巴特沃斯二阶低通滤波器上课讲义

合集下载

二阶低通滤波器

二阶低通滤波器

二阶低通滤波器概述二阶低通滤波器是一种常见的信号处理工具,用于消除高频噪声和保留低频成分。

它具有简单的结构和良好的性能,被广泛应用于音频处理、图像处理、通信系统等领域。

本文将介绍二阶低通滤波器的原理、设计方法以及实现步骤,并给出一个实际的例子。

原理二阶低通滤波器通过对输入信号进行滤波操作,将输入信号中的高频成分去除,只保留低频成分。

它的原理基于二阶巴特沃斯滤波器(Butterworth Filter),巴特沃斯滤波器是一种模拟滤波器,具有平坦的通带响应和陡峭的阻带响应。

以模拟二阶低通巴特沃斯滤波器为例,其传输函数为:H(s) = 1 / (s^2 + s/Q + 1)其中,s为复平面上的变量,Q为品质因数,决定了滤波器的带宽和衰减率。

当输入信号经过滤波器后,输出信号可由输入信号经传输函数求得。

为了实现离散的二阶低通滤波器,可以使用数字滤波器设计方法,例如双线性变换或者频率抽样法。

通过将连续时间传输函数进行离散化,可以得到离散二阶滤波器的差分方程。

设计方法设计二阶低通滤波器的方法主要有以下几种:1. 理想低通滤波器法理想低通滤波器法通过将输入信号在一定截止频率处进行截断,得到一个临界低频截断点。

然后使用 Fourier 变换将其转换成频域,通过将较高频率处的频谱截断,得到一个频率响应变为零的低通滤波器。

2. 巴特沃斯低通滤波器法巴特沃斯低通滤波器法是基于巴特沃斯滤波器的原理进行设计。

通过选择合适的参数,可以得到具有平坦通带响应和陡峭阻带响应的二阶低通滤波器。

巴特沃斯低通滤波器具有最大的平坦度和最小的群延迟。

3. 非线性规划法非线性规划法是一种优化方法,通过最小化滤波器的误差函数,得到最优的滤波器。

这种方法可以根据自己的需求进行自定义滤波器的设计。

实现步骤下面是一种基于巴特沃斯低通滤波器的二阶低通滤波器的实现步骤:1.确定滤波器的截止频率和品质因数。

截止频率决定了滤波器的截止频率,品质因数决定了滤波器的带宽和衰减率。

二阶巴特沃斯滤波器的分析与实现电路

二阶巴特沃斯滤波器的分析与实现电路

二阶巴特沃斯滤波器的分析与实现电路首先,我们需要了解二阶巴特沃斯滤波器的传输函数。

传输函数描述了输入信号与输出信号之间的关系。

二阶巴特沃斯滤波器的传输函数可以写成如下的形式:H(s)=K/(s^2+(ω0/Q)s+ω0^2)其中,s是复频率变量,ω0是滤波器的中心频率,Q是滤波器的品质因数,K是增益系数。

为了实现二阶巴特沃斯滤波器,我们可以使用运算放大器和电容、电阻组成的电路。

具体电路如下所示:其中,R1、R2、C1、C2为电阻和电容元件,OPAMP为运算放大器。

根据传输函数的形式,我们可以将电路分解为三个部分:1.第一个部分是一个非反馈的增益电路,由R1和C1组成。

它起到了对输入信号进行增益的作用,增益大小与R1和C1的取值有关。

2.第二个部分是一个双端口的带通滤波器,由R2、C2和OPAMP组成。

它的作用是滤除输入信号中低频和高频成分,只保留中心频率附近的成分。

中心频率由R2和C2的取值决定。

3.第三个部分是一个反馈网络,由R2和C2组成。

它起到了对输出信号进行反馈的作用,使得滤波器的传输函数满足巴特沃斯滤波器的形式。

根据传输函数的形式,我们可以得到R1、R2、C1、C2的取值公式如下:R1=Q/(K*ω0*C1)R2=1/(K*ω0^2*C2)C1=1/(Q*ω0*R1)C2=1/(K*ω0^2*R2)其中,K可以根据实际需求进行调整,选取适当的增益值。

Q和ω0由滤波器的需求决定,分别代表品质因数和中心频率。

总结起来,二阶巴特沃斯滤波器的分析与实现包括以下几个步骤:1.确定滤波器的中心频率和品质因数,根据传输函数的形式计算出R1、R2、C1、C2的取值。

2.选取合适的电阻和电容元件,连接电路。

3.根据实际需求选择适当的增益值K。

4.搭建电路,并进行测试和调试,确保滤波器的性能符合要求。

imu二阶低通滤波

imu二阶低通滤波

imu二阶低通滤波
IMU(惯性测量单元)的二阶低通滤波是一种用于平滑原始传感器数据的方法,以减少高频噪声和震荡。

低通滤波器允许通过低频信号,并阻止高频信号的传递。

二阶低通滤波器通常由一个二阶巴特沃斯滤波器组成,其传递函数为:
H(s)=1/((s/w_c)^2+(2ξs/w_c)+1)
其中,
-s是复变量,
-w_c是截止频率,
-ξ是阻尼比。

这个滤波器有助于去除高频噪声,保留低频信号,以提高传感器测量的精度和稳定性。

截止频率w_c决定了滤波器开始起作用的频率,而阻尼比ξ决定了滤波器的响应速度。

在IMU中,二阶低通滤波通常应用于陀螺仪和加速度计的原始测量数据。

通过调整滤波器的参数,可以平衡去除噪声和保留信号动态的需求。

这有助于提高IMU在动态环境下的稳定性和精确性。

巴特沃斯低通滤波器课程设计

巴特沃斯低通滤波器课程设计

电路基础课程设计巴特沃斯低通滤波器设计目标:通带边界频率ωc=4396rad/s (f c=700Hz);通带最大衰减αmax=3dB;阻带边界频率ωs=26376rad/s(f s=4200Hz); 阻带最小衰减αmin=30dB;1.设计步骤⑴设计电压转移函数①将给定的电压衰减技术指标进行频率归一化选取归一化角频率ωr=ωc,这样通带边界频率Ωc=ωc/ ωr=1,阻带边界频率Ωs=ωs/ ωr=ωs/ωc。

②根据归一化的技术指标求出电压转移函数巴特沃斯低通滤波器的阶数n=Log(100.1αmin−1) 2Log(Ωs)带入数据求得n=1.93 取整得n=2由a k=2sin(2k−1)π2n,b k=1和H(s)=U out(s)U in(s)=∏A ks2+a k s+b kn2k=1可得到电压转移函数H(s)=U out(s)U in(s)=1s2+√2s+1将转移函数进行反归一化,即另s=sωc 得到实际转移函数H(s)=U out(s)U in(s)=1s243962+√2s4396+1⑵转移函数的实现选取下图作为实现转移函数的具体电路:列节点方程求解转移函数节点1 U1(1R1+1R2+s∗C1)−1R1U in−1R2−s∗C1∗U2=0节点2 (1R2+s∗C2)U2−1R2U1=0又有U out=U3解得H(s)=U outU in=11+(R2+R2)s∗C2+C1C2R1R2s2对比解得的电压转移函数和推得的电压转移函数里各项的系数并且令R1= R2,C1=1μF,可以得到C1=11000000F=1μFR1=250000√21099Ω=321.705ΩR2=250000√21099Ω==321.705ΩC2=12000000F=0.5μF因实验室没有0.5μF的电容因此取C2=0.47μF2.计算机仿真⑴软件环境:Multisim 10⑵电路图:⑶仿真结果:①700Hz下的波形图②4200Hz下的波形图③波特图◎700Hz下衰减2.673dB◎4200Hz下衰减30.491dB3.实验室实际操作因实验室没有0.5μF的电容和321.705Ω的电阻,因此取C2=0.47μFR1=R2=330Ω实际连电路时,选取集成电路块的第1、2、3引脚分别作为放大器的输出端、负端和正端,第4和11引脚作为供电端,C2一端连接电压源的接地线。

巴特沃斯低通滤波器

巴特沃斯低通滤波器
0.1a p 0.1a s s sp
带最小衰减α =30dB,按照以上技术指标设计巴特沃斯低通滤波器。 0.1a s
1a p
1a s
2.4
0242 4.25, 2.4
2.4 10 1 2 f lg 0.0242 lg 0.0242 NN 2 4.25, 55 lgf 2.4 4.25, N N s sp lg 2.4 2.4 2 f p
H( a s)
N c
(s s
k 0
N 1
k
)
7 j 3
• 例如N=3, 通过下式可以计算出6个极点 5 2 4 j j j j s 3 c 3 s 2 c 3 s 0 c 3 s1 c
s 4 c
j2
s 5 c
要求
f i g u r e ; p l o t ( Q , H a s ) ; a x i s ( [ 0 5]);xlabel('f(kHz)'),ylabel('20lg(abs(H_{a}(j{\Omega})))(dB)');
3 0
- 7 0
• • • • •
L=length(Ha); Yt=Xt(1:L).*Ha; figure;plot(Q,abs(Yt));axis([0 60 0 150]); yt=ifft(Yt); figure;plot(Q,yt);
• 模拟低通滤波器的设计指标 • 构造一个逼近设计指标的传输函数Ha(s) • Butterworth(巴特沃斯)低通逼近
模拟低通滤波器的设计指标及逼近方法(续)
• 模拟低通滤波器的设计指标有αp, Ωp,αs和Ωs。 • Ωp;通带截止频率 • Ωs:阻带截止频率

脉冲响应不变法设计巴特沃斯低通滤波器课程设计

脉冲响应不变法设计巴特沃斯低通滤波器课程设计

脉冲响应不变法设计巴特沃斯低通滤波器课程设计关键字:巴特沃斯低通滤波器脉冲响应不变法第二章引言滤波器设计在电子工程、应用数学和计算机科学领域都是非常重要的内,。

而低通滤波器在信号处理中的作用等同于其它领域如金融领域中移动平均数(movingaverage)所起的作用,低通滤波器有很多种,其中,最通用的就是巴特沃斯滤波器和切比雪夫滤波器。

巴特沃斯滤波器的特点是通频带内的频率响应曲线最大限度平坦,没有起伏,而在阻频带则逐渐下降为零。

在振幅的对数对角频率的波得图上,从某一边界角频率开始,振幅随着角频率的增加而逐步减少,趋向负无穷大。

巴特沃斯滤波器的振幅对角频率单调下降,并且也是唯一的无论阶数,振幅对角频率曲线都保持同样的形状的滤波器。

只不过滤波器阶数越高,在阻频带振幅衰减速度越快。

其他滤波器高阶的振幅对角频率图和地结束的振幅对角频率有不同的形状。

第三章基本原理3.1滤波器的基本理论3.1.1滤波器的分类滤波器分两大类:经典滤波器和现代滤波器。

经典滤波器是假定输入信号中的有用成分和希望取出的成分各自占有不同的频带。

这样,当通过一个线性系统(即滤波器)后可讲欲去除的成分有效的去除。

现代滤波器理论研究的主要内容是从含有噪声的数据记录(又称时间序列)中估计出信号的某些特征或信号本身。

经典滤波器分为低通、高通、带通、带阻滤波器。

每一种又有模拟滤波器(AF)和数字滤波器(DF)。

对数字滤波器,又有IIR滤波器和FIR滤波器。

IIRDF的转移函数是:FIRDF的转移函数是:FIR滤波器可以对给定的频率特性直接进行设计,而IIR滤波器目前最通用的方法是利用已经很成熟的模拟滤波器的设计方法进行设计。

3.1.2滤波器的技术要求低通滤波器::通带截止频率:阻带下限截止频率:通带允许的最大衰减:阻带允许的最小衰减(,的单位dB):通带上限角频率:阻带下限角频率(,)即3.2模拟滤波器的设计3.2.1巴特沃思(Butterworth)滤波器的介绍:因为我们设计的滤波器的冲击响应一般都为实数,所以有这样,如果我们能由,,,求出,那么就容易得到所需要的。

巴特沃斯数字低通滤波器要点说明

巴特沃斯数字低通滤波器要点说明

目录1. 题目 ..................................................................... ........................................ .2 2. 要求 ..................................................................... .......................................... 2 3.设 理................................. 2 计 原3.1 数 字 滤波器 基本概念................23.2 数字滤波器 工作原理 ................23.3巴特 沃斯滤波器设计原理 ........23.4 法 .............脉冲响应不 (4)3.5 实验 所用MATLAB 函 数 说明 (5)............4. 设计思路............ (6)5 、实验内容............ (6)5.1 实验程序 ....... (6)5.2 实验结果分析...... (10)6. 心得体会............ (10)7. 参考文献............ (10)一、题目:巴特沃斯数字低通滤波器二、要求:利用脉冲响应不变法设计巴特沃斯数字低通滤波器,通带截止频率100HZ,采样频率1000HZ,通带最大衰减为0.5HZ,阻带最小衰减为10HZ,画出幅频、相频相应相应曲线。

并假设一个信号x(t)=sin(2*pi*f1*t)+sin(2*pi*f2*t), 其中f1=50HZ,f2=200HZ。

用此信号验证滤波器设计的正确性。

三、设计原理1、数字滤波器的基本概念所谓数字滤波器,是指输入、输出均为数字信号,通过数值运算处理改变输入信号所含频率成分的相对比例,或者滤波器除某些频率成分的数字器件或程序,因此,数字滤波的概念和模拟滤波相同,只是的形式和实现滤波方法不同。

二阶巴特沃斯低通滤波器设计

二阶巴特沃斯低通滤波器设计

滤波器设计原则:截止频率低、动态响应快、延时尽可能小。

二阶巴特沃斯低通滤波器。

特点:阶数低,数据量小。

参数选择合理的情况下,可做到平滑滤波,无超调。

传递函数:(截止频率为20Hz)
H(s)=1
6.33×10−5s2 +0.01378s+1
经双线性变换:
s=2
T
1−z−1 1+z−1
离散化:
y(n)=a0y(n−1)+a1 y(n−2)+b0x(n)+b1x(n−1)+b0x(n−2)当截止频率为20Hz时,参数a0=−29366,a1 =13304,b0=161,b1=321。

(Q15格式)截至频率的选择原则:f c取小,检测精度高,但响应速度慢;f c取大,动态响应过程变快,但波形出现明显失真,影响检测精度。

所以需要在两者之间折中。

阶数的选择:相同截止频率的情况下,阶数越高,检测精度越好,但会影响动态响应速度。

而且阶数越高,计算越复杂。

一般选择2阶足够。

实验结果:
图1 给定指令频率20Hz,滤波器截止频率30Hz
图2 给定指令频率20Hz,滤波器截止频率50Hz
图3给定指令频率80Hz,滤波器截止频率10Hz
图4 给定指令频率10Hz,滤波器截止频率20 Hz。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数为式⑸所示。

3 5 4 964
S 2 2 6 6ls 3 5 4 964
采用的低通滤波电路如图2所示,滤波增益为1,此电路传递函数如式(6)所示, 只需将巴特沃斯滤波器的传递函数与此传递函数的系数一一对应即可以整定出 滤波电路的参数。

MEMS 陀螺的带宽为30HZ ,从采样频率100HZ 的数据序列中消除掉30HZ 以上的噪声。

巴特沃斯函数只是在 co =0处精确地逼近理想低通特性,在通带内 随着o 增加,误差愈来愈大,在通带边界上误差最大,逼近特性并不很好,但 是陀螺仪的有用输出信号本就在低频段, 对通带边界的滤波要求不高,因此巴特 沃斯滤波器就可以满足要求。

要求巴特沃斯滤波器通带上限截止频率 fc=30HZ , 阻带下限截止频率 fs=80HZ ,通带最大衰减 A max =3db ,阻带最小衰减为 A min =15db o 由式(
1)-(4)可得巴特沃斯低通滤波器为二阶。

.;• »10°.叽 _1 1 (1) lg ■'10°.% _1 ' |(101.5_1、|『30.622)… 严—「g 而口厂黑3922尸.49 ‘‘2汇兀X 80 .2汉兀疋30丿 n lg 1.49 0.85 =lg 7.1 = 0.85 = 1.75 H(s) 1
s 2 . 2s 1 中的s 得到去归一化后的滤波器传递函
H(s)
图2二阶低通滤波典型电路
C 1C 2R 1 R 2
式⑸与式⑹对比可得:
令 C i =0.1uf , R 2=R i = R 3,解得 R 2=R i = R 3=6.6K ,C 2=0.6uf ,至此巴特沃斯滤波器 构造完成。

R 1C 1 R 2C 1 R 3C 2
C 1C 2 R 2 R 3 1 1 1 s
1
1 1 」 266.4 (8)
R i C i R 2 C i R 3C 2 1
C i C 2 R 2 R 3 H(s)= s 2 C 1C 2 R 2 R-I
= 35494.6 = 35494.6 (9)。

相关文档
最新文档