函数2y ax bx c =++的图象如图所示, 则下列结论中错误..的是 A BCDE FnAB 22A .函数有最小值B .当-1 < x < 2时,0y >C .0a b c ++<D .当12x <,y 随x 的增大而减小 8.如图,矩形ABCD 中,对角线AC ,BD 交于点O ,E ,F 分别是边BC ,AD 的中点, AB =3,BC =4,一动点P 从点B 出发,沿着B ﹣A ﹣D ﹣C 在矩形的边上运动,运动到 点C 停止,点M 为图1中某一定点,设点P 运动的路程为x ,△BPM 的面积为y ,表 示y 与x 的函数关系的图象大致如图2所示.则点M 的位置可能是图1中的A .点CB .点FC .点D D .点O二、填空题 (本题共16分,每小题4分)9.如果圆锥的母线长为5cm ,底面半径为2cm ,那么这个圆锥的侧面积是________ cm 2. 10. 请写出一个开口向下,并且与y 轴交于点(0,-2)的抛物线的表达式__________. 11. 已知关于x 的一元二次方程2410x x m -+-=无实数根,那么m 的取值范围是____. 12. 如图,AD 是⊙O 的直径.(1)如图1,垂直于AD 的两条弦B 1C 1,B 2C 2把圆周4等分,则∠B 1的度数是 ,∠B 2的度数是 ;(2)如图2,垂直于AD 的三条弦B 1C 1,B 2C 2,B 3C 3把圆周6等分,则∠B 3的度数是 ; (3)如图3,垂直于AD 的n 条弦B 1C 1,B 2C 2,B 3 C 3,…,B n C n 把圆周2n 等分,则∠B n的度数是 (用含n 的代数式表示∠B n 的度数).图1 图2 图3图2图1三、解答题(本题共35分,每小题5分)13. 021(2015)()2π-︒+++14. 解方程:2450x x --=15. 已知:二次函数的图象过点A (2,-3),且顶点坐标为C (1,-4). (1)求此二次函数的表达式;(2)画出此函数图象,并根据函数图象写出:当12x -<<时,y 的取值范围. 16. 如图,在⊙O 中,弦AC 与BD 交于点E ,AB =8,AE =6,ED =4,求CD 的长.(第16题)60°A B 30°CD17.如图,一渔船由西往东航行,在A 点测得海岛C 位于北偏东60°的方向,前进30海里到达B 点,此时,测得海岛C 位于北偏东30°的方向,求海岛C 到航线AB 的距离 CD 的长(结果保留根号).18. 已知:AD 是△ABC的高,AD AB =4,tan ACD ∠=BC 的长.19. 某种商品每天的销售利润y (元)与销售单价x (元)之间 满足关系:y = ax 2+ bx ﹣75.其图象如图.(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?(2)销售单价在什么范围时,该种商品每天的销售利润不低于16元?(第19题)(第17题)B四、解答题(本题共15分,每小题5分)20. 有六张完全相同的卡片,分A ,B 两组,每组三张,在A 组的卡片上分别画上☆○☆,B 组的卡片上分别画上☆○○,如图1所示.(1)若将卡片无标记的一面朝上摆在桌上,再分别从两组卡片中随机各抽取一张,求两张卡片上标记都是☆的概率(请用画树形图法或列表法求解)(2)若把A ,B 两组卡片无标记的一面对应粘贴在一起得到3张卡片,其正反面标记如图2所示,将卡片正面朝上摆放在桌上,并用瓶盖盖住标记.若揭开盖子,看 到的卡片正面标记是☆后,猜想它的反面也是☆,求猜对的概率是多少?21. 如图,在△ABC 中,以AC 为直径作⊙O 交BC 于点D ,交AB 于点G ,且D 是BC 中点,DE ⊥AB ,垂足为E , 交AC 的延长线于点F .(1)求证:直线EF 是⊙O 的切线; (2)CF =5,cos ∠A = 25,求BE 的长.○☆B 组A 组☆☆○○ 图1○○ ○☆反面正面☆☆图2AE C FBAB CCBA22. 探究发现:如图1,△ABC是等边三角形,点E在直线BC上,∠AEF=60°,EF交等边三角形外角平分线CF于点F,当点E是BC的中点时,有AE=EF成立;数学思考:某数学兴趣小组在探究AE,EF的关系时,运用“从特殊到一般”的数学思想,通过验证得出如下结论:当点E是直线BC上(B,C除外)(其它条件不变),结论AE=EF仍然成立.请你从“点E在线段BC上”;“点E在线段BC延长线”;“点E在线段BC反向延长线上”三种情况中,任选一种情况,在图2中画出图形,并证明AE=EF.拓展应用:当点E在线段BC的延长线上时,若CE=BC,在图3中画出图形,并运用上述结论求出S△ABC:S△AEF的值.图1图2图3五、解答题(本题共22分,第23题7分,第24题9分,第25题6分) 23. 已知关于x 的一元二次方程21202k x x -++=有实数根,k 为正整数. (1)求k 的值;(2)当此方程有两个非零的整数根时,将关于x 的二次函数2122k y x x -=++的图象 向下平移9个单位,求平移后的图象的表达式;(3)在(2)的条件下,平移后的二次函数的图象与x 轴交于点A ,B (点A 在点B 左侧),直线(0)y kx b k =+>过点B ,且与抛物线的另一个交点为C ,直线BC 上方的抛物线与线段BC 组成新的图象,当此新图象的最小值大于-5时,求k 的取值范围.C24. 已知:△ABC 是⊙O 的内接三角形,AB =AC ,在∠BAC 所对弧AC 上,任取一点D ,连接AD ,BD ,CD ,(1)如图1,BAC α∠=,直接写出∠ADB 的大小(用含α的式子表示); (2)如图2,如果∠BAC =60°,求证:BD+CD=AD ;(3)如图3,如果∠BAC =120°,那么BD+CD 与AD 之间的数量关系是什么?写出猜测并加以证明;(4)如果BAC α∠=,直接写出BD+CD 与AD 之间的数量关系.图1图2图325. 在平面直角坐标系xOy 中,已知抛物线C 1: 224y mx mx =-++(0≠m )与抛物线C 2:22y x x =-,(1)抛物线C 1与y 轴交于点A ,其对称轴与x 轴交于点B .求点A ,B 的坐标; (2)若抛物线C 1在21x -<<-这一段位于C 2下方,并且抛物线C 1在13x <<这一段位于C 2上方,求抛物线C 1的解析式.----------------5分------------------4分 ------------------4分 ------------------5分------------------4分 ------------------5分------------------5分------------------4分 延庆县2014—2015学年第一学期期末测试答案初 三 数 学一、选择题(共32分,每小题4分)二、填空题(共16分,每题4分)三、解答题(本题共35分,每小题5分) 13. 02145(2015)()2π-︒+++= 414+ =514.解方程:2450x x --= 解1: (5)(1)0x x -+=∴125,1x x ==-解2: 2450x x --= 2449x x -+= 2(2)9x -= 23x ∴-=±∴125,1x x ==-解3: 2450x x --= ∵a =1,b =-4,c =-5∴462x ±==∴125,1x x ==--------4分-----------2分 ---------3分----------------------2分----------------------1分-----------5分---------------3分-------5分15.(1) 设二次函数的表达式为2()y a x h k =-+∵此函数图象顶点C (1,﹣4) ∴2(1)4y a x =-- 过点A (2,-3),∴a =1∴二次函数的解析式: 223y x x =-- (2)二次函数的解析式: 223y x x =--当x = -1时,y =0当x =1时,y 有最小值,为y =-4 ∵x =1在12x -<<内∴当12x -<<时,y 的取值范围-4 ≤ y <016. 解:∵∠B =∠C ,∠A =∠D ∴△ABE ∽△CDE∴AB AECD DE= ∵AB =8,AE =6,ED =4, ∴864CD = ∴163CD =---------1分---------2分 ---------3分--------4分 ---------5分E2D60°AB30°CD1---------2分 ---------3分---------5分---------4分 DCB ADC A17. 解:∵DA ⊥AD ,∠DAC =60°, ∴∠1=30°.∵EB ⊥AD ,∠EBC =30°, ∴∠2=60°. ∴∠ACB =30°. ∴BC = AB=30.在Rt △ACD 中,∵∠CDB =90°,∠2=60°, ∴tan 2CDBC∠=∴tan 6030CD ︒==∴CD =18. 分两种情况: (1)如图1在Rt △ABD 中,∠CDB =90°,AD =AB =4,由勾股定理可得:3BD ===. 在Rt △ACD 中,∠ADC =90°,AD =∵tan ACD ∠=,AD =∴tan ADACD CD∠== ∴CD =1. ∴BC =4. (2)如图2同理可求:BD =3,CD =1 ∴BC =2.综上所述:BC 的长为4或2.图1 图2---------2分---------4分 ---------5分---------3分---------1分○☆☆○○○○○☆☆☆---------5分---------4分 19. 解:(1)y =ax 2+bx ﹣75图象过点(5,0)、(7,16),∴,解得,y =﹣x 2+20x ﹣75的顶点坐标是(10,25) 当x =10时,y 最大=25,答:销售单价为10元时,该种商品每天销售利润最大,最大利润为25元; (2)∵函数y =﹣x 2+20x ﹣75图象的对称轴为直线x =10,可知点(7,16)关于对称轴的对称点是(13,16), 又∵函数y =﹣x 2+20x ﹣75图象开口向下, ∴当7≤x ≤13时,y ≥16.答:销售单价不少于7元且不超过13元时,该商品每天销售利润不低于16元.20.(1)方法1:由题意:从树状图中可以看到,所有可能结果共9种,且每种结果出现的可能性相等,其中两张卡片上标记都是☆的结果共2种,所以 2()9P =两张都是☆. 方法1:由题意可列表如下:从表中可以看到,所有可能结果共9种,且每种结果出现的可能性相等,其中两张卡片上标记都是☆的结果共2种,所以 2()9P =两张都是☆. (2)12---------2分---------1分---------3分---------4分 ---------5分21.证明:(1)连接CD ∵AO=CO ,CD=BD∴OD //AB ∴∠ODE =∠DEB ∵DE ⊥AB ∴∠DEB=90° ∴∠ODE=90° ∴OD ⊥BC∴直线EF 是⊙O 的切线(2)设⊙O 的半径为x ,则OC=OA=OD ,∵OD //AB∴∠ODC =∠B ,∠FOD =∠A ∵OC =OD ∴∠ODC =∠OCD ∴∠B =∠OCD∴AC=BC=2x在Rt △ODF 中,∠ODF =90°, ∴2cos cos 5OD FOD A OF ∠=∠== ∴255xx =+ ∴103x =在Rt △AEF 中,∠FEA =90°, ∴2cos 5AE A AF ∠== ∴23553AE =∴143AE =∴BE =2B---------3分---------2分---------1分22. 数学思考:证明:如图一,在AB 上截取AG ,使AG=EC ,连接EG , ∵△ABC 是等边三角形, ∴AB=BC ,∠B =∠ACB =60°. ∵AG=EC , ∴BG=BE ,∴△BEG 是等边三角形,∠BGE =60°, ∴∠AGE =120°. ∵FC 是外角的平分线, ∴∠ECF =120°=∠AGE . ∵∠AEC 是△ABE 的外角, ∴∠AEC =∠B +∠GAE =60°+∠GAE . ∵∠AEC =∠AEF +∠FEC =60°+∠FEC , ∴∠GAE =∠FEC . 在△AGE 和△ECF 中,∴△AGE ≌△ECF (ASA ), ∴AE =EF ;拓展应用:如图二:∵△ABC 是等边三角形,BC=CE ∴CE=BC=AC , ∴∠CAH =30°, 作CH ⊥AE 于H 点, ∴∠AHC =90°. ∴CH =AC ,AH =AC ,∵AC=CE ,CH ⊥AE ∴AE=2AH =AC .---------5分---------4分°CAB-3-1-2-4-3-1-22O-4311-5y-6-7∴.由数学思考得AE=EF , 又∵∠AEF =60°, ∴△AEF 是等边三角形, ∴△ABC ∽△AEF . ∴==.五、解答题(本题共22分,第23题7分,第24题9分,第25题6分) 23.(1)∵关于x 的一元二次方程21202k x x -++=有实数根 ∴2144402k b ac -∆=-=-⨯≥ ∴12k -≤∴3k ≤…………………………………………………1分 ∵k 为正整数∴k 的值是1,2,3 ……………………………………2分 (2)方程有两个非零的整数根当1k =时,220x x +=,不合题意,舍 当2k =时,21202x x ++=,不合题意,舍 当3k =时,2210x x ++=,121x x ==-∴3k = ……………………………3分∴221y x x =++∴平移后的图象的表达式228y x x =+- ……(3)令y =0,2280x x +-= ∴124,2x x =-=∵与x 轴交于点A ,B (点A 在点B 左侧)∴A (-4,0),B (2,0)∵直线l :y kx b =+(0)k >经过点B , ∴函数新图象如图所示,当点C 在抛物 线对称轴左侧时,新函数的最小值有(1)902ADB α∠=︒-可能大于5-.令5y =-,即2285x x +-=-.解得 13x =-,21x =(不合题意,舍去). ∴抛物线经过点(3,5)--. ……………5分当直线y kx b =+(0)k >经过点(-3,-5),(2,0)时,可求得1k =…………6分由图象可知,当01k <<时新函数的最小值大于5-. ………………………7分 (也可以用三角形相似求出-5以及k 的值) 24.………………1分(2)延长BD 到E ,使得DE=DC ∵∠BAC =60°,AB =AC∴△ABC 是等边三角形 ………………2分 ∴BC=AC ,∠BAC =∠ACB=60°∵四边形ABCD 内接于圆 ∴∠BAC +∠BDC=180° ∵∠BDC +∠EDC=180° ∴∠BAC=∠EDC=60° ∵DC=DE∴△DCE 是等边三角形 ………………3分 ∴∠DCE=60° ∴∠ACD=∠BCE ∴△ACD ≌△BCE ∴BE=AD ∵BE=BD+DE∴AD=BD+CD ………………4分 (3)延长DB 到E ,使得BE=DC ,连接AE , 过点A 作AF ⊥BD 于点F ,∵AB =AC ∴∠1=∠2 ………………5分∵四边形ABCD 内接于圆 ∴∠DBA +∠ACD=180° ∵∠EBA +∠DBA =180° ∴∠EBA=∠DCA ∵BE=CD ,AB=AC∴△EBA ≌△DCA ∴∠E=∠1 ∴AE=AD ………………6分在Rt △ADF 中,∠AFD =90°, ∴cos 1DFAD∠= ………………………………7分∵∠1=90°-2α=30°, ∴cos30DF AD AD =︒=∴2DE DF == ∵ BE =BD +CD∴BD CD += …………………………………………8分 (4) 2cos(90)2DF AD α=︒- ……………………………………………9分25.(1)根据:224y mx mx =-++ 2122b mx a m=-=-=- 可得点A (0,4),B (1,0) ……………………………2分(2)根据对称, 抛物线C 1在21x -<<-这一段位于C 2下方,相当于抛物线C 1在34x <<这 一段位于C 2下方 ……………………………3分 ∵抛物线C 1在13x <<这一段位于C 2上方, ∴两条抛物线的交点横坐标:x =3……………………………4分 ∴把x =3代入22y x x =- ∴y=3∴抛物线C 1:224y mx mx =-++经过点(3,3)……………………………5分 ∴13m =-∴抛物线C 1的解析式: 212433y x x =-+……………………………6分。

2014—2015学年第一学期初三年级数学期末考试试卷含答案

2014—2015学年第一学期初三年级数学期末考试试卷含答案

2014—2015学年第一学期初三年级期末质量抽测数学试卷2014.12学校姓名考试编号考生须知1.本试卷共6页,共五道大题,25个小题,满分120分.考试时间120分钟.2.在试卷和答题卡上认真填写学校名称、姓名和考试编号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.考试结束,请将答题卡交回.一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个..是符合题意的.1.已知⊙O 1和⊙O 2的半径分别为3和5,如果O 1O 2= 8,那么⊙O 1和⊙O 2的位置关系是A .外切B.相交C.内切D.内含2.在不透明的布袋中装有2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球..的概率是A .15B.13C.25D.233.如图,⊙O 的直径AB=4,点C 在⊙O 上,如果∠ABC =30°,那么AC 的长是A .1B .2C .3D .24. 在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,使它与图中阴影部分组成的新图形构成中心对称图形,该小正方形的序号是A .①B .②C .③D .④5.如图,在△ABC 中,点D E 、分别在AB AC 、边上,DE ∥BC ,若:3:4AD AB,6AE,则AC 等于A. 3B. 4C . 6D. 86.当二次函数249y xx 取最小值时,x 的值为A .2B .1C .2D .9来源学|科|网ABC30°④③②①ABCODC BAO7.课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成30°角时,测得旗杆AB 在地面上的影长BC 为24米,那么旗杆AB 的高度约是A .12米B .83米C .24米D .243米[来源:]8.已知:如图,在半径为4的⊙O 中,AB 为直径,以弦AC (非直径)为对称轴将AC折叠后与AB 相交于点D ,如果3ADDB ,那么AC 的长为A .214B .27C .42D .6二、填空题(共4道小题,每小题4分,共16分)9.如果3cos 2A,那么锐角A 的度数为.10.如果一个圆锥的母线长为4,底面半径为1,那么这个圆锥的侧面积为.11.在1×2的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,如果第三枚棋子随机放在其它格点上,那么以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为.12.在平面直角坐标系xoy 中,直线2x 和抛物线2yax 在第一象限交于点A,过A 作ABx 轴于点B .如果a 取1,2,3,,,n 时对应的△AOB 的面积为123S S S ,,,,n S ,那么1S _____;123nS S S S _____.三、解答题(共6道小题,第13题4分,第14 -18题各5分,共29分)13.如图1,正方形ABCD 是一个 6 × 6网格的示意图,其中每个小正方形的边长为1,位于AD 中点处的点P 按图2的程序移动.(1)请在图中画出点P 经过的路径;(2)求点P 经过的路径总长.绕点A 顺时针旋转90°绕点B 顺时针旋转90°绕点C 顺时针旋转90°输入点P输出点ADPxOy[来源:.Com]14.计算:3tan302cos452sin 60.15.现有三个自愿献血者,两人血型为O 型,一人血型为A 型.若在三人中随意挑选一人献血,两年以后又从此三人中随意挑选一人献血,试求两次所献血的血型均为O 型的概率(要求:用列表或画树状图的方法解答).[来源:]16. 如图,从热气球C 处测得地面A 、B 两处的俯角分别为30°、45°,如果此时热气球C处的高度CD 为100米,点A 、D 、B 在同一直线上,求AB 两处的距离.17. 已知抛物线与x 轴相交于两点A(1,0),B(-3,0),与y 轴相交于点C (0,3).(1)求此抛物线的函数表达式;(2)如果点3,2Dm 是抛物线上的一点,求△ABD 的面积.18.如图,在△ABC 中,∠AB C =2∠C ,BD 平分∠ABC ,且2AD ,22BD ,求AB 的值.BCDADCBA四、解答题(共4道小题,每小题5分,共20分)19.如图,在平面直角坐标系xoy 中,⊙A 与y 轴相切于点3(0,)2B ,与x 轴相交于M 、N 两点.如果点M 的坐标为1(,0)2,求点N 的坐标.20.(1)已知二次函数223y xx ,请你化成2()y x h k的形式,并在直角坐标系中画出223y xx 的图象;(2)如果11()A x y ,,22()B x y ,是(1)中图象上的两点,且121x x ,请直接写出1y 、2y 的大小关系;(3)利用(1)中的图象表示出方程2210xx 的根来,要求保留画图痕迹,说明结果.21.已知:如图,在△ABC 中,AB =AC ,以AC 为直径的⊙O 与BC 交于点D ,DE ⊥AB ,垂足为E ,ED 的延长线与AC 的延长线交于点F .(1)求证:DE 是⊙O 的切线;(2)若⊙O 的半径为4,BE =2,求∠F 的度数.yxO AB MNyOxEOA22.阅读下面的材料:小明遇到一个问题:如图(1),在□ABCD 中,点E 是边BC 的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G. 如果3AF EF,求CD CG的值.他的做法是:过点E 作EH ∥AB 交BG 于点H ,则可以得到△BAF ∽△HEF .请你回答:(1)AB 和EH 的数量关系为,CG 和EH 的数量关系为,CD CG的值为.(2)如图(2),在原题的其他条件不变的情况下,如果(0)AF a a EF,那么CD CG的值为(用含a 的代数式表示).(3)请你参考小明的方法继续探究:如图(3),在四边形ABCD 中,DC ∥AB ,点E是BC 延长线上一点,AE 和BD 相交于点 F. 如果(00)AB BC m n mnCDBE,,,那么AF EF的值为(用含m ,n 的代数式表示).H(1)ABCDE FG G FE DCBA(2)(3)AB CDEF五、解答题(共3道小题,第23题7分,第24、25题各8分,共23分)23.由于2013年第30号强台风“海燕”的侵袭,致使多个城市受到影响. 如图所示,A 市位于台风中心M 北偏东15°的方向上,距离612千米,B 市位于台风中心M 正东方向603千米处. 台风中心以每小时30千米的速度沿MF 向北偏东60°的方向移动(假设台风在移动的过程中的风速保持不变),距离台风中心60千米的圆形区域内均会受到此次强烈台风的影响.(1)A 市、B 市是否会受到此次台风的影响?说明理由.(2)如果受到此次台风影响,该城市受到台风影响的持续时间为多少小时?备用图24.已知二次函数y = x 2–kx + k – 1(k >2).(1)求证:抛物线y = x 2–kx + k- 1(k >2)与x 轴必有两个交点;(2)抛物线与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,若tan 3OAC,求抛物线的表达式;(3)以(2)中的抛物线上一点P (m,n )为圆心,1为半径作圆,直接写出:当m 取何值时,x 轴与P 相离、相切、相交.25.已知:四边形ABCD 中,AD ∥BC ,AD=AB=CD ,∠BAD =120°,点E 是射线CD 上的一个动点(与C 、D 不重合),将△ADE 绕点A 顺时针旋转120°后,得到△ABE',连接EE'.(1)如图1,∠AEE'= °;(2)如图2,如果将直线AE 绕点A 顺时针旋转30°后交直线BC 于点F ,过点E 作EM∥AD 交直线AF 于点M ,写出线段DE 、BF 、ME 之间的数量关系;(3)如图3,在(2)的条件下,如果CE =2,AE=27,求ME 的长.xyO–1–21234–1–21234E'MFEDC BAE'EDCBA图1图2E'MFEDC BA图32014—2015学年第一学期初三年级期末质量抽测数学试卷参考答案及评分标准2014.12一、选择题(共8个小题,每小题4分,共32分)题号 1 2 3 4 5 6 7 8 答案 ACDBDABA二、填空题(共4个小题,每小题4分,共16分)题号9 10 1112答案304344 ,2n(n+1)(各2分)三、解答题(共6道小题,第13题4分,第14 -18题各5分,共29分)13.解:(1)如图所示:PAB CD,,,,,,,,,,,,,,,,,,,,2分(2)由题意得,点P 经过的路径总长为:270318091802n r .,,,,,,,,,,,4分14.解:原式=323322322,,,,,,,,,,,,,,,,,,,,,,3分=113,,,,,,,,,,,,,,,,,,,,,,4分=23.,,,,,,,,,,,,,,,,,,,,,,,,,,,,5分15.解:列表如下:O 1O 2 A O 1(O 1,O 1)(O 1,O 2)(O 1,A)O 2(O 2,O 1) (O 2,O 2) (O 2,A) A(A ,O 1)(A ,O 2) (A ,A),,,,,,,,,,,,,,,,,,,,,,,4分所以,两次所献血型均为O 型的概率为49.,,,,,,,,,,,,,,,,,,,,,,5分16.解:依题意,可知:30,45,,100,CABCBACD AB D CD 于点,,,,,,,,,,,,,,,1分,CD AB 90.CDACDB ,,,,,,,,,,,,,,,,,,,,,,,,,2分Rt 100BDC BDCD 在中,,,,,,,,,,,,,,,,,,,,,,,,3分Rt tan CDADC AAD在中,.∴31003AD CD .,,,,,,,,,,,,,,,,,,,,,,,,,4分1003100ABADBD.,,,,,,,,,,,,,,,,,,,,,,,5分∴AB 两处的距离为(1003100)米.17.解:(1)∵抛物线与y 轴相交于点C (0,3),∴设抛物线的解析式为23y axbx .,,,,,,,,,,,,,,,,,1分∵抛物线与x 轴相交于两点(1,0),(3,0)A B ,∴30,9330.a b a b ,,,,,,,,,,,,,,,,,,,,,,,,,,,2分解得:1,2.a b∴抛物线的函数表达式为:232yxx .,,,,,,,,,,,,,,,,3分(2)∵点3(,)2D m 是抛物线上一点,∴2(23339)224m . ,,,,,,,,,,,,,,,,,,,,,,4分∴119942242ABDDSAB y . ,,,,,,,,,,,,,,,,,,5分18.解:∵BD 平分∠ABC ,∴∠ABC =2∠1=2∠2.∵∠ABC =2∠C ,∴∠C =∠1=∠2.,,,,,,,,,,,1分∴22CD BD . ,,,,,,,,,,,,2分∴32AC.又∵∠A=∠A,∴△ABD ∽△ACB .,,,,,,,,,,,,,,,,,,,,,,,,,,,3分∴AD AB ABAC.,,,,,,,,,,,,,,,,,,,,,,,,,,,4分∴22326AB AD AC .∴6AB(舍负).,,,,,,,,,,,,,,,,,,,,,,,,,,5分四、解答题(共4道小题,每小题5分,共20分)19.解:连接AB 、AM ,过点A 作AC ⊥MN 于点C .∵⊙A 与y 轴相切于点B(0,32),∴AB ⊥y 轴.又∵AC ⊥MN ,x 轴⊥y 轴,∴四边形BOCA 为矩形.∴AC =OB=32,OC =BA .∵AC ⊥MN ,∴∠ACM=90°,MC=CN .,,,,,,,,,,,,,,,,,,,,2分∵M(12,0),∴OM =12.在Rt △AMC 中,设AM=r.O A B MNCyx21DCBA。

新北师大版2014-2015年九年级上学期期末考试数学试题

新北师大版2014-2015年九年级上学期期末考试数学试题

新北师大版2014-2015年九年级上学期期末考试数学试题( 时间:120分钟 分值:120分)测试范围:九年级上下册全部2015、1、1 一、选择题(24分)1、已知6,4,3,2====d c b a ,则下列各式中正确的是 ( ) A .d c b a = B .d c a b = C .b c d a = D .da b c = 2、已知线段a =9cm ,c =4cm ,b 是a , c 的比例中项,则b 等于 ( ) A . 6cm B . -6cm C .±6cm D .814cm 3、在半径为1的⊙O 中,120°的圆心角所对的弧长是 ( )A .3π B .23π C .πD .32π4则这组数据的中位数与众数分别是 ( ) A .26.5,27 B .27.5,28 C .28,27 D . 27,285、已知函数12)3(2++-=x x k y 的图象与x 轴有交点,则k 的取值范围是 ( ) A .4<k B .k ≤4 C .4<k 且3≠k D .4≤k 且3≠k6、在同一坐标系中,一次函数1+=ax y 与二次函数a x y +=2的图像可能是 ( )7、下列四个命题:①直径所对的圆周角是直角;②圆既是轴对称图形,又是中心对称图形;③在同圆中,相等的圆周角所对的弦相等;④三点确定一个圆;⑤两个等边三角形相似.其中正确命题的个数为 ( ) A .2B .3C .4D .5 8、如右图,点C、D 是以线段AB 为公共弦的两条圆弧的中点, AB =2,点E 、F 分别是线段CD ,AB 上的动点,设AF =x , AE 2-FE 2=y ,则能表示y 与x 的函数关系的图象是( )二、填空题(20分)9、已知2x -5y =0,则x :y = ;10、当k = 时,函数()112+-=+kkx k y 为二次函数;11、小刚的身高是1.6m ,他在阳光下的影长是1.2m ,在同一时刻测得某棵树的影长为3.6m ,则这棵树的高度约为 m ; 12、计算:tan 245°-1= ;13、已知某样本的方差是4,则这个样本的标准差是 ;14、已知弦AB 的长等于⊙O 的半径,弦AB 所对的圆周角是____ ___ 度;15、如图,是二次函数y=ax 2+bx+c 图象的一部分,其对称轴为直线x =1,若其与x 轴一交点为A (3,0),则由图象可知,不等式ax 2+bx+c >0的解集是 ;16、已知圆锥底面半径是2,母线长是4,则圆锥的侧面展开的扇形圆心角是 ; 17、如图,已知⊙P 的半径为1,圆心P 在抛物线2112y x =-上运动,当⊙P 与x 轴相切 时,圆心P 的坐标为 ;18、如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0)、(2,0)、(2,1)、(1,1)、(1,2)、(2,2)根据这个规律,第2014个点的坐标为 。

2014-2015学年九年级上学期阶段性测试数学试题

2014-2015学年九年级上学期阶段性测试数学试题

2014-2015学年度九年级上学期阶段性测试数学试题时间 120分钟 满分120分2015、1、2 一、 选择题(每题2分,共20分)1.下列图形中既是轴对称又是中心对称图形的是 ( ) A .三角形 B .平行四边形 C.圆 D.正五边形2.抛物线22(3)4y x =-+-的顶点坐标是 ( )A.(-3, -4)B.(-3, 4)C.(3, -4)D.(-4, 3) 3.平面直角坐标系内一点P(-2,3)关于原点对称点的坐标是 ( ) A.(3,-2) B .(2,3) C.(-2,-3) D.(2,-3)4.抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是 ( )A.23(1)2y x =-- B.23(1)2y x =+- C.23(1)2y x =++ D. 23(1)2y x =-+ 5.时钟的时针在不停的旋转,时针从上午的6时到9时,时针旋转的旋转角是 ( )A.30° B .60° C.90° D.120°6.二次函数c bx ax y ++=2的图象如图所示,若c b a M ++=24,c b a N+-=,b a P -=4,则)A.0>M ,0>N ,0>PB.0<M ,0>N ,0>PC.0>M ,0<N ,0>PD.0<M ,0>N ,0<P7.如图,⊙O 是△ABC 的内切圆,切点分别是D 、E 、F ,已知∠A=100°,∠C=30°,则∠DFE 的度数是 ( )A.55°B.60°C.65°D.70°8.在一个不透明的塑料袋中装有红色、白色球共40,除颜色外其它都相同,小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有 ( ) A.4个 B.6个 C.34个 D.36个 9.在半径等于4的圆中,垂直平分半径的弦长是 ( ) A. 34 B.33 C.32 D.3 10.⊙O 的半径是13,弦AB ∥CD, AB=24, CD=10,则AB 与CD 的距离是 ( ) A. 7 B . 17 C.7或17 D.34二、 填空题(每题4分,共20分)11.“明天会下雨”是 事件.12.已知方程2x 3x k 0-+=有两个相等的实数根,则k = .13.试写出一个开口方向向上,对称轴为直线x=2,且与y 轴的交点坐标为( 0,3 )的抛物线的解析式为 .14.在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成 一个圆锥模型,若圆的半径为r,扇形的半径为R ,扇形的圆心 角等于90°,则r 与R 之间的关系是 .15.要使正十二边形旋转后与自身重合,至少应将它绕中心旋转的度数为 .三、 解答题(每小题8分,共16分)16.解方程:03x 2x 2=-+.17.解方程:()-=222x 3x .四.解答题(每小题8分,共16分)18.如图:在平面直角坐标系中,网格中每一个小正方形的边长为一个单位长度,已知△ABC. ⑴.将△ABC 向x 轴正方向平移5个单位长度得△A 1B 1C 1.. 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A.AE=BE
B.
=
C. OE=DE
D.
∠DBC=90°
A
二、填空:(每小题 3 分,共 18 分) 9.方程 x 2 x 的根为
2

D
(﹣)﹣ x 1 3 的对称轴是 10.抛物线 y
2
.
B
E C
11.已知
ab a 3, 则 b b
.
12.如图,在△ABC 中,D 是 AB 的中点, DE∥BC.则 S ADE : S ABC 13.直径为 10cm 的⊙O 中,弦 AB=5cm,则弦 AB 所对的圆周角是 A. B. C. D. 2.如图是某个几何体的三视图,该几何体是( ) A. 正方体 B. 圆柱 C. 圆锥 D. 球 3.某药品经过两次降价,每瓶零售价由 168 元降为 128 元.已知两次降价的百分率相同,每 次降价的百分率为 x,根据题意列方程得( ) A 168(1+x)2=128 . B 168(1﹣x)2=128 . C 168(1﹣2x)=128 . D 168(1﹣x2)=128 . 14.为了求 1+2+22+23+…+2100 的值,可令 S=1+2+22+23+…+2100,则 2S=2+22+23+24+…+2101,因此 2S﹣S=2101﹣1,所以 S=2101﹣1,即
C.a+b+c=0 D.当 x<1 时,y 随 x 的增大而减小 8.如图,CD 是⊙O 的直径,弦 AB⊥CD 于 E,连接 BC、BD,下列结论中不一定正确的是( )
人教版 2014-2015 学年九年级上下学期测试 数学试卷
注:(1)全卷共三个大题,23 个小题,共 4 页;满分:100 分;考试时间:120 分钟。 (2)答题内容一定要做在答卷上,且不能超过密封线答题,否则视为无效。 一、选择:(每小题 3 分,共 24 分) 1. 在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )
6.如图,在 Rt△ABC 中,∠C=90°,BC=3,AC=4, 那么 cosA 的值等于( )
A.
3 4 3 4 B. C. D. 4 3 5 5
18. (4 分)在平面直角坐标系中,△ABC 的三个顶点坐标分 别为 A(﹣2,1) ,B(﹣4,5) ,
7.已知二次函数 y=ax2+bx+c(a≠0)的图象如图所示, 则下列结论中正确的是( ) A.a>0 B.3 是方程 ax2+bx+c=0 的一个根
C(﹣5,2) . (1)画出△ABC 关于 y 轴对称的△A1B1C1; (2)画出△ABC 关于原点 O 成中心对称的△A2B2C2. 19. (6 分)如图,△ABC 是一块锐角三角形余料,边 BC=120mm,高 AD=80mm,要把它加工成 长方形零件 PQMN,使长方形 PQMN 的边 QM 在 BC 上,其余两个项点 P,N 分别在 AB,AC 上.求 这个长方形零件 PQMN 面积 S 的最大值。
. .
1+2+22+23+…+2100=2101﹣1,仿照以上推理计算 1+3+32+33+…+32014 的值是 三、解答:(共 58 分) 15. (5 分)计算: ( 2 1) ( 1)
0 2015
1 ( ) 1 2sin 30 . 3
4.已知扇形的圆心角为 45°,半径长为 12,则该扇形的弧长为( ) A. B.2π C.3π D.12π 在同一坐标系数中的大致图象是( 16. (5 分)化简求值: •( ) ,其中 x= .
3 如图:直线 y=kx+3 与 x 轴、y 轴分别交于 A、B 两点,tan∠OAB=4,点
人教版 2014-2015 学年九年级上下学期测试
数学试卷答案 一、解答题:(每题 3 分,共 24 分) 1.A 2.B 3.B 4.C 5.A 二、填空题:(每题 3 分,共 18 分) 9. 0 或 2 10.x=1 11.2 12.1:4 6.D 7.B 8.C
A
(2)将第一次抽出的数字作为点的横坐标 x,第二次抽出的数字作为点的纵坐标 y,求点 (x,y)落在双曲线上 y= 上的概率.
22. (9 分)我市为改善农村生活条件,满足居民清洁能源的需求,计划为万宝村 400 户居民修 建 A、B 两种型号的沼气池共 24 个.政府出资 36 万元,其余资金从各户筹集.两种沼气池 的型号、修建费用、可供使用户数、占地面积如下表: 沼气池 修建费用(万元/个) 可供使用户数(户/个) 占地面积(平方米/个) 3 2 20 15 10 8
5.若 ab>0,则一次函数 y=ax+b 与反比例函数 y= )
D
17.(8 分)已知:如图,AB 是⊙O 的直径,AB=6,延长 AB 到点 C,使 BC=AB,D 是⊙O 上一点,DC= 6 2 . 求证:(1)△CDB∽△CAD;(2)CD 是⊙O 的切线. A. B. C. D.
A
C O B
23.
(9 分) C(x,y)是直线 y=kx+3 上与 A、B 不重合的动点. (1)求直线 y=kx+3 的解析式; (2)当点 C 运动到什么位置时△AOC 的面积是 6; (3)过点 C 的另一直线 CD 与 y 轴相交于 D 点, 是否存在点 C 使△BCD 与△AOB 全等?若存在,请 求出点 C 的坐标;若不存在,请说明理由. 21. (6 分)有三张正面分别标有数字:﹣1,1,2 的卡片,它们除数字不同外其余全部相同, 现将它们背面朝上,洗匀后从中抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数 字. (1)请用列表或画树形图的方法(只选其中一种) ,表示两次抽出卡片上的数字的所有结果;
P
E
N
A型 B型
C
B
Q
D
M
政府土地部门只批给该村沼气池用地 212 平方米,设修建 A 型沼气池 x 个,修建两种沼气池 共需费用 y 万元. (1)求 y 与 x 之间函数关系式. (2)试问有哪几种满足上述要求的修建方案. (3)要想完成这项工程,每户居民平均至少应筹集多少钱?
20. (6 分)如图,我国的一艘海监船在钓鱼岛 A 附近沿正东方向航行,船在 B 点时测得钓 鱼岛 A 在船的北偏东 60°方向,船以 50 海里/时的速度继续航行 2 小时后到达 C 点,此时钓 鱼岛 A 在船的北偏 30°方向.请问船继续航行多少海里与钓鱼岛 A 的距离最近?
相关文档
最新文档