PLC在温度监测控制系统中应用
基于PLC的恒温控制系统

基于PLC的恒温控制系统本科生毕业论文(设计)题目:基于PLC的恒温控制系统院系:专业:学生姓名:学号:指导教师:二〇一四年五月摘要在工业控制领域,基于运行稳定性考虑,要对生产过程中的各种物理量进行详细的检测和控制。
这在冶金、化工、建材、食品、机械、石油等工业中,具有举足轻重的作用。
其中温度控制又以其较为复杂的工艺过程而备受人们关注。
所以各种加热炉、热处理炉、反应炉等得到了广泛应用。
这些都对温度控制系统的设计提出了更高的要求。
本设计采用S7-200PLC对加热炉温度进行控制。
随着自动控制技术的迅速发展,PLC对温度的控制技术应用越来越广泛。
本文采用PLC对温度进行控制,通过合理的设计,提高温度控制水平,进而改善温度运行的稳定性,使其更加精确。
本文主要介绍了温度控制的PLC控制系统总体方案设计、设计过程、组成、梯形图,并给出了系统组成框图,分析流量逻辑关系,提出PLC的编程方法。
本系统分析了加热炉温度控制的PID控制原理,设计了系统的数学控制模型以及系统控制框图,用组态王软件组态配置工业控制监控系统,对数据进行实时监控。
通过对单回路控制系统的参数整定以及组态王的PID控制程序,实现了加热炉温度的精确控制。
通过对PLC程序的仿真调试以及对组态的系统仿真,验证了本加热炉温度控制系统的设计合理性,系统动态响应符合了最初的设计要求,也具有一定的实用价值。
关键词:温度控制,可编程控制器,PID,组态王目录第一章前言 01.1恒温控制的现状与意义 01.2系统设计要求 (1)1.3设计主要内容 (2)第二章恒温控制系统硬件设计 (4)2.1总体分析 (4)2.2PLC控制系统设计的基本原则和步骤 (5)2.2.1PLC控制系统设计的基本原则 (5)2.2.2PLC控制系统设计的一般步骤 (6)2.3PLC的选型与硬件配置 (7)2.3.1PLC型号的选择 (7)2.3.2S7-200 CPU的选择 (8)2.3.3EM231模拟量输入模块 (8)2.3.4热电偶温度传感器 (10)2.4I/O地址分配及电气连接图 (11)2.5PLC硬件接线图 (12)第三章PLC控制系统软件设计 (14)3.1PLC程序设计方法 (14)3.2编程软件STEP7--M ICRO/WIN概述 (15)3.2.1STEP7-Micro/WIN简单介绍 (15)3.2.2STEP7-Micro/WIN参数设置(通讯设置) (16)3.3基于S7200的PID控制 (18)3.3.1控制系统数学模型的建立 (18)3.3.2P ID在PLC中的回路指令 (19)3.4内存地址分配与PID指令回路表 (20)3.5程序设计梯形图 (23)3.5.1初次上电 (23)3.5.2启动/停止阶段 (24)3.5.3子程序0 (25)3.5.4中断程序、PID的计算 (26)第四章基于组态软件恒温监控系统设计 (28)4.1组态王软件介绍 (28)4.2组态软件开发过程 (29)4.2.1工程整体规划 (29)4.2.2工程建立 (29)4.2.3构造数据词典 (30)4.2.4组态用户窗口 (32)4.2.5组态王设备连接 (32)4.2.6组态王画面制作与动连接 (33)4.2.7PID控制脚本编写 (34)第五章系统运行结果及分析 (37)5.1PLC控制系统仿真测试 (37)5.2控制系统PID控制性能验证 (40)第六章总结 (43)参考文献 (44)致谢 (45)第一章前言1.1恒温控制的现状与意义温度的测量和控制对人类日常生活、工业生产、气象预报、物资仓储等都起着极其重要的作用。
基于plc温度控制系统的设计论文

基于plc温度控制系统的设计论文摘要:本设计论文基于PLC温度控制系统,旨在设计一个可靠、稳定、高效、精确的温度控制系统,应用于实际工业生产中。
通过研究传感器、执行器、控制器等硬件设备的特性和功能,并结合PID控制算法和PLC编程技术,实现对温度的自动控制和实时监测。
关键词:PLC、温度控制系统、PID控制、编程技术Abstract:This design paper is based on the PLC temperature control system with the aim of designing a reliable, stable, efficient, precise temperature control system that can be applied in industrial production. Through research of the characteristics and functions of hardware equipment such as sensors, actuators, and controllers, combined with PID control algorithms and PLC programming technology, we will achieve automatic control and real-time monitoring of temperature.Keywords: PLC, temperature control system, PID control, programming technology一、引言随着科技和工业的进步,现代化工业生产中需要用到大量的自动化控制系统来实现对生产过程的智能控制,提高生产效率和品质,还能有效地降低生产成本。
其中,温度控制系统是工业生产中最常用的自动化控制系统之一。
基于PLC的温度控制系统的设计

1 引言1.1 设计目的温度的测量和控制对人类平常生活、工业生产、气象预报、物资仓储等都起着极其重要的作用。
在许多场合,及时准确获得目的的温度、湿度信息是十分重要的。
近年来,温湿度测控领域发展迅速,并且随着数字技术的发展,温湿度的测控芯片也相应的登上历史的舞台,可以在工业、农业等各领域中广泛使用。
1.2 设计内容重要是运用PLC S7-200作为可编程控制器,系统采用PID控制算法,手动整定或自整定PID参数,实时计算控制量,控制加热装置,使加热炉温度为为一定值,并能实现手动启动和停止,运营指示灯监控实时控制系统的运营,实时显示当前温度值。
1.3 设计目的通过对温度控制的设计,提高在电子工程设计和实际操作方面的综合能力,初步培养在完毕工程项目中所应具有的基本素质和规定。
培养团队精神,科学的、实事求是的工作方法,提高查阅资料、语言表达和理论联系实际的技能。
2 系统总体方案设计2.1 系统硬件配置及组成原理2.1.1 PLC型号的选择本温度控制系统采用德国西门子S7-200 PLC。
S7-200 是一种小型的可编程序控制器,合用于各行各业,各种场合中的检测、监测及控制的自动化。
S7-200系列的强大功能使其无论在独立运营中,或相连成网络皆能实现复杂控制功能。
因此S7-200系列具有极高的性能/价格比。
2.1.2 PLC CPU的选择S7-200 系列的PLC有CPU221、CPU222、CPU224、CPU226等类型。
S7-200PLC 硬件系统的组成采用整体式加积木式,即主机中涉及定数量的I/O端口,同时还可以扩展各种功能模块。
S7-200PLC由基本单元(S7-200 CPU模块)、扩展单元、个人计算机(PC)或编程器,STEP 7-Micro/WIN编程软件及通信电缆等组成。
表2.1 S7-200系列PLC中CPU22X的基本单元本设计采用的是CUP226。
它具有24输入/16输出共40个数字量I/O点。
毕业设计(论文)-基于PLC实现的水温控制

基于PLC实现的水温控制XXX(陕西理工学院电气工程系自动化专业,2007级2班,陕西汉中723003)指导教师:XXX[摘要]针对工农业生产中现有的水温控制系统可靠性低、控制精度差、成本高等缺点。
我们利用三菱FX0N60-MR型PLC构建了一个水温控制系统对这一问题进行了研究。
在整个控制系统中以电阻炉作为被控对象,以水温为被控变量,以三菱FX0N60-MR型PLC为控制器,输入部分外加光电耦合器,并用按键和数码管构建了人机接口设置目标温度;控制算法的选择经过对模糊控制和PID算法的实验对比,最终选择采用PID。
PLC程序利用梯形图编程语言进行编写。
在系统搭建完成后我们利用试凑法,通过大量实验对PID控制器的参数进行了优化,进过测试系统能够达到设计要求。
除此之外该系统还具有硬件结构简单、系统可靠性高、制作成本低廉、控制器参数易于调试等优点。
能够利用小型PLC实现对水温较高精度的控制。
[关键词]PLC 温度控制PIDPLC-based temperature control to achieveLiao zhong lin(Grade 07,Class2,Major Automation,Department of Electrical Engineering,Shaanxi University ofTechnology,Hanzhong 723003,Shaanxi)Tutor: Liu pei[Abstract] According to the existing water temperature in the industry and agriculture production control system reliability, low cost, high control precision poor shortcomings. We use mitsubishi FX0N60-MR type PLC has constructed a water temperature control system for this problem is studied. In the whole control system to resistance furnace as controlled object to water temperature as controlled variables, the mitsubishi FX0N60-MR type PLC as the controller, input part plus photoelectric couplers, buttons and digital tube and constructing the man-machine interface set target temperature; The choice of control algorithm based on fuzzy control and PID algorithm experimental, finally choosing PID. PLC program use ladder diagram programming language to write. After the completion of the structures in the system we use trail-and-error, through a large number of experiments of PID controller parameters are optimized, the test system can meet the design requirements. Besides this system also has the hardware structure is simple, system reliability high, production cost is low, and the controller parameters is easy to debug, etc. Can use small PLC to control the water temperature higher accuracy.[Key words] PLC temperature control PID目录绪论 (1)1.设计方案的论证 (2)1.1PLC的选型 (2)1.1.1常用PLC的特点比较 (2)1.1.2本设计PLC的选型 (3)1.2控制方案的选择 (3)1.2.1采用模糊控制的温度控制 (3)1.2.2采用PID算法的温度控制 (3)1.2.3 控制方案的选择 (4)2.硬件电路的设计 (5)2.1PLC硬件资源分配设计 (5)2.2温度传感器 (8)2.2.1 利用温度变送器采集 (8)2.2.2 利用DS18B20采集 (8)2.3输入部分电路设计 (10)2.3.1 设置输入部分电路设计 (10)2.3.2 AD转换结果输入部分电路设计 (10)2.4输出部分电路设计 (10)3.系统软件的设计 (13)3.1PLC编程语言简介 (13)3.2输入部分程序设计 (15)3.3显示部分程序 (15)3.4PID运算部分程序设计 (15)4.系统的调试 (19)4.1硬件调试 (19)4.2软件调试 (19)4.1软硬件联合调试 (19)4.3实验数据 (19)参考文献 (20)英语科技文献翻译 (21)附录 (34)附录A:源程序 (34)附录B:元器件清单 (37)附录C:电路总图 (38)附录D:实物图 (39)致谢 (40)绪论温度控制系统在各行各业的应用虽然很广泛,但从国内生产的温度控制器来讲,总体发展水平仍然不高。
PLC在加热炉温度控制系统中的应用

收稿日期:2003 05 28;修改稿收到日期:2003 11 11作者简介:皮红梅(1970-),女,辽宁朝阳人,1992年毕业于大连铁道学院电气系自动化专业,1998年入大连理工大学机械电子工程专业,获得硕士学位,现在沈阳工业大学辽阳校区任教,讲师,主要从事智能仪器开发与应用方面的研究,已发表论文8篇。
PLC 在加热炉温度控制系统中的应用皮红梅,刘春梅,李 华(沈阳工业大学辽阳校区工程学院,辽宁辽阳 111003)摘要:简要介绍了一种可编程控制继电器eas y 及其主要特点,叙述了它在加热炉自动温度控制系统中的应用实例,重点分析和说明了系统控制方案和软硬件结构的设计。
关键词:可编程控制器;固态继电器;温度控制中图分类号:TP273 文献标识码:B 文章编号:1007 7324(2004)01 0057 02Application of PLC in Furnace Temperature Control SystemPI Hong mei,LI U Chun mei,LI Hua(School of Eng.Shenyang Uni.of Tech.Liaoyang Region,Liaoyang,111003,C hina)Abstract:A programmable control relay easy and its features are introduced;the examples of its application in re building of the control system for furnace are described.The focal point is on the analysis and explanation of the control scheme and the struc ture of software and hardware.Keywords:PLC;SSR;temperature control辽化电力检修安装公司主要承担辽阳石油化纤公司各大企业的电气工作,包括电气设备的生产、安装、检修、调试,电力线路的敷设和维护等。
PLC在环境监测系统中的应用

PLC在自动控制与调节中的应用
顺序控制
远程控制
PLC可根据预设的程序和条件,对环 境监测系统中的设备进行自动顺序控 制,实现设备的自动启停、切换等操 作。
PLC可通过网络通信模块与上位机或 远程监控中心进行通信,实现远程监 测和控制功能。
PID调节
PLC内置PID控制算法,可根据实时监 测数据与设定值的比较结果,自动调 节执行机构的输出,使环境参数稳定 在设定范围内。
02
PLC技术概述
PLC的定义和工作原理
PLC定义
可编程逻辑控制器(Programmable Logic Controller, PLC)是一种专门为在工业环境下应用而设计的数字运算操 作的电子装置。
工作原理
PLC采用可以编制程序的存储器,用来在其内部存储执行逻 辑运算、顺序运算、计时、计数和算术运算等操作的指令, 并能通过数字式或模拟式的输入和输出,控制各种类型的机 械或生产过程。
高速运算
PLC采用高性能处理器,能够实现高速数据采集和 处理。
多任务处理
PLC支持多任务并行处理,可同时处理多个监测任 务,提高系统效率。
数据存储
PLC内置大容量存储器,可长期保存监测数据,便 于后续分析和处理。
易于维护和扩展
模块化设计
01
PLC采用模块化设计,便于根据实际需求进行灵活配置和扩展。
标准通信接口
02
PLC支持多种标准通信接口,可与其他设备或系统实现便捷通信
。
编程和调试便捷03PLC提供直观的编程软件和调试工具,降低系统开发难度和成本
。
06
PLC在环境监测系统中的实 施与调试
PLC的选型和配置
1 2 3
PLC类型选择
PLC在空调与暖通系统控制中的应用和效果评估

PLC在空调与暖通系统控制中的应用和效果评估随着科技的不断发展,自动化控制系统在各个领域的应用越来越广泛。
其中,可编程逻辑控制器(PLC)在空调与暖通系统控制中的应用得到了广泛的关注和研究。
本文将探讨PLC在空调与暖通系统中的应用,并评估其效果。
一、PLC在空调系统控制中的应用1. 温度控制:PLC可以通过传感器实时监测房间温度,并根据设定的温度范围进行调控。
当温度高于设定值时,PLC将发出指令,控制空调系统降低温度;当温度低于设定值时,PLC则控制系统加热。
这种温度控制方式可以提高空调系统的稳定性和能效。
2. 风速控制:通过PLC控制空调系统中的风机,可以实现不同风速的调节。
根据房间内部和外部环境的温度差异,PLC可以自动调整风速,以提供最佳的舒适度。
3. 湿度控制:在一些特定的场合,如实验室或电子设备房间,湿度控制是至关重要的。
PLC可以通过湿度传感器检测湿度变化,并根据预设的湿度范围来控制加湿器或除湿器的运行,实现湿度的精确控制。
二、PLC在暖通系统控制中的应用1. 温度控制:类似于空调控制,PLC可以通过传感器检测室内温度,并根据设定的温度范围来控制暖通设备。
当温度低于设定值时,PLC将启动暖气设备;当温度高于设定值时,PLC则控制系统停止供热,以节省能源。
2. 风量控制:暖通系统通常包括风管和风机等元件,PLC可以通过控制风机的运行来调整空气流通量。
根据室内人员数量和外部温度等因素,PLC能够智能地调节风机运行速度,以提供舒适的室内环境。
3. 换气控制:在暖通系统中,换气是保持空气新鲜和净化的关键。
PLC可以通过控制排风机和新风机的运行时间和风量,实现室内空气的有效循环和新鲜氧气的补给。
三、PLC在空调与暖通系统控制中的效果评估1. 精确控制:PLC作为一种计算能力强大的控制装置,能够实现对温度、湿度和风速等参数的精确控制。
相比传统的控制方式,PLC能够更准确地感知环境变化,并做出相应的调整,从而提供更舒适的室内环境。
PLC在仪器仪表中的应用案例

PLC在仪器仪表中的应用案例PLC(可编程逻辑控制器)是一种用于自动化控制的电子设备,广泛应用于工业生产过程中。
随着技术的不断进步,PLC的应用范围也不断扩大,从传统的生产线控制到各个领域的自动化控制,包括仪器仪表领域。
本文将介绍一些PLC在仪器仪表中的应用案例,展示其在提高生产效率、优化操作流程和确保工作安全方面的重要作用。
1. 自动化检测系统在仪器仪表领域,自动化检测系统是一项关键的应用。
传统上,人工检测需要大量的时间和人力资源,且存在人为误差的风险。
然而,通过使用PLC控制自动化检测系统,可以实现快速、准确的检测过程。
例如,在电子设备生产过程中,PLC可以控制仪器仪表进行各项功能的测试,同时记录并报告测试结果。
这种自动化检测系统大大提高了产品质量,缩短了生产周期,降低了成本。
2. 流程控制系统在复杂的生产流程中,使用PLC实现流程控制系统可以帮助提高操作流程的效率和一致性。
例如,在化工领域的实验室中,研究人员需要根据特定的实验流程控制各种仪器仪表的操作。
通过PLC控制系统,可以事先编写程序来指导各个仪器仪表的操作顺序和参数设置,确保流程的准确性和一致性。
这不仅提高了生产效率,还减少了操作错误的风险。
3. 温度控制系统在一些需要精确温度控制的实验或生产过程中,PLC也发挥着重要的作用。
通过PLC控制温度控制系统,可以实时监测和调整温度,确保温度处于预设的范围内。
例如,在制药工业中,PLC可以控制反应釜中的加热和冷却过程,以确保反应温度的稳定性和精确性。
这种温度控制系统不仅提高了产品质量,还确保了生产过程的安全性。
4. 数据采集与分析系统PLC还可以与仪器仪表配合使用,实现数据采集和分析系统。
通过PLC控制仪器仪表进行数据采集,并将数据传输到中央控制室或数据库中进行进一步处理和分析。
这种数据采集与分析系统可以提供实时数据,帮助操作人员监控生产过程,分析问题和制定改进措施。
以化工工业为例,PLC可以采集反应釜中的温度、压力和流量数据,通过分析这些数据来判断反应过程是否正常,并及时采取相应的措施。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:PLC在温度监测与控制系统中的应用
1.工艺过程
在工业生产自动控制中,为了生产安全或为了保证产品质量,对于温度,压力,流量,成分,速度等一些重要的被控参数,通常需要进行自动监测,并根据监测结果进行相应的控制,以反复提醒操作人员注意,必要时采取紧急措施。
温度是工业生产对象中主要的被控参数之一。
本设计以一个温度监测与控制系统为例,来说明PLC在模拟量信号监测与控制中的应用问题。
2.系统控制要求
PLC在温度监测与控制系统中的逻辑流程图如图所示:
具体控制要求如下:
将被控系统的温度控制在50度-60度之间,当温度低于50度或高于60度时,应能自动进行调整,当调整3分钟后仍不能脱离不正常状态,则应采用声光报警,以提醒操作人员注意排除故障。
系统设置一个启动按纽-启动控制程序,设置绿,红,黄3个指示灯来指示温度状态。
被控温度在要求围,绿灯亮,表示系统运行正常。
当被控温度超过上限或低于下限时,经调整3分钟后仍不能回到正常围,则红灯或黄灯亮,并有声音报警,表示温度超过上限或低于下限。
在被控系统中设置4个温度测量点,温度信号经变送器变成0~5V的电信号(对应温度0~100度),送入4个模拟量输入通道。
PLC读入四路温度值后,再取其平均值作为被控系统的实际值。
若被测温度超过允许围,按控制算法运算后,通过模拟两输出通道,向被控系统送出0~10V的模拟量温度控制信号。
PLC通过输入端口连接启动按钮,通过输出端口控制绿灯的亮灭,通过输出端口控制红灯的亮灭,通过输出端口控制黄灯的亮灭。
系统要求温度控制在50度~60度的围,为了控制方便,设定一个温度较佳值(本题设为50度),并以此作为被控温度的基准值。
另外,还需要设定输出控制信号时的调节基准量,正常情况下,输出基准量时被控制温度接近较佳值。
本例设定的基准调节量相当于PLC(输出6V)。
加热炉一类的温度控制对象,其系统本身的动态特性基本上属于一阶滞后环节,在控制算法上可以采用PLD控制或在林算法。
由于本系统温度控制要求不高,为了简化起件,本例按P(比例)控制算法进行运算采样调节周期高为1秒。
实现温度检测懒惰控制的过程包括:
PLC投入运行时,通过特殊辅助继电器M71产生的初始化脉冲进行初始化,包括将温度较佳值和基准调节存入有关数据寄存器,使计时用的两个计数器复位。
按启动按钮(X500),控制系统投入运行。
采样时间到,则将待测的四点温度值读入PLC,然后按算术平均的办法求出四点温度的平均值Q。
将Q 与Qmax(温度允许上限)比较,若也未低于下限,则说明温度正常,等待下一次采样。
若Q﹥Qmax,进行上限处理:计算Q与上限温度偏差,计算调节量(比
例系数设为2),发出调节命令,并判断调节时间,若调节时间太长,进行声光(红灯亮);若调节时间未到3分钟,则准备下次继续采样及调节。
当采样温度低于下限,即Q<Qmax时,进行下限处理:计算Q与下限温度偏差,计算调节量,发出调节命令,并判断调节时间,若调节时间太长,进行声光(黄灯亮);若调节时间未到3分钟,则准备下次继续采样及调节。
3.控制系统的I/O点及地址分配
控制系统的模块号,输入/输出端子号,地址号,信号名称,说明如表:
控制系统的序号,名称,地址,注释如表:
4.PLC系统选型
参照西门子ST-200产品目录及市场实际价格,选用主机为CPU222(8/6
继电器输出)一台,加上一台扩展模块EM222(8继电器输出),再扩展一个模拟量模块EM235(4AI/1AO)。
这样的配置是最经济的。
整个PLC系统的配置如图所示。
5.电气控制系统原理图
电气控制系统原理图包括主电路图,控制电路图及PLC外围接线图。
1)主电路图
如图所示为电控系统主电路。
一台加热器为M1。
接触器KM1控制着M1正常运行,FR1为加热器过载保护用的热继电器;QF1为断路器;FU1为主电路的熔断器,VVVF为简单的一般变频器。
2)控制电路图
如图所示,
3)PLC外围接线图
6.主程序及梯形图
1)主程序OB1
1.总启动与总停止
LD SM0.0
A I0.0
S Q0.1, 1
2.正常围显示
LD SM0.0
AR>= VD40, 2.5
S Q0.3, 1
S M0.1, 1
3.调用子程序0以便控制LD I0.0
S M0.0, 1
CALL SBR_0
4.超过上下限启动定时器
LD M0.0
LDR< VD40, 2.5
OR> VD40, 3.0
ALD
A M0.1
TON T101, 1800
5.定时到还不在规定围则报警. LD SM0.0
A T101
LPS
AR> VD40, 3.0
S Q0.2, 1
S Q0.5, 1
R Q0.3, 1
LPP
AR< VD40, 2.5 S Q0.4, 1
S Q0.5, 1
R Q0.3, 1
6.正常情况下的指示
LD SM0.0
A I0.1
R M0.1, 1
R Q0.1, 1
R Q0.2, 1
R Q0.3, 1
R Q0.4, 1
R Q0.5, 1
2)设计PID参数
LD M0.0
MOVR 2.75, VD4
MOVR 2.0, VD12
MOVR 1.0, VD16
MOVR 0.0, VD20
MOVR 0.0, VD24
MOVB 100, SMB34 ATCH INT_0, 10
ENI
3)取实际温度变量
1. 四温度传感器电压值送存LD SM0.0
MOVW AIW0, VW0 MOVW AIW2, VW2 MOVW AIW4, VW4 MOVW AIW6, VW6
2.温度实际电压值送存LD SM0.0 MOVW VW0, VW8 +I VW2, VW8 MOVW VW4, VW10 +I VW6, VW10 MOVW VW8, VW12 +I VW10, VW12 MOVW VW12, VW14 /I +4, VW14
ITD VW14, VD40
4)PID调节与输出
1. 得到过程变量VD0 LD M0.0
CALL SBR_1
MOVD VD40, AC0 DTR AC0, AC0
/R 32000.0, AC0 MOVR AC0, VD0
2.VB0号PID表
LD SM0.0
PID VB0, 0
3.PID调节输出
LD SM0.0 MOVR VD8, AC0
*R 32000.0, AC0 ROUND AC0, AC0 DTI AC0, VW40 MOVW VW40, AQW0。