函数复习(复合函数、解析式求法)
考点02 求函数解析式的3种方法(解析版)

专题二 函数考点2 求函数解析式的3种方法【方法点拨】求函数解析式的常用方法1. 待定系数法:已知函数的类型,利用所给条件,列出方程或方程组,用待定系数法确定系数.2. 配凑法或换元法:已知复合函数f[g(x)]=F(x)的解析式,把F(x)配凑成关于g(x)的表达式,再用x 代替g(x),称为配凑法;或者,直接令g(x)=t ,解方程把x 表示成关于t 的函数,再代回,称为换元法,此时要注意新元t 的取值范围.3解方程组法(或赋值法):已知关于f(x)与f(1/x)或f(-x)的表达式,可通过对自变量的不同赋值构造出不同的等式通过解方程组求出f(x).【高考模拟】1.已知()f x 是偶函数,且当0x >时,2()f x x x =-,则当0x <时,()f x 的解析式为( ) A .2()f x x x =-B .2()f x x x =--C .2()f x x x =+D .2()f x x x =-+【答案】C【分析】利用()f x 是偶函数,()()f x f x -=,当0x <,()2f x x x -=+,即可求得答案 【解析】设0x <,则0x ->,当0x >时,()2f x x x =- ()2f x x x ∴-=+,()f x 是偶函数,则()()f x f x -=()2f x x x ∴=+ ()0x <故选C【点睛】本题主要考查了利用函数的奇偶性求函数的解析式,掌握解题方法,较为简单.2.已知幂函数()f x 的图象经过点()327,,则()f x 的解析式()f x =( ).A .3xB .3xC .9xD .3log x【答案】A【分析】 设幂函数解析式为()f x x α= ,将点()327,代入即可求解. 【解析】设幂函数为()f x x α= 函数经过点(3,27),273α∴= 解得3α=故()f x 的解析式()3f x x = 故选A【点睛】本题考查幂函数解析式的确定,是基础题;解题时需要认真审题,准确代入数值.3.若函数2()1x a f x x bx +=++在[]1,1-上是奇函数,则()f x 的解析式为( ). A .2()1x f x x =-+ B .2()1x f x x =+ C .21()1x f x x +=+ D .2()1x f x x x =++ 【答案】B【解析】【分析】由奇函数得()()f x f x -=-,代入后求出解析式【解析】函数()21x a f x x bx +=++在[]1,1-上是奇函数 ()()f x f x ∴-=-,即()()00f f -=-,()00f =,001a a ==, 即()21x f x x bx =++()()11f f -=-,1122b b -=--+ 解得0b =则()21x f x x =+ 故选B【点睛】 本题考查了函数奇偶性的运用,当奇函数定义域取到零时有()00f =,然后再赋值法求出解析式,较为基础。
函数解析式求法总结及练习题

2[()]()()f f x af x b a ax b b a x ab b=+=++=++函 数 解 析 式 的 七 种 求 法一、 待定系数法:在已知函数解析式的构造时,可用待定系数法.它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目。
其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。
例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f . 解:设b ax x f +=)()0(≠a ,则 ∴⎩⎨⎧=+=342b ab a , ∴⎩⎨⎧⎩⎨⎧=-===3212b a b a 或 . 32)(12)(+-=+=∴x x f x x f 或 .二、配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法.但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域.例2 已知221)1(xx x x f +=+ )0(>x ,求 ()f x 的解析式. 解:2)1()1(2-+=+x x x x f , 21≥+x x , 2)(2-=∴x x f )2(≥x . 三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式.用来处理不知道所求函数的类型,且函数的变量易于用另一个变量表示的问题。
它主要适用于已知复合函数的解析式,但使用换元法时要注意新元定义域的变化,最后结果要注明所求函数的定义域。
例3 已知x x x f 2)1(+=+,求)1(+x f . 解:令1+=x t ,则1≥t ,2)1(-=t x .x x x f 2)1(+=+, ∴,1)1(2)1()(22-=-+-=t t t t f1)(2-=∴x x f )1(≥x , x x x x f 21)1()1(22+=-+=+∴ )0(≥x .四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法.例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式.解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点)3,2(-的对称点.则 ⎪⎩⎪⎨⎧=+'-=+'3222y y x x ,解得:⎩⎨⎧-='--='y y x x 64 , 点),(y x M '''在)(x g y =上 , x x y '+'='∴2. 把⎩⎨⎧-='--='yy x x 64代入得:)4()4(62--+--=-x x y . 整理得672---=x x y , ∴67)(2---=x x x g .五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式.例5 设,)1(2)()(x xf x f x f =-满足求)(x f . 解 x x f x f =-)1(2)( ① 显然,0≠x 将x 换成x 1,得:xx f x f 1)(2)1(=- ② 解① ②联立的方程组,得:xx x f 323)(--=. 例6 设)(x f 为偶函数,)(x g 为奇函数,又,11)()(-=+x x g x f 试求)()(x g x f 和的解析式 解 )()(),()(x g x g x f x f -=-=-∴,又11)()(-=+x x g x f ① ,用x -替换x 得:11)()(+-=-+-x x g x f ,即11)()(+-=-x x g x f ② ,解① ②联立的方程组,得11)(2-=x x f ,x x x g -=21)( 小结:消元法适用于自变量的对称规律。
复合函数解析式的求法

复合函数解析式的求法摘要:一、复合函数解析式的概念二、求解复合函数解析式的基本方法1.代换法2.反函数法3.隐函数法4.参数方程法三、求解复合函数解析式的应用1.实际问题中的应用2.数学理论中的应用四、结论正文:复合函数解析式是数学中一个重要的概念,它涉及到函数的复合问题。
求解复合函数解析式是解决复合函数问题的关键。
本文将详细介绍求解复合函数解析式的基本方法及其应用。
首先,我们需要了解什么是复合函数解析式。
复合函数解析式是指,给定两个函数f(x) 和g(x),求解一个新函数h(x),使得h(x) = f(g(x))。
这里,f(x) 和g(x) 被称为内函数,h(x) 被称为外函数。
求解复合函数解析式的基本方法有以下几种:1.代换法:这是求解复合函数解析式最基本的方法。
首先,我们根据内函数g(x) 的解析式求出它的值域,然后用这个值域去替换外函数h(x) 中的自变量x,从而得到h(x) 的解析式。
2.反函数法:如果内函数g(x) 和外函数h(x) 互为反函数,那么我们可以直接利用反函数的性质,求出h(x) 的解析式。
3.隐函数法:如果内函数g(x) 和外函数h(x) 之间存在隐函数关系,那么我们可以通过求解这个隐函数关系,得到h(x) 的解析式。
4.参数方程法:如果内函数g(x) 和外函数h(x) 之间存在参数方程关系,那么我们可以通过求解这个参数方程,得到h(x) 的解析式。
在实际问题中,求解复合函数解析式可以帮助我们更好地理解复杂问题的内在关系,从而更好地解决问题。
在数学理论中,求解复合函数解析式也是解决许多数学问题的关键。
总的来说,求解复合函数解析式是数学中的一个重要问题,它涉及到函数的复合、反函数、隐函数等许多重要的数学概念。
复合函数解析式的求法

复合函数解析式的求法摘要:一、复合函数解析式的求法简介1.定义与概念2.求解方法二、代换法求解复合函数解析式1.代换法的原理2.具体求解步骤3.示例三、待定系数法求解复合函数解析式1.待定系数法的原理2.具体求解步骤3.示例四、常见问题与注意事项1.问题解析2.注意事项正文:复合函数解析式的求法是数学中的一个重要内容。
复合函数是指由多个函数嵌套而成的函数,解析式则是指将复合函数用公式表示出来的过程。
求解复合函数解析式的方法有多种,常见的有代换法和待定系数法。
代换法是求解复合函数解析式的一种基本方法。
其原理是根据已知函数的性质,通过变量替换将复合函数中的内部函数求解出来,再代入外部函数中求解解析式。
具体求解步骤包括:确定变量替换关系,求解内部函数,代入外部函数求解解析式。
例如,已知函数f(x)=2x+1,g(x)=x^2-2x+3,求解复合函数f(g(x))的解析式。
我们可以先令u=g(x),即u=x^2-2x+3,然后将u代入f(u)中,得到f(g(x))=f(u)=2u+1=2(x^2-2x+3)+1=2x^2-4x+7。
待定系数法是另一种求解复合函数解析式的方法。
其原理是假设复合函数解析式为F(x)=a0+a1x+a2x^2+...+anx^n,然后通过已知条件求解待定系数,确定解析式。
具体求解步骤包括:确定解析式的一般形式,列方程求解待定系数。
例如,已知函数f(x)=x^2+2x+1,g(x)=2x-1,求解复合函数f(g(x))的解析式。
我们可以假设f(g(x))=ax^3+bx^2+cx+d,然后通过代入已知函数求解待定系数,得到解析式为f(g(x))=x^3+x^2+x-1。
在求解复合函数解析式时,需要注意一些常见问题。
例如,在代换法中,替换关系可能不唯一,需要根据题目条件选择合适的替换关系;在待定系数法中,需要根据题目条件选择合适的一般形式。
同时,求解过程中需要灵活运用代数运算和函数性质,以简化求解过程。
复合函数解析式的求法

复合函数解析式的求法摘要:一、复合函数解析式的概念1.复合函数的定义2.复合函数解析式的求解意义二、求解复合函数解析式的方法1.代换法2.消元法3.因式分解法4.三角函数法三、实际应用案例1.案例一2.案例二3.案例三正文:复合函数解析式的求法是数学中的一个重要知识点,理解并掌握这个知识点对于解决更复杂的数学问题有着至关重要的作用。
复合函数解析式,简单来说,就是将一个函数的输出作为另一个函数的输入。
例如,设f(x) 和g(x) 是两个函数,若g(x) 的输出是f(x) 的输入,则我们可以说f(x) 和g(x) 构成一个复合函数。
求解复合函数解析式,就是要求出这个复合函数的具体表达式。
在实际求解过程中,我们可以采用以下几种方法:1.代换法:假设已知函数f(x) 和g(x) 的解析式,我们可以通过代换法求解复合函数的解析式。
具体步骤是,先将g(x) 的解析式代入f(x) 中,然后解出新的解析式。
2.消元法:当复合函数的解析式中含有难以直接解出的变量时,我们可以采用消元法。
具体步骤是,将含有难以解出变量的项消去,从而简化解析式。
3.因式分解法:当复合函数的解析式中含有可以因式分解的项时,我们可以采用因式分解法。
具体步骤是,将可以因式分解的项分解出来,然后将其余部分合并,得到新的解析式。
4.三角函数法:当复合函数的解析式中含有三角函数时,我们可以采用三角函数法。
具体步骤是,利用三角函数的性质和公式,将三角函数相关的项化简,从而得到新的解析式。
在实际应用中,我们可以通过这些方法求解各种复杂的复合函数解析式。
例如,在求解某种物理现象的数学模型时,我们可能需要求解一个包含多个函数的复合函数解析式。
这时,我们可以根据具体情况选择合适的方法,从而得到解析式,进一步帮助我们理解并分析该物理现象。
复合函数求解析式解题技巧

复合函数求解析式解题技巧求解复合函数的解析式是高中数学中的一种重要技巧,也是解决相关问题的常用方法之一。
对于给定的两个函数,可以通过复合运算得到一个新的函数,它是两个函数的组合,即将一个函数的输出作为另一个函数的输入。
本文将介绍复合函数求解析式的一般方法和一些常用的技巧。
一、复合函数的定义和表示复合函数是指由两个已知的函数f(x)和g(x)组成的一个新函数h(x),它的定义如下:h(x) = f(g(x))其中,f(x)表示函数f关于自变量x的解析式,g(x)表示函数g关于自变量x的解析式,h(x)表示函数h关于自变量x的解析式。
二、复合函数求解析式的一般方法要求解复合函数的解析式,可以按照以下步骤进行。
1. 将复合函数的解析式表示出来,即h(x) = f(g(x))。
2. 将复合函数的自变量替换成中间变量,即设y = g(x)。
3. 将中间变量y代入函数f的解析式,得到h(x) = f(y)。
4. 将中间变量y的解析式替换成g(x)的解析式,得到h(x) = f(g(x))。
需要注意的是,求解复合函数的解析式时,需要注意两个函数之间的定义域和值域是否相容。
即函数g的值域必须是函数f的定义域的子集,否则无法进行复合运算。
三、常用的复合函数求解析式的技巧在实际的题目中,常常需要利用复合函数求解析式解决问题。
以下是一些常用的技巧和方法。
1. 复合函数的相反运算有时候需要求解复合函数的相反运算,即已知h(x),要求g(x)。
可以通过以下步骤进行求解。
将复合函数的解析式表示出来,即h(x) = f(g(x))。
将复合函数的自变量和因变量互换位置,得到g(x) = f ⁻¹(h(x)),其中f⁻¹表示函数f的反函数。
需要注意的是,函数f必须是可逆的,即函数f必须是单调且一一对应的。
2. 复合函数的化简运算有时候需要求解复合函数的结果,可以通过化简运算来简化问题。
例如,已知f(x) = 2x + 3和g(x) = x²,求h(x) = f(g(x))的解析式。
求函数解析式题型方法总结

求函数解析式题型方法总结一、换元法已知复合函数f [g (x )]的解析式,求原函数f (x )的解析式, 把g (x )看成一个整体t ,进行换元,从而求出f (x )的方法。
例1 已知f (xx 1+)= x x x 1122++,求f (x )的解析式. 解: 设x x 1+= t ,则 x= 11-t (t ≠1), ∴f (t )= 111)11(1)11(22-+-+-t t t = 1+2)1(-t +(t -1)= t 2-t+1 故 f (x )=x 2-x+1 (x ≠1).评注: 实施换元后,应注意新变量的取值范围,即为函数的定义域.二、配凑法例2 已知f (x +1)= x+2x ,求f (x )的解析式.解: f (x +1)= 2)(x +2x +1-1=2)1(+x -1,∴ f (x +1)= 2)1(+x -1 (x +1≥1),将x +1视为自变量x ,则有f (x )= x 2-1 (x ≥1).评注: 使用配凑法时,一定要注意函数的定义域的变化,否则容易出错.三、待定系数法已知函数解析式的类型,可设其解析式的形式,根据已知条件建立关于待定系数的方程,从而求出函数解析式的方法。
例3 已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式.解:设二次函数f (x )= ax 2+bx+c ,则 f (0)= c= 0 ①f (x+1)= a 2)1(+x +b (x+1)= ax 2+(2a+b )x+a+b ②由f (x+1)= f (x )+2x+8 与①、② 得 ⎩⎨⎧=++=+822b a b b a 解得 ⎩⎨⎧==.7,1b a 故f (x )= x 2+7x. 评注: 已知函数类型,常用待定系数法求函数解析式.四、消去法(方程组法)例4 设函数f (x )满足f (x )+2 f (x 1)= x (x ≠0),求f (x )函数解析式. 分析:欲求f (x ),必须消去已知中的f (x 1),若用x 1去代替已知中x ,便可得到另一个方程,联立方程组求解即可.解:∵ f (x )+2 f (x1)= x (x ≠0) ① 由x 1代入得 2f (x )+f (x 1)=x1(x ≠0) ② 解 ①② 构成的方程组,得 f (x )=x 32-3x (x ≠0). 评注:方程组法求解析式的关键是根据已知方程中式子的特点,构造另一个方程 练习:已知定义在R 上的函数满足,求的解析式。
高一数学备考专题:解析式及复合函数求法

2021年高一数学备考专题:函数解析式及复合函数定义域求法函数解析式的一般求法:直接法、配凑法、换元法、待定系数法、解方程组法、赋值法。
一、直接法:范例展示一:f(x)3x1,g(x)x21,x0,求gf(x)的解析式。
2x,x0二、配凑法:〔策略:里面有什么外面就凑什么〕范例展示二:f(x 1x0),求f(x)的解析式。
)x2x解:f(x1)(x1)22,x12x x试一试1:f(x)x22,求f(x)的解析。
三、换元法:范例展示三:f(x 1)x2x,求f(x1 )解:令tx1,那么t1,x(t1)2试一试2:①假设函数f(x)满足f(x)2x21,求f(x)的解析。
②f(x1)x,试求f(x)的解析式。
xx 2四、待定系数法:〔知道函数类型〕范例展示四:设f(x)是一次函数,且f[f(x)]4x3,求f(x)解:设f(x)axb(a0),那么f[f(x)]af(x)ba(axb)ba2xabb试一试3:f(x)为二次函数,且f(x)2x,求fx的解析式。
五、解方程组法〔消参法〕范例展示五:设f(x)满足f(x)1),2f(x求f(x)解f(x)2f(1)x①,显然x0,将x换成1,得:f(1)2f(x)1②x x x x解①②联立的方程组,得:f(x)23x试一试4:①3f x f1x2,求f(x)的解析式;x②f(x)2f(1)3x24x5,试求f(x);3x24x5,试求f(x)。
③f(x)2f ()六、赋值法:范例展示六:f(0) 1,对于任意实数 x、y,等式f(x y) f(x) y(2x y 1)恒成立,求f(x)。
解对于任意实数x、y,等式f(xy)f(x)y(2x y1)恒成立,不妨令x0,那么有f(y)f(0)y(y)1y(y1)y2y1再令y x得函数解析式为:f(x)x2x1试一试5:设f(x)是定义在N上的函数,满足f(1),对任意的自然数a,b 都有f(a)f(b)f(ab)ab,求f(x)效果跟踪:求以下函数的解析式〔1〕f(x)是二次函数,假设f(0)0,f(x)f(x)1,求f(x);〔2〕f(x1)x2x,求f(x);3〕假设f(x)满足(4〕假设fx满足5〕一次函数复合函数的定义:1ax,求f(x);f(x)2f()x,求f(x);满足,求的解析式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。