03重力异常数据处理
重力勘探—重力异常的数据处理

第四章重力异常的数据处理布格重力异常反映了地壳内部物质密度的不均匀性,即从地表到地下几十公里的地壳深部,只要物质密度横向发生变化,在地下不同的空间和范田内形成剩余质量,就可以引起地表的重力异常。
定性解释侧重于判断引起异常的地质原因,并粗略估计产生异常的地质体的形状、产状及埋深等。
定量解释则是通过理论计算.对地质体的规模、形状、产状及埋深等作出具体解答。
重力异常的推断解释的步骤:①阐明引起异常的地质因素具体地说,就是确定异常是浅部因素还是深部因素引起,是矿体还是构造或其它密度不均匀体(岩性变化、侵入体等)的反映。
——定性解释②划分和处理实测异常重力异常图往往是地表到地球深处所有密度不均匀体产生的异常的叠加图象。
为了获取探测对象产生的异常,需要将它们进行划分。
不同的研究目的提取的异常信息不同,例如,矿产调查要提取队是矿体或没部构造产生的局部异常;而深部重力研究的目标正好相反,需要划分出的是反映地壳深部及上地幔的区域异常。
③确定地质体或地质构造的赋存形态一是根据已知地质体或地质构造的形状、产状及埋深等.研究它们引起的异常的特征,包括异常的形状、幅度、梯度及变化规律等。
二是根据异常的形态及变化规律等,确定地质体或地质构造的形状、产状、埋深及规模等。
前者足由源求场,称为止(演)问题;后者是由场求源,称为反(演)问题。
正问题是反问题的基础,而求解反问题则是定量解择的最终目的。
§4.1 重力异常的主要地质原因一.地壳深部因素莫霍洛维奇面:地壳与上地馒之间存在着一个界西地壳厚度各地不同,大陆平原地区大约20~30km,高山区为40~60km,西藏高原达60km以上,海洋区为10~20km,最薄处仅数公里。
这一界面上下物质密度差达0.3g/cm3以上,界面以上的硅镁层密度为 2.8~3.0g/cm3,硅侣层为2.5~2.7g/cm3,界面以下物质密度为3.3~3.4g/cm3。
该界面的起伏引起地表重力变化的特点是导常分布植围广,幅度变化大。
重力数据处理过程

数据处理与异常推断解释一、数据处理方法的选择实测的重力异常是地下由浅至深各类地质体的物性差异在地面综合叠加效应,其中包括界面起伏,岩性不均匀等诸多地质因素在内。
为了从实测异常中提取和强化有用信息,压抑干扰噪声,提高重力勘探综合地质解释的能力,故需对实测资料进行数据处理和综合分析。
1、数据处理目的通过不同的数据处理手段,达到突出区域重力场信息、突出与强化断裂带异常信息、突出局部重力异常信息,有效地克服或压制不同干扰异常。
顺利达到完成区域重力场特征分析、提取剩余异常、断裂构造划分与分析,圈定钾矿成矿有利部位等地质任务。
2、常用的数据处理方法数据处理采用中国地质调查局发展研究中心推广的多元信息处理系统软件—GeoExpl及中国地质大学MAGS软件进行数据处理。
数据处理的目的是在消除各类误差的基础上从叠加场中分离或突出某些目标物的场,并使其信息形式(或信息结构)更易于识别和定量解释。
常用的处理方法有:各种滤波、趋势分析、解析延拓(上延和下延)、导数转换(水平和垂直导数)、圆滑(圆环法和窗口法)、多次切割、差值场法、小波多尺度分析法等方法。
(1)、数据网格化为空间分析模块及其它数据处理提供数据源。
本次采用克里格法,200米×200米,搜索半径1500米。
(2)、异常分离采用不同滤波因子的正则化滤波、差值场法、小波多尺度分析法、向上延拓等,可分别求取“区域场”和“局部场”,达到异常分离目的。
(3)、延拓处理向上延拓:压制了浅部小的地质体场的干扰,了解重力异常衰减规律,随着上延高度增加,突出了深部大的地质体的场。
区域场反映了测区深部地质环境和地质构造特征的差异性,为测区地质构造分区划分提供了重要信息;本次向上延拓自100 m、200 m、500 m、1000 m、2000 m,共5个高度。
向下延拓:利用向下延拓可以分离水平叠加异常。
密度体埋深大,异常显得宽缓。
越接近密度体,异常的范围越接近其边界。
本次向下延拓自100 m、200 m、300m、500 m四个高度。
重力数据处理解释方法

2. 简单规则形体的异常特征及应用 ●Wzz异常及特征应用
2. 简单规则形体的异常特征及应用 ●Wzz异常及特征应用
2. 简单规则形体的异常特征及应用
2)水平圆柱体的重力异常及特征应用
2. 简单规则形体的异常特征及应用
2)水平圆柱体的重力异常及特征应用
2. 简单规则形体的异常特征及应用
2)水平圆柱体的重力异常及特征应用
3. 重力资料高次导数的计算与应用 2)高次导数的计算
3. 重力资料高次导数的计算与应用
2)高次导数的计算
3. 重力资料高次导数的计算与应用 2)高次导数的计算
3. 重力资料高次导数的计算与应用 2)高次导数的计算
3. 重力资料高次导数的计算与应用 2)高次导数的计算
3. 重力资料高次导数的计算与应用 2)高次导数的计算
第三节 正常重力和重力异常
四、重力异常的例子
Rotational Fault
2. 简单规则形体的异常特征及应用 1)球形体的重力异常及特征应用
2. 简单规则形体的异常特征及应用 1)球形体的重力异常及特征应用
2. 简单规则形体的异常特征及应用 1)球形体的重力异常及特征应用
2. 简单规则形体的异常特征及应用 1)球形体的重力异常及特征应用
2. 简单规则形体的异常特征及应用 1)球形体的重力异常及特征应用
异常体分开,压制区域性异常
3. 重力资料高次导数的计算与应用
3. 重力资料高次导数的计算与应用
3. 重力资料高次导数的计算与应用
3. 重力资料高次导数的计算与应用
3. 重力资料高次导数的计算与应用 2)高次导数的计算
3. 重力资料高次导数的计算与应用 2)高次导数的计算
3. 重力资料高次导数的计算与应用 2)高次导数的计算
物探学习参考资料 重力资料数据处理

重力资料数据处理
1、如何利用布格重力异常选取区域重力异常和求取剩余重力异常?使用Surfer的何种功能可以完成这两种数据处理?
答:对布格重力异常数据采用多种不同大小的窗口进行数据处理并对比,当为某一边长时区域重力场的形态基本趋于平稳,局部异常的成分已基本剔除,可选用该边长时的区域重力场做为区域场。
用布格重力场减区域重力场即可求取到剩余重力场。
打开Surfer软件,菜单中:“网格-滤波器”功能,打开的窗口中选“移动平均方法”通过设置相关参数后即可求取窗口滑动平均的区域场。
打开Surfer软件,菜单中:“网格-数学”功能,打开的窗口中通过设置相关公式后即可求取剩余重力场。
2、对布格重力异常数据进行水平方向导数数据处理的意义?一般对哪些方向进行求导?使用Surfer的何种功能可以完成水平方向导数的数据处理?
答:水平方向导数异常主要用于突出走向垂直于求导方向的断裂及其大致位置、岩脉的位置、宽大地质体的边界线以及确定地质体的走向等。
一般对布格重力异常分别进行0°、45°、90°和135°四个方向的水平方向导数计算。
打开Surfer软件,菜单中:“网格-微积分”功能,打开的窗口中选“方向导数中的一阶导数”通过设置方向参数后即可求取水平方向导数异常。
重力勘探中的数据处理与解释

重力勘探中的数据处理与解释一、引言地球物理勘探技术是石油勘探开发领域中不可或缺的一部分。
其中,重力勘探技术是最为基础的一项技术,其对于石油勘探具有非常重要的意义。
因此,重力勘探中的数据处理与解释技术显得尤为重要。
二、重力勘探的基本原理重力勘探是通过测量地球上任意一点的重力值、重力异常等参数,推断出地下物质的密度分布及其空间结构及形态特征。
在重力勘探中,最基础的是测量地球重力场的各种参数,例如重力值和重力异常等,进而利用理论方法将测量值转化为密度结构。
重力勘探仪器广泛使用的是重力仪,它利用重力加速度的变化来测量地球的重力值。
三、数据处理1. 数据采集与处理重力勘探的数据采集常用重力仪完成。
在完成数据采集后,首先需要对数据进行处理。
(1)数据质量控制在数据采集过程中,为了保证数据的准确和可靠,需要严格把握每个采样点的质量。
数据采集后,需要进行质量控制,主要包括数据滤波、异常值处理、坏点检测和采样点校正等。
在数据的初步处理之后,为了方便数据的后续分析,需要对处理后的数据进行分类存储。
(2)数据校正重力勘探数据在采集过程中可能由于许多因素引起测量误差,包括仪器的灵敏度、环境因素和采样点高度等。
因此,进行数据处理时需要进行数据校正。
(3)数据分析重力勘探数据处理的最终目的是通过分析数据推断出地下物质的密度结构特征。
对于处理过的数据,需要进行统计分析、测试分析、图像处理等方法对数据进行分析。
2. 数据解释(1)地下构造解释地下构造解释是指将重力勘探数据与其他信息相结合,根据地球物理理论模型推断地下构造情况。
常用的方法包括正演模拟、反演模拟等。
(2)岩性解释岩性解释是指通过对重力勘探数据的解释,归纳出样地所含有的岩性类型和岩性组合,通过这种方法可以预测出石油、煤炭、地下水等目标物质的分布情况。
(3)含油气解释含油气解释是指通过分析重力勘探数据,判断目标地区是否有含油气的可能性和分布范围。
通过重力勘探数据分析,可以对含油气区域的地质构造及沉积等特征提供定量化的模型,从而为油气开发提供技术支持。
重力数据处理与初步解释的基本流程

重力数据处理与初步解释的基本流程Processing and interpreting gravity data is a fundamental step in geophysical exploration. 重力数据处理与初步解释是地球物理勘探中的基础步骤。
Gravity data provides crucial information about subsurface geological structures and can help geoscientists understand the distribution of rock densities. 重力数据提供了关于地下地质结构的重要信息,可以帮助地球科学家了解岩石密度的分布。
The basic workflow for processing gravity data involves data collection, data reduction, processing, interpretation, and analysis. 重力数据处理的基本工作流程包括数据采集、数据约简、处理、解释和分析。
Each step in this process is essential for accurately interpreting the gravity anomalies and gaining insights into the subsurface geology. 这个过程中的每一个步骤对于准确解释重力异常并深入了解地下地质都非常重要。
Data collection is the first step in processing gravity data, and it involves measuring gravity values at various locations. 数据采集是处理重力数据的第一步,涉及在不同地点测量重力值。
重力异常数据处理新法

重力异常数据处理新法重力异常数据处理新法重力异常数据处理是地球物理学中的重要研究内容之一。
它通过测量地球表面的重力场变化,揭示地球内部的结构与成分的分布情况。
在传统的重力异常数据处理方法中,常使用傅立叶变换来分析频谱特征,但该方法存在一些局限性。
因此,本文将介绍一种基于新方法的重力异常数据处理流程。
第一步:数据收集与预处理在进行重力异常数据处理之前,首先需要收集相应的数据。
一般可以通过重力测量仪器在不同地点进行重力场的测量。
然后,需要对原始数据进行预处理,包括去除噪声、校正测量误差等。
这可以通过滤波、平滑等方法来实现。
第二步:建立重力异常模型在重力异常数据处理中,需要建立一个适当的模型来描述地球内部的结构与成分。
常见的模型包括均匀球模型、层状模型等。
根据具体情况选择合适的模型,并进行参数估计。
第三步:重力异常数据反演通过建立的重力异常模型,可以进行重力异常数据的反演。
反演过程中,常用的方法是最小二乘法。
该方法通过最小化观测数据与模型计算值之间的差异,调整模型参数,使其逼近真实的地球重力场分布。
第四步:模型验证与优化反演得到的重力异常模型需要进行验证与优化。
可以通过与其他地球物理数据进行比较,如地震数据、磁力数据等,来验证模型的准确性。
若存在差异,可以进行进一步优化调整,直至获得较为准确的重力异常模型。
第五步:结果解释与应用最后,根据得到的重力异常模型,可以对地球内部结构与成分进行解释与应用。
例如,可以利用重力异常数据揭示地下矿产资源分布情况、构造活动的特征等。
这对地质勘探、资源开发等领域具有重要意义。
综上所述,基于新方法的重力异常数据处理流程包括数据收集与预处理、建立重力异常模型、重力异常数据反演、模型验证与优化以及结果解释与应用等关键步骤。
通过这一流程,可以更准确地揭示地球内部的结构与成分分布情况,为地球科学研究提供有力支持。
重力资料处理与分析

异常检测
通过模式识别和机器学习方法 ,检测重力数据中的异常值, 识别潜在的地质构造和矿产资 源。
模型拟合
利用地球重力模型和地球物理 理论,对重力数据进行模型拟 合,推算地球内部结构和地球
参数。
数据应用技术
地质勘探
利用重力资料分析地壳结构、地质构造和矿 产资源分布,为地质勘探提供依据。
导航定位
利用重力资料辅助导航定位系统,提高定位 精度和稳定性。
地质解释的方法包括绘制地质剖面图、 制作地质图和进行地质填图等,这些 方法可以帮助研究人员更好地了解地 下地质情况。
资源评估
资源评估是重力资料分析的重要应用之一,它 涉及到对地下矿产资源的评估和预测。
资源评估的方法包括绘制资源量图、进行矿产 资源量估算和进行成矿预测等,这些方法可以 帮助研究人员了解矿产资源的分布和规模。
重力资料处理与分析
目录
• 重力资料处理 • 重力资料分析 • 重力资料应用 • 重力资料处理与分析技术 • 重力资料处理与分析的挑战与展望
01 重力资料处理
数据采集
野外测量
通过重力测量仪器在野外实地测量,获取原始重 力数据。
精度要求
保证测量精度,减少误差,确保数据可靠性。
测量环境
考虑地形、气候等环境因素对测量结果的影响。
地球科学研究
通过重力资料分析地球重力场变化,研究地 球内部结构和地球动力学过程。
灾害预警
通过分析地震、火山等地质灾害发生前的重 力变化,预警和防范地质灾害。
05 重力资料处理与分析的挑 战与展望
面临的挑战
数据量庞大
重力资料数据量庞大,需要高效的数据处理和存储技 术来应对。
精度要求高
重力资料分析需要高精度测量和计算,以满足地质勘 探和地球科学研究的需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
g(1, 2) g(1, 2)] ( 27 8)g(2, 2) g(2, 2)
5
g(2, 2) g(2, 2)
25点圆滑公式
数据圆滑中的一些基本规律:
1)当点数一定,阶数越低越圆滑。 2)当阶数一定,点数越多越平滑。 3)不同点数和阶数的圆滑公式有时可以得到相似的圆滑
• 4.沉积岩的构造和成分变化 • 在沉积岩系发育的盆地地区,沉积岩系的内部往往存
在多个密度分界面。 • 另外,沉积岩内部的岩性或岩相变化也可能引起明显
的重力变化。 • 其他密度变化
• 二、几种简单情况下异常的叠加
• 两个相邻球体异常的叠加
球体异常与单斜异常的叠加 • 铅垂台阶异常与单斜异常的叠加
im
im
im
im
m
m
m
m
2 xi4 g(xi ) 2 xi2 xi2g(xi )
a i1 im 0
i1 im
m
m
2(2m 1) xi4 4( xi2 )2
i 1
i 1
m
m
m
m
xi4 g(xi ) xi2 xi2g(xi )
g (0) i1 im
i1 im
m
m
(2m 1) xi4 2( xi2 )2
重磁力资料数据处理方法技术
主要方法技术
• 4、断裂构造信息提取
方法:水平梯度法、褶积滤波法、垂向导数法、布 格重力异常/剩余异常特征点/特征线法
• 5、密度界面正反演
Parker 密度界面反演、多约束三维密度界面反演, 剖面拟合、LCT重震联合反演
• 6、位场数据的图象处理
将异常数据按照合理的网格密度转化为灰度,并以 灰度图/彩色图、立体灰度图表现出来,反映为漂 亮的立体纹理。
9
9
9
g(1, 1) g(1,1) g(1, 1)
9点圆滑公式
g
(0,
0)
1 35
27 2
g (0,
0)
(
27 5
1)
g
(1,
0)
g(0,1)
g
(0,
1) g(1, 1) g(1,1) g(1, 1) ( 27 4)
5
5
g(2, 0) g(0, 2) g(0, 2) g(2, 0) ( 27 5)g(2,1)
3.重力异常平面数据的最小二乘圆滑 ①线性圆滑
g (x, y) a0 a1x a2 y
g (0, 0) 1 g(0, 0) g(1, 0) g(1, 0) g(0,1) g(0, 1)
5
g (0, 0) 1 g(0, 0) g(2, 0) g(1, 0) g(1, 0) g(2, 0)
a1
im m
xi2
im
g (0)
a0
1m 2m 1 im
g(xi )
g (0) 1 g(1) g(0) g(1)
3
g (0) 1 g(2) g(1) g(0) g(1) g(2)
5
2.二次曲线圆滑
g (x) a0 a1x a2 x2
a0 a1xi a2 xi2 g(xi )2 min
• 三、区域异常和局部异常
• 区域异常和局部异常的相对性示意图
重磁力资料数据处理方法技术
主要方法技术
• 1、压制、消除随机误差和浅层不均匀体影响
方法:多项式圆滑、向上解析延拓、滑动平均
• 2、局部重力异常的提取
滑动趋势分析、数理统计、向上解析延拓、滑动平均、 正演法
• 3、区域重力异常的分离
手工圆滑法、平均场法、数理统计、向上解析延拓、趋势分 析法、地质校正(剥层校正/正演法)法
效果。 • 此外,值得注意的是: • 1)圆滑时取的点数越多,剖面的两段和平面图的四周
损失的点数也越多。 • 2)曲线经过圆滑处理之后,在不同程度上消弱了原始
• 4.要根据重力异常求(反演)某个地质体,必须首先从叠加 重力异常中分离出单纯由这个地质体引起的异常,然后用 这个异常进行反演。
一、 重力异常的复杂性 • 1.地壳深部因素
• 2.结晶基岩内部的密度变化
• 3.结晶基底顶面的起伏 • 结晶基底与上覆沉积岩系通常都存在一定的密度差,
在基底内部岩性较均匀的情况下,基岩顶面的起伏能 引起较大范围内的重力变化,据此可以成功地圈定那 些范围较大的、具有较大幅度的隆起或凹陷。
四、 异常数据的圆滑
• 1. 最小二乘圆滑法
g (x) a0 a1x
g (xi ) g(xi )2
a0
a1xi
2
g(xi )
min
2
a0
a0 a1xi g(xi ) 0
2 a1
a0 a1xi g(xi )xi 0
m
g(xi )
a0
im
2m 1
m
xi g(xi )
重力异常数据处理
• 为什么要对重力异常进行数据处理
• 1.观测重力值得到的重力异常或布格重力异常,包含了从 地表到深部所有密度不均匀引起的重力效应;
• 2.不同地质因素引起的异常无论从幅度、分布范围、变化 大小等特征均有不同,异常所包含的信息非常丰富;
• 3.重力异常是所有这些重力效应的总和或叠加;
m
m
m
m
( 1)a0 ( xi )a1 ( xi2 )a2 g(xi )
im
im
im
im
m
(
m
xi )a0 (
m
xi2 )a1 (
xi3 )a2
m
g(xi )xi
im
im
im
im
m
m
m
m
( xi2 )a0 ( xi3)a1 ( xi4 )a2 g(xi )xi2
9
g(0, 2) g(0,1) g(0, 1) g(0, 2)
②二次曲面圆滑
g (x, y) a0 a1x a2 y a3xy a4x2 a5 y2
m
n
a0
a1xi
a2 y j
a3xi y j
a4 xi2
a5
y
2 j
g(xi ,
y j )2
min
im jn
g (0, 0) 5 g(0, 0) 2 g(1, 0) g(1, 0) g(0, 1) g(0,1) 1 [g(1,1)
i 1
i 1
g(0) 1 17g(0) 12g(1)+g(-1) 3g(2)+g(-2)
35
g(0) 1 7g(0) 6g(1)+g(-1)+3g(2)+g(-2) 2g(3)+g(-3)
21
g(0) 1 59g(0) 54g(1)+g(-1)+39g(2)+g(-2)
231
+14g(3)+g(-3) 21g(4)+g(-4)