电力系统运行可靠性最优控制研究
新能源电力系统优化控制方法及关键技术探究

新能源电力系统优化控制方法及关键技术探究摘要:能源系统日益高涨的清洁化和低碳化的诉求意味着中国必将走向可再生能源电力系统。
但以风电和光伏为代表的间歇性可再生能源大规模并网为电力系统运行规划等各个方面带来了全新的挑战。
基于此,本文就新能源电力系统优化控制方法及关键技术进行简要探讨。
关键词:新能源;电力系统;关键技术;1新能源电力系统面临的挑战1.1稳定与保护风电和光伏均需要直接或间接通过电力电子装置并网。
其电压频率支撑特性与水电、火电等常规机组有较大差别。
因此,随着可再生能源接入电网的规模不断增大,系统动态特性将发生深刻变化,对系统稳定运行构成新的挑战。
同时,对系统保护装置提出了新的要求。
故障连锁脱网与电能质量问题在系统中比例甚至低比例渗透阶段有可能出现。
对于机组本身,电力电子装备过流耐受能力比同步发电机差。
当机端发生故障时,由于无法像常规机组一样维持并网点电压,风电和光伏电源在电网产生故障时往往更加倾向于尽快脱离电网。
由于换流器抗干扰能力弱,在可再生能源发展早期全球便已发生了大量大规模脱网事故。
此外,在可再生能源机组的局部并网点,电力电子装置功率开关元件的高频开断动作将产生高频谐波并注入电网,使并网点产生电压畸变与闪变,影响并网点的电能质量。
在并网点电压较低、结构薄弱且可再生能源渗透率较高的电网,电压波动与闪变严重程度将会加剧,但通常超出并网标准情况较少。
在中低比例阶段的集中并网区域,可再生能源机组电力电子装置与系统中的其他元件相互影响可能产生稳定问题。
随着可再生能源渗透率的逐步提升,传统电力系统中以机电动态为主导的各种参数的稳定性,包括功角、电压和频率稳定性均会发生改变。
在渗透阶段,由于电力电子的宽频响应特性,系统稳定性不再局限于传统的工频和机电时间尺度,电磁动态特性加剧,导致出现振荡频率范围扩展到数千赫兹的宽频电磁振荡现象。
且在渗透阶段,这一现象将不仅局限局部并网地区,宽频电磁振荡将可能扩展至全系统。
电力系统中的智能电网优化调度研究

电力系统中的智能电网优化调度研究智能电网作为电力系统的重要发展方向,在实现资源高效利用、提升供电可靠性和满足用户需求方面具有重要的意义。
而智能电网的优化调度是实现智能电网运行高效稳定的关键之一。
本文将就电力系统中智能电网优化调度的研究进行论述,并提出相关的优化方法和技术。
一、智能电网简介智能电网是一种以信息技术为基础,以信息互联、智能感知为特点的电力系统。
它通过实时监测、分析和调度,能够更好地适应电力系统的变化和需求,提高供电可靠性和经济性,降低能源消耗和环境污染。
智能电网主要包括智能感知、智能传输、智能运行和智能控制四个方面的技术。
其中,智能运行和智能控制是智能电网优化调度的核心领域。
二、智能电网优化调度的意义智能电网优化调度是指通过优化电力系统的产、供、网、用等环节的调度策略,提高系统的供电可靠性和经济性。
它能够合理分配电力资源,提高能源利用效率,并优化电力系统的负荷分布,减少线损和设备的运行损耗,从而实现电力系统的高效稳定运行。
三、智能电网优化调度方法1. 负荷预测与优化调度负荷预测是智能电网优化调度的基础,通过对负荷进行准确的预测,可以提前制定合理的调度策略。
负荷预测可以采用时间序列分析、神经网络、支持向量机等方法来实现,以提高预测的准确性和精度。
在负荷预测的基础上,可以采用优化算法来进行调度决策,如遗传算法、蚁群算法、粒子群优化算法等。
这些算法可以对电力系统的发电、输电和用电等环节进行优化,以实现供需平衡和最优调度。
2. 能源管理与优化调度能源管理与优化调度是智能电网优化调度的重要方向之一。
它通过对电力系统中各种能源的生产、转换、传输和储存等环节进行优化调度,提高能源利用效率和供能可靠性。
能源管理与优化调度还涉及到清洁能源的优先利用、储能技术的应用以及电力系统的灵活调度等内容。
3. 智能感知与优化控制智能感知技术是实现智能电网优化调度的基础。
通过对电力系统中各种设备和传感器的联网监测和数据采集,可以实时获取电力系统的状态和参数信息。
可再生能源发电系统的建模与最优控制方法研究

可再生能源发电系统的建模与最优控制方法研究随着对环境可持续发展的追求和对传统能源的限制,可再生能源正逐渐成为全球能源转型的重要方向之一。
其中,可再生能源发电系统的建模与最优控制方法是实现可再生能源全面利用和提高能源利用效率的关键步骤。
本文将对可再生能源发电系统的建模与最优控制方法进行深入研究,以推动可再生能源的可持续发展和应用。
一、可再生能源发电系统的建模方法在可再生能源发电系统的建模中,准确地描述不同组件之间的相互作用和系统特性是关键。
以下是一些常用的建模方法:1.1 物理建模方法物理建模方法基于对系统的物理特性和运行原理的深入理解。
例如,对于风能发电系统,可以通过建立风力发电机、风速测量装置和发电轮机之间的物理数学模型来描述系统的运行过程。
这种方法具有良好的准确度,但在建模过程中需要考虑较多的参数和系统复杂性。
1.2 状态空间建模方法状态空间建模方法是利用系统的状态变量和系统动态方程来描述系统行为的方法。
通过对系统的状态方程进行建立和求解,可以获得系统的状态响应和稳定性分析。
这种建模方法在控制系统设计中广泛应用,并且对于可再生能源发电系统的建模同样适用。
1.3 基于统计学的建模方法基于统计学的建模方法主要通过对历史数据的分析和建模来描述系统的运行规律和特性。
例如,对于太阳能发电系统,可以根据历史天气数据和太阳能转换效率的统计分析来建立系统的概率模型。
这种方法不仅能够反映系统的随机性和变化性,还可以作为优化控制方法和系统预测的基础。
二、可再生能源发电系统的最优控制方法最优控制方法是在给定约束条件下,通过调节控制变量,使系统的性能指标达到最佳化的方法。
以下是一些常用的最优控制方法:2.1 PID控制PID控制是一种常用的比例-积分-微分控制方法,通过根据系统误差的大小对输出信号进行调节,以实现系统的最优控制。
在可再生能源发电系统中,通过调节发电机的转速或风力发电机的转矩,可以实现对系统的最优功率追踪和输出控制。
新型电力系统稳定性问题探讨

新型电力系统稳定性问题探讨摘要:新型电力系统的发展给能源行业带来了许多机遇和挑战。
为了确保电力系统的可靠运行,稳定性问题成为必须解决的重要议题。
本文以新型电力系统稳定性问题为研究对象,探讨了其影响因素、评估方法和解决方案。
通过综合分析,提出了优化电网结构、提高系统调节能力、加强监测与控制等措施,以提升新型电力系统的稳定性和可靠性。
关键词:电力系统;稳定性分析;稳定性改进一、引言随着经济的发展和能源需求的增长,传统电力系统已经不能满足现代社会对能源的需求。
为了满足这一需求,新型电力系统得以应运而生。
新型电力系统采用了多种新技术和新能源,如可再生能源、智能电网和储能系统等,为能源行业带来了巨大的转变和机遇。
然而,新型电力系统的稳定性问题也随之而来。
稳定性是电力系统运行的基础,对于保证供电的可靠性和安全性至关重要。
因此,我们有必要深入探讨新型电力系统的稳定性问题,以保障电力系统的正常运行。
二、电力系统稳定性概述电力系统是一个由发电、输电和配电组成的复杂网络,它为人们提供了稳定可靠的电能。
而电力系统的稳定性问题一直是电力行业亟待解决的重要课题之一。
电力系统的稳定性主要包括动态稳定和静态稳定两个方面。
动态稳定性是指电力系统在受到外部扰动时,系统能够恢复到稳定运行的能力。
静态稳定性则是指系统在正常工况下,经过小幅度变化后能够保持稳定运行的能力。
动态稳定性的关键问题是防止系统发生不可逆转的失稳现象,如电压振荡或暂时失电。
系统失稳一旦发生,可能引发连锁反应,导致整个电力系统崩溃,给人们的生活带来严重影响。
因此,确保电力系统具有良好的动态稳定性至关重要。
静态稳定性则是系统在各种工况下,保持电压和频率在合理范围内的能力。
在电力系统中,电压和频率稳定性直接影响到用户设备的正常运行,也是保障系统可靠运行的基础。
三、电力系统稳定性挑战与现状随着电力系统规模的不断扩大和电力负荷的增加,电力系统稳定性面临着越来越多的挑战。
这些挑战涉及到多方面的因素,包括新能源接入、复杂的网络结构、负荷波动、扰动传递等。
电力系统电压稳定性优化与控制研究

电力系统电压稳定性优化与控制研究摘要:电力系统的电压稳定性是保持系统运行可靠性的重要因素之一。
本文旨在研究电力系统中电压稳定性的优化与控制策略,并分析现有的研究成果和方法。
通过对电力系统中电压稳定性问题的分析,本文提出一种基于传统控制方法和智能优化算法相结合的电压稳定性优化与控制方法,以提高电力系统的稳定性和可靠性。
1. 引言电力系统是现代社会不可或缺的基础设施,其稳定运行对能源供应和社会经济发展至关重要。
而电压稳定性是电力系统可靠运行的基石之一。
电力系统的电压稳定性主要指系统各节点的电压值在合理范围内保持稳定,防止出现过高或过低的电压,从而保证供电质量和设备的正常运行。
因此,电力系统电压稳定性的优化与控制成为了当前研究的热点和难点问题。
2. 电力系统电压稳定性问题及分析电力系统的电压稳定性问题常常由于负荷变化、电源故障、输电线路阻抗等原因引起。
这些因素可能导致系统电压失稳、过大或过小,进而对电力设备的安全运行产生不利影响。
因此,对电力系统电压稳定性进行综合分析和研究,是解决这一问题的前提。
3. 电力系统电压稳定性优化与控制方法研究3.1 传统控制方法传统控制方法是对电力系统电压稳定性优化与控制的一种常用方法。
其中,PID控制器具有简单、易实现的特点,并在电力系统中得到广泛应用。
PID控制器通过调整系统中的比例、积分和微分参数,使系统的电压保持在稳定范围内。
另外,频率响应法、根数法等传统控制方法也常被用于电压稳定性的优化与控制。
3.2 智能优化算法随着人工智能技术的发展,智能优化算法在电力系统电压稳定性优化与控制中得到了广泛应用。
例如,遗传算法、模拟退火算法、粒子群优化算法等,能够通过搜索和优化电力系统参数,提高电压的稳定性和可靠性。
同时,人工神经网络、模糊控制等智能技术也可以用于电压稳定性的优化与控制,通过建立系统间的关联关系和规则,实现电压优化控制。
4. 电力系统电压稳定性优化与控制方法综合应用为了提高电力系统的电压稳定性和可靠性,可以将传统控制方法和智能优化算法相结合,形成综合的优化与控制策略。
电气工程中的智能控制技术应用研究进展

电气工程中的智能控制技术应用研究进展在当今科技飞速发展的时代,电气工程领域取得了显著的进步,其中智能控制技术的应用发挥了至关重要的作用。
智能控制技术以其高效、精准和自适应的特点,为电气工程的发展带来了新的机遇和挑战。
本文将对电气工程中智能控制技术的应用研究进展进行详细探讨。
智能控制技术是一种融合了多种学科知识的先进控制方法,它能够处理复杂的、不确定性的系统,并且具有自学习、自适应和自优化的能力。
在电气工程中,智能控制技术主要应用于电力系统、电机控制、电气传动、智能电网等多个方面。
在电力系统中,智能控制技术的应用有效地提高了系统的稳定性和可靠性。
例如,通过智能控制技术对电力系统的潮流进行优化控制,可以实现电力的合理分配,降低网络损耗,提高能源利用效率。
此外,智能控制技术还可以用于电力系统的故障诊断和预测。
利用先进的传感器和数据分析算法,能够实时监测电力设备的运行状态,及时发现潜在的故障隐患,并提前采取措施进行预防和修复,从而大大减少了停电事故的发生,保障了电力供应的连续性和稳定性。
电机控制是电气工程中的一个重要领域,智能控制技术的应用使得电机的控制性能得到了显著提升。
传统的电机控制方法往往难以满足高精度、高动态性能的要求,而智能控制技术如模糊控制、神经网络控制等则能够有效地解决这些问题。
以模糊控制为例,它不需要精确的数学模型,而是根据专家经验和模糊规则来进行控制,对于具有非线性、时变特性的电机系统具有很好的控制效果。
神经网络控制则通过对大量数据的学习和训练,能够自适应地调整控制参数,实现对电机的精确控制。
电气传动系统在工业生产中有着广泛的应用,智能控制技术的引入极大地改善了传动系统的性能。
例如,在数控机床、机器人等设备中,采用智能控制技术可以实现高精度的位置控制和速度控制,提高生产效率和产品质量。
此外,智能控制技术还可以实现电气传动系统的节能控制,根据负载变化自动调整电机的运行状态,降低能耗。
智能电网是未来电网的发展方向,智能控制技术在其中发挥着关键作用。
自适应控制在电力系统中的应用探讨

自适应控制在电力系统中的应用探讨电力系统作为现代社会的重要基础设施,其稳定、高效运行对于保障经济发展和人民生活至关重要。
随着电力系统规模的不断扩大和复杂性的日益增加,传统的控制方法在某些情况下已经难以满足需求。
自适应控制作为一种先进的控制策略,逐渐在电力系统中得到了广泛的应用,为提高电力系统的性能和可靠性发挥了重要作用。
一、自适应控制的基本原理自适应控制是一种能够根据系统运行状态和环境变化自动调整控制参数,以实现最优控制效果的控制方法。
它通过实时监测系统的输入、输出和状态变量,利用在线辨识和优化算法,不断更新控制器的参数,使系统能够适应各种不确定性和变化。
与传统的固定参数控制方法相比,自适应控制具有更强的鲁棒性和适应性。
它能够在系统模型不准确、参数变化、外部干扰等情况下,依然保持较好的控制性能。
二、自适应控制在电力系统中的应用领域1、发电机励磁控制发电机励磁系统对于维持电力系统的电压稳定和无功功率平衡具有重要意义。
自适应控制可以根据发电机的运行状态和电网的变化,实时调整励磁电流,提高发电机的稳定性和动态响应能力。
2、电力系统频率控制电力系统的频率是衡量系统有功功率平衡的重要指标。
自适应控制可以根据负荷的变化和发电功率的波动,自动调整发电出力,使系统频率保持在规定的范围内。
3、无功补偿控制无功补偿装置对于改善电力系统的功率因数和电压质量起着关键作用。
自适应控制能够根据系统的无功需求和电压水平,动态调整无功补偿设备的输出,提高电能质量。
4、电网潮流控制在复杂的电力网络中,潮流分布的优化对于降低网损、提高输电效率至关重要。
自适应控制可以根据电网的实时运行状态,调整变压器分接头和无功补偿设备,实现潮流的优化控制。
三、自适应控制在电力系统应用中的优势1、提高系统的稳定性自适应控制能够快速响应系统的变化,及时调整控制策略,有效地抑制系统的振荡和失稳现象,提高电力系统的稳定性。
2、增强系统的适应性电力系统面临着各种不确定性因素,如负荷的随机变化、新能源的接入等。
电力系统中的负载均衡与优化控制策略研究

电力系统中的负载均衡与优化控制策略研究电力系统作为现代社会中不可或缺的基础设施,承担着为人们提供稳定可靠的电能供应的重要任务。
为了保证电力系统的安全运行和高效利用,负载均衡和优化控制策略显得尤为重要。
本文将对电力系统中的负载均衡与优化控制策略进行研究和探讨。
一、电力系统中的负载均衡负载均衡是指将系统中的负载在各个节点之间合理分配,避免出现某个节点过载而其他节点负载较轻的情况。
在电力系统中,负载均衡是保证供需平衡,实现电力资源最大化利用的关键。
为了实现负载均衡,我们可以采取以下几种策略:1. 能耗监测与管理:通过对电力系统中各个节点的能耗进行实时监测和管理,可以及时发现和纠正负载不均的情况。
例如,当某个节点负载过重时,可以将部分负载转移到其他节点上,以实现负载均衡。
2. 预测与调度控制:利用先进的预测算法和调度策略,可以在提前预知到未来负载需求的情况下,合理调度和分配电力资源,避免负载不均衡的发生。
例如,根据历史数据和趋势分析,可以预测未来某个时间段的负载情况,然后采取相应的调度控制策略。
3. 多源供能与互联互通:采用多源供能和互联互通的技术手段,可以将不同地区的电力资源进行有效整合和利用,实现供需平衡和负载均衡。
例如,通过跨区域输电和可再生能源的利用,可以实现对电力资源的均衡调度和优化利用。
二、电力系统中的优化控制策略优化控制策略是指通过采用先进的算法和模型,对电力系统中的各种变量和参数进行优化调整,以实现系统的高效运行和资源的最优利用。
下面介绍几种常见的优化控制策略:1. 基于规则的控制:基于专家经验和规则库,对电力系统的运行进行规范和控制。
例如,根据电力系统的工作状态和负载需求,制定相应的调度规则和策略,以实现系统的高效运行。
2. 模型预测控制:通过建立电力系统的数学模型和预测算法,对未来的系统状态和负载需求进行预测和优化控制。
例如,利用模型预测控制算法,可以根据历史数据和实时数据,预测未来某个时间段的负载情况,并相应调整系统的运行参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力系统运行可靠性最优控制研究
发表时间:2016-12-12T13:45:45.203Z 来源:《电力设备》2016年第19期作者:鲁康杰苏林[导读] 电力是我国的支柱产业,电能是最主要的能源,无论是国家的建设发展,企业的日常运营,还是人们的工作生活都离不开电能。
(国网山东省电力公司平邑县供电公司山东平邑 273300) 摘要:电力是我国的支柱产业,电能是最主要的能源,无论是国家的建设发展,企业的日常运营,还是人们的工作生活都离不开电能。
我国电网覆盖面积广,相关的检修工作人员较少,因此电力运行存在很大的安全风险,针对这一情况,必须加强电力系统运行安全的管理,提高相关技术。
下面就分析影响电力运行的因素,提出合理化建议,保证对电力系统可靠性的最优控制。
关键词:电力系统;运行可靠性;最优控制
如果设备质量不过关,管理工作不到位,电力系统运行中很容易发生故障,例如线路、电缆容出现短路、电火花问题,电气设备出现故障。
因此企业在经营管理中,工作人员必须加强线路的监督检查,增加电网检查人员数量,缓解检查工作的压力,扩大电网检查覆盖面,实现对电力系统运行可靠性最优控制,为我国的经济发展、城市建设提供可靠的电能。
1分析影响电力系统运行可靠性因素 1.1电力设备出现故障
通过多年的实践研究得知,电力设备故障、线路问题、外力破坏是三个重要的影响因素。
对于设备故障而言,电力系统是由不同设备、元件所组成的,要求其在规定的环境中,特点的时间范围内,完成相应的功能,保证电力系统运行正常。
但是由于电力系统运行复杂,天气状况不同,在运行中会出现不同的故障,严重时发生火灾,直接导致大面积停电,人们无法正常工作和生活。
如果电压达不到要求,机械设备就不能正常运行,如果网损情况继续恶化,电力设备在电能方面就会有非常大的损耗,浪费很多国家电能。
1.2线路发生故障
我国电网已经覆盖全国,一般大中城市电力设施配套比较完善,小城镇、乡村由于比较偏僻,电网设施不完善,而且这一地区检修人员较少,因此容易发生故障。
很多线路所处环境比较复杂,长期暴露在野外,例如线路在零下30度的环境,或者在零上30度的环境,线路穿越高山等,一旦发生故障,为后期的检修也提出较大挑战。
当长期得不到保养和检修时,线路外的绝缘皮老化,导致漏电,进而酿成更严重的事故。
1.3分析外力破坏
在乡村和城乡结合的位置,由于其地理位置的特殊性,同时也由于国家电力资金投入的问题,导致这部分电网中自动化水平不高,这样无论是在突发事故的有效处理方面,还是日常的巡检工作上,都会造成效率低下,出现问题的概率比较大。
除此之外,由于缺乏相关的警示牌,在一些特殊路段,容易发生交通事故,直接影响配电线路安全,例如车辆撞上路旁电线杆,由于线路、设备没有必要的避雷针,导致在阴天下雨的时候,线路设备遭到雷击。
在现代社会发展中,大城市都使用了智能化的管理系统,而这些地区却和智能化脱轨,技术人员在对电能分配以及负荷控制中,不能保证电压的稳定性,因此增加了电网运行的风险和成本。
2分析评估电力运行可靠性的方法在当前对电力系统可靠性评价中主要有两种方法,解析法和后果分析法,对于解析的评价方法而言,通过系统结构,以及各个元件之间的联系,构建系统的可靠性模型,在此基础上,在解析过程中应用的可靠性指标,通过数值对比就可以得到。
其有清楚的物理概念,模型构建也有很好的精度。
但是在实践应用中也要面临一些新问题[1],导致计算难度增大,评价工作不能顺利进行。
对于故障模式的后果分析法而言,可以有效解决电力系统运行中的可靠性问题。
通常情况下这两种方法都可以在辐射状配电系统中应用。
但是在实际使用中,如果拓扑结构比较复杂,使用这种方法操作会更加复杂,针对这一情况电力部门采取了有效的措施进行处理。
对这一方法加以改进,电力系统运行稳定性评价中,必须对故障后果进行总结,电网计算指标进行分析,在此基础上,操作中对不同故障进行模拟,然后对事件进行预想,对负荷相应的情况进行转移分析。
3分析电力系统运行可靠性最优控技术 3.1分析可靠性指标的具体内容
通常情况下在分析电力系统运行可靠性的时候,利用切负荷指标进行度量评价,对于切负荷指标而言,其是一个重要的衡量电力运行可靠性的指标,其在输电规划、电源规划中发挥着重要的作用。
电力系统正常运行中,不仅要考虑系统的节能和电量供应,还要时刻监视系统运行状态。
另一方面,为了找到电力系统的薄弱环节,还要对系统功率不平衡指标、母线电压超限指标、线路过负载指标进行监视,再根据工作经验,建立了电力系统运行可靠性指标体系。
在该体系中的可靠性指标中,主要包括概率指标、电量不足期望指标、安全状态下的概率指标[2]。
3.2对可靠性模型的分析
在对相关指标进行计算时精度必须保持,否者影响后续的分析,在此基础上,还应该提高计算速度,保证工作效率,保证整个工作实时完成,确保电力系统实时都处于安全状态。
一般电力人员使用直流潮流方式分析电力系统中的潮流情况,建立可靠性控制模型的时候,对电压、无功等约束条件进行忽视,此控制模型包括控制标量、目标函数以及约束条件。
3.3对电气元件可靠性模型的分析
在电力系统中元件是其重要组成部分,如果电气元件出现故障,直接影响电力系统运行的可靠性,不同元件出现故障都是随机的,但是都直接影响系统的正常运行。
针对这一情况,相关部门必须对电力系统进行最优控制。
为了达到这一目标,对系统中不同电气元件做好可靠性模拟建模,在短时间内考验系统运行能力,在此过程中是否发生故障,如果发生故障,检测设备会系统记录其参数,进而对不同元件的可靠性进行评价分析,当前建模方式有元件瞬时概率,其可以全面对元件进行描述,综合评价元件的可靠性,为其正式使用作出数据依据[3]。
3.4分析计算可靠性的方法和具体实施
对电力系统进行评估的时候,评估内容包括对元件可靠性模型进行确定,对系统运行状态进行选择,对计算的可靠性指标情况进行分析,对运行后果可靠性指标进行分析。
这些内容都非常重要,是以后决策的依据。
对计算可靠性指标和运行后果时都使用动态潮流分析法,选择系统运行状态的时候,可以使用快速排序法,确定排序规律时使用状态概率法。
为了实现运行可靠性的分析,当使用数学方式分析时,其是一个约束规划问题,其具有随机约束条件的特点,只有在很好置信水平上才能成功。
通过对有关文献的分析,以及对实践情况的了解,对系统中的随机机会进行规划时,当使用遗传的可靠性算法时,其计算精确度会更高,因此推荐使用这种方法。
总结:通过以上对电力系统运行可靠性最优控制研究,必须选择好合适的可靠性指标,其是最终得到电力系统可靠的准确依据,如果选择指标内容不合理,分析中产生的作用就有限。
然后进行模型的建立,最后保证计算的准确性。
电力事业不仅关系到国计民生,同时也是我国经济发展的支柱产业,因此对这些工作必须予以重视,对电力系统运行可靠性进行最优控制。
参考文献
[1]陈宇,吴俊鹏.电力系统运行可靠性最优控制研究[J].中国高新技术企业, 2015(31):26-27.
[2]王明玥,文艳晖,龚光辉.电力系统运行可靠性及其最优控制研究[J].通讯世界,2014(19):56-57.
[3]计鹿飞.基于半Markov决策过程的智能电网储能调峰的最优控制[D].合肥工业大学,2014.36(1):91-93.。