总体、样本、统计量的概念

合集下载

统计学的几个概念

统计学的几个概念

一 统计学的几个概念 1、总体和个体:在统计学中,研究对象的全体称为总体;组成总体的每个单位,即每个研究对象称为个体;总体中所包含的个体的数量------总体容量;容量有限-----有限总体; 容量无限-------无限总体 2、样本:从总体中抽出的部分个体组成的集合称为称为来自总体的样本。

通常样本是相互独立且与总体同分布;样本中所含个体的数量称为样本容量。

一般地:设X 是一个随机变量,n X X X ,,,21 是一组相互独立且与X 同分布的随机变量,则称X 是总体,n X X X ,,,21 为来自总体X 的简单随机样本,简称:样本,n 为样本容量。

3、统计量定义:设n X X X ,,,21 为来自总体X 的简单随机样本,),,,(21n X X X g 是一个关于n X X X ,,,21 的连续函数,若g 中不含 任何未知参数,则称),,,(21n X X X g 是一统计量. 常见的统计量有:①样本平均值: X = ∑=ni i X n 11②样本方差:212)(11∑=--=ni i X X n S 备注: 212)(1∑=-=ni i X X n S 叫做未修正的样本方差;2S 称为修正的样本方差,平时若未特别标明,样本方差均指修正的2S2S 有较简单的计算公式: )(111222∑=--=n i i X n X n S证明:③样本标准差:21)(11∑=--=ni i X X n S ④样本k 阶原点矩:∑==n i ki k X n A 11 ,2,1=k⑤样本k 阶中心矩:∑=-=n i ki k X X n A 1)(1 ,2,1=k二、抽样分布统计量的分布叫做抽样分布. 1.样本均值的分布:由中心极限定理可知: 只要n X X X ,,,21 是相互独立且同分布的(设i i DX EX ,μ==2σ),则 当n 充分大时,X 就可近似的服从正态分布.即X ~ ),(2nN σμ应用举例:设X ~],[b a U ,5021,,,X X X 是来自X 的一个样本, X 是样本均值,求)(X E 和)(X D解: 因为X ~],[b a U ,所以2ba EX +=, 12)(2ab DX -=故)(X E =2ba EX +=,)(X D =600)(12ab DX n -=设总体X ~),(2σμN ,n X X X ,,,21 是一个样本, X 是样本均值,,求①设25=n ,求}2.02.0{σμσμ+<<-X P②要使05.0}1.0{≤>-σμX P ,n 至少应等于多少? 解:设X 与Y 相互独立,而且都服从)9,30(N ,2021,,,X X X 和2521,,,Y Y Y 是分别来自X 与Y 的样本,求4.0>-Y X 的概率?解:结论:若(n X X X ,,,21 )是来自总体2~(,)X N μσ的一个样本,X 为样本均值,则①~X ),(2nN σμ②X 与2S 相互独立。

统计学中的样本与总体

统计学中的样本与总体

统计学中的样本与总体在统计学中,样本和总体是两个重要的概念。

样本是指从总体中抽取的一部分观察对象或数据,而总体是指包含所有感兴趣的观察对象或数据的集合。

在进行统计分析时,对样本的研究可以推断出总体的一些特征。

1. 样本的选择与抽样方法选择一个合适的样本是进行统计研究的重要一步。

样本应代表总体的特征,因此需要使用合适的抽样方法。

常见的抽样方法包括简单随机抽样、分层抽样和系统抽样。

简单随机抽样是指每个观察对象被选中的机会相等,而分层抽样是根据总体的不同层次进行分层,然后从每个层次中随机选择样本。

系统抽样是按照某种规律从总体中选取样本。

2. 样本容量与抽样误差样本容量指样本中观察对象或数据的数量。

样本容量越大,对总体的推断越准确。

抽样误差是指样本统计量与总体参数之间的差异。

当样本容量较小时,抽样误差会较大,因此在选择样本容量时需要根据具体问题和资源限制进行权衡和决策。

3. 样本统计量与总体参数样本统计量是对样本数据的总结和描述,例如样本均值、样本标准差等。

总体参数是对总体的特征的度量,例如总体均值、总体标准差等。

样本统计量可以用来估计总体参数,并通过抽样误差的控制来增强估计的准确性。

通过抽样方法和统计推断的方法,可以通过样本来推断总体参数的范围和分布。

4. 中心极限定理与样本分布中心极限定理是统计学中的重要定理之一。

它指出,当样本容量足够大时,样本均值的分布将近似于正态分布,无论总体分布是什么样的。

这意味着即使总体不服从正态分布,通过大样本的方法仍然可以进行统计分析。

中心极限定理为统计学提供了重要的理论基础,使得在实际应用中可以更准确地从样本推断总体的特征。

5. 样本推断与置信区间样本推断是统计学中的一个重要任务,它使用样本数据来对总体进行推断和估计。

置信区间是样本统计量的一个范围,对总体参数的值给予一定的置信水平。

例如,可以用样本均值和标准误差来构建样本均值的置信区间,用于估计总体均值的范围。

6. 样本假设检验与显著性水平样本假设检验是判断样本数据是否支持某个假设的一种方法。

卫生统计学

卫生统计学

第一章绪论一,名词解释参数:根据总体分布的特征而计算的总体统计指标。

总体:研究目的确定的同质观察单位的全体。

同质:总体中个体具有相同的性质。

变异:同质基础上的个体差异。

样本:从总体中随机抽取的有代表性的一部分观察单位,其实测值的集合。

统计量:由总体中随机抽取样本而计算的相应样本指标。

概率:描述随机事件发生的可能性大小的数值。

(概率的统计定义:在一定条件下,重复做n次试验,nA为n 次试验中事件A发生的次数,如果随着n逐渐增大,频率nA/n逐渐稳定在某一数值p附件,则数值p称为事件A在该条件下发生的概率。

)抽样误差:由个体变异的存在和抽样引起样本统计量与相应的总体参数间以及各样本统计量之间的差别。

二,问答题。

统计学的基本步骤有哪些?答:统计学是一门处理数据中变异性的科学与艺术,它包括收集数据、分析数据、解释数据,以及表达数据。

总体与样本的区别与关系?答:区别:样本是总体的一部分,联系:如果样本的均衡性较好,就能够代表总体的特征。

抽样误差产生的原因有哪些?可以避免抽样误差吗?答:一,个体差异引起;二,抽样方法引起。

抽样误差不能避免,但可以随着样本含量的增大而减小。

何为概率及小概率事件?答:概率是指在一定条件下,重复做n次试验,nA为n次试验中事件A发生的次数,如果随着n逐渐增大,频率nA/n逐渐稳定在某一数值p附件,则数值p称为事件A在该条件下发生的概率。

小概率事件是指习惯上将P<=0.05或P<=0.01称为小概率事件,表示某事件发生的可能性很小。

第二章定量资料的统计描述一、名词解释频数:对一个随机事件进行反复观察,其中某变量值出现的次数被称为频数。

方差:用来度量随机变量和数学期望(即均值)之间的偏离程度。

标准差:也称均方差,是各数据偏离平均数的距离的平均数。

中位数:是指将原始观察值从小到大或从大到小排序后,位次局中的那个数。

几何均数:变量对数值的算数均数的反对数。

四分位数间距:百分位数P75和百分位数P25之差。

生物统计学名词解释

生物统计学名词解释

1.样本: 样本从总体中抽出的若干个体所构成的集合称为样本。

2.总体: 总体指具有相同性质的个体所组成的集合称为总体。

3.连续变量:表示在不变量范围内可抽出某一范围的所有值。

4.非连续变量:也称为离散型变量,表示在变量数列中,仅能取得固定数值,并且通常是整数。

准确性:指在调查或实验中某一试验指标或形状的观测值与真值接近的程度。

精确性:指调查或实验中同一试验指标或形状的重复观测值彼此接近程度大小。

资料:指在一定条件下,在生物学实验和调查中,能够获得大量原始数据,对某种具体事务或现象观察的结果。

数量性状资料:指一般是由计数和测量或度量得到的。

质量性状资料:是指对某种现象只能观察而不能测量的资料,也称属性资料。

计数资料;指由计数得到的数据。

计量资料:有测量或度量得到的数据。

普查:指对研究对象的每一个个体都进行测量或度量的一种全面调查。

抽样调查:是一种非全面调查,它是根据一定的原则对研究对象抽取一部分个体进行测量或度量,把得到抽样调查的数据资料作为样本进行统计处理,然后利用样本特征数对总体进行推断。

全距(极差):是指样本数据资料中最大观测值与最小观测值的差值。

组中值:是指两个组限下线和上限的中间值。

算数平均数:是指总体或样本资料中哥哥给观测值的总和除以观测值的个数所得的商。

中位数:是指将试验或调查资料中所有观测值以大小顺序排列,居中位置的观测值。

众数:资料中出现次数最多的那个观测值或次数最多一组的中点值。

几何平均数:指资料中有几个观测值,其乘积开几次方所得的数值。

方差:指用样本容量n 来除离均差平方和,得到平均的平方和。

标准差:指方差的平方根和。

变异系数:指将样本标准差除以样本平均数得出的百分比。

概率:指某事件 A 在n 次重复试验中,发生了几次,当试验次数n 不断增大时,事件 A 发生的频率W(A)概率就越来越接近某一确定值P,于是则定P 为事件 A 发生的概率.和事件:指事件 A 和事件 B 至少有一件发生而构成的新事件称为事件A 和事件 B 的事件。

总体与样本名词解释

总体与样本名词解释

总体与样本名词解释总体与样本是统计学中常用的两个名词。

它们在统计推断和概率论中扮演着重要的角色。

总体(population)是指研究对象的全体。

它可以是一个人群、一个国家的居民、一家公司的员工等等。

总体是研究者感兴趣的统计指标的全集合。

例如,如果我们想研究全球人口的平均身高,那么全球人口就是总体。

样本(sample)是从总体中选择出来的一部分观察值。

样本是对总体的一种估计。

选择样本可以减少数据收集的成本和时间,同时也能够提供关于总体特征的信息。

例如,我们可以从全球人口中选择一部分人进行调查,他们的身高数据就构成了一个样本。

总体与样本之间的关系可以通过抽样(sampling)来实现。

抽样是从总体中无偏地选取样本的过程。

在抽样过程中,我们希望样本能够代表总体的特征。

具体的抽样方法包括简单随机抽样、分层抽样、整群抽样等等。

通过合适的抽样方法,我们可以用样本的数据推断总体的特征。

在统计推断中,总体和样本是很重要的概念。

我们通常对样本进行统计量的计算,例如样本均值、样本比例等等。

然后利用这些统计量来估计总体的参数,例如总体均值、总体比例等等。

通过根据样本对总体的估计,我们可以对总体的特征作出推断。

总体和样本还可以用来探索数据的分布特征和进行假设检验。

在数据的分析过程中,我们可以通过对样本的分析来了解总体的分布形态和特征。

并且通过比较样本的统计量和总体参数的差异,我们可以判断所提出的假设是否成立。

总体和样本在统计学中起着重要的作用,它们是进行统计推断和概率分析的基础。

理解总体和样本的概念以及它们之间的关系,可以帮助我们更好地理解和解释数据。

同时,正确选择样本和采用合适的抽样方法,也是保证统计推断和估计的准确性和可靠性的关键。

卫生统计学名词解释

卫生统计学名词解释

1.总体:总体(population)是根据研究目的确定的同质的观察单位的全体,更确切的说,是同质的所有观察单位某种观察值(变量值)的集合.总体可分为有限总体和无限总体.总体中的所有单位都能够标识者为有限总体,反之为无限总体。

ﻫ样本:从总体中随机抽取部分观察单位,其测量结果的集合称为样本(samp le)。

样本应具有代表性。

所谓有代表性的样本,是指用随机抽样方法获得的样本。

2.随机抽样:随机抽样(random sampling)是指按照随机化的原则(总体中每一个观察单位都有同等的机会被选入到样本中),从总体中抽取部分观察单位的过程。

随机抽样是样本具有代表性的保证.ﻫ3。

变异:在自然状态下,个体间测量结果的差异称为变异(variation)。

变异是生物医学研究领域普遍存在的现象.严格的说,在自然状态下,任何两个患者或研究群体间都存在差异,其表现为各种生理测量值的参差不齐。

4.计量资料:对每个观察单位用定量的方法测定某项指标量的大小,所得的资料称为计量资料(measurementdata)。

计量资料亦称定量资料、测量资料.。

其变量值是定量的,表现为数值大小,一般有度量衡单位。

如某一患者的身高(cm)、体重(kg)、红细胞计数(1012/L)、脉搏(次/分)、血压(KPa)等ﻫ计数资料:将观察单位按某种属性或类别分组,所得的观察单位数称为计数资料(count data).计数资料亦称定性资料或分类资料。

其观察值是定性的,表现为互不相容的类别或属性。

如调查某地某时的男、女性人口数;治疗一批患者,其治疗效果为有效、无效的人数;调查一批少数民族居民的A、B、AB、O四种血型的人数等。

等级资料:将观察单位按测量结果的某种属性的不同程度分组,所得各组的观察单位数,称为等级资料(ordinal data)。

等级资料又称有序变量。

如患者的治疗结果可分为治愈、好转、有效、无效或死亡,各种结果既是分类结果,又有顺序和等级差别,但这种差别却不能准确测量;一批肾病患者尿蛋白含量的测定结果分为 +、++、+++等。

抽样调查基本概念

抽样调查基本概念

第四部分统计——第二十五章抽样调查本章重点:1.抽样调查基本概念(总体、样本、样本量、总体参数、样本统计量与抽样框),概率抽样和非概率抽样,抽样调查一般步骤,抽样调查中的误差来源(抽样误差、非抽样误差、抽样框误差、无回答误差、计量误差)等。

2.几种基本概率抽样方法:简单随机抽样、分层抽样、系统抽样、整群抽样和多阶段抽样。

3.估计量的性质(无偏性、有效性和一致性),样本量的影响因素。

知识点一、抽样调查基本概念(一)抽样调查基本概念1.总体:即调查对象的全体,调查总体必须是明确的而不能是模糊的。

【示例】:研究全国钢铁企业盈利状况,所有钢铁企业是总体。

样本:总体的一部分,它由从总体中按一定原则或程序抽出的部分个体所组成。

【示例】:选取了20家钢铁企业是样本。

样本量:样本中包含的入样单位的个数。

【示例】:20。

2.抽样框:供抽样所用的所有抽样单元的名单,是抽样总体的具体表现。

【示例】:工商局注册的20家企业。

3.总体参数:变量的数字特征,根据总体中所有单位的数值计算的。

【示例】:所有钢铁企业盈利总额,所有钢铁企业盈利均值。

4.样本统计量:根据样本中各单位的数值计算的,是对总体参数的估计,因此也称为估计量。

常用的样本统计量:样本均值,样本比例、样本方差等。

【示例】:20家企业盈利总额,20家企业盈利均值。

【例题·单选题】(2016年)北京市旅游管理部门要通过抽样调查了解2015年北京市常驻居民出境旅游总消费金额,该抽样调查的总体参数是2015年北京市()。

A.所有常住居民旅游总消费金额B.被调查的常住居民出境旅游总消费金额C.被调查的每一位常驻居民出境旅游消费金额D.所有常住居民出境旅游总消费金额『正确答案』D『答案解析』本题考查抽样调查基本概念。

总体参数是我们所关心变量的数字特征,它是根据总体中所有单位的数值计算的。

【例题·单选题】(2015年)在某市随机抽取2000家企业进行问卷调查,并据此调查有对外合作意向的企业,该抽样调查中的总体是()。

统计名词解释

统计名词解释

名词解释:1,总体(population):总体指根据研究目的所确定的同质的观察单位的全体。

更确切的说,它是同质的所有观察单位某种观察值的集合。

可分为有限总体和无限总体。

总体中只包含有限个观察单位者为有限总体,反之为无限总体。

2,样本(sample):从总体中随机抽取部分观察单位的测量结果集合称为样本。

样本应具有可靠性和代表性。

样本的可靠性是指样本的确是来自同一总体,具有同质性;代表性是必须采用随机抽样方法从总体中获得的足够多的观察单位。

3,参数(parameter):参数是用来表示总体分布特征的统计数字。

统计中常用的总体参数有描述总体分布中心位置或集中趋势的总体平均数指标;有描述总体离散度的总体变异指标。

4,统计量(statistic):统计量是依据样本观察值推算出的反映样本分布特征(如样本平均数、样本变异等)的一些量。

5,误差(error):观察值与真值之差称为误差。

误差分为过失误差、系统误差和随机误差三类。

6,抽样误差(sampling error):抽样误差是随机误差中的一种,它是由抽样所至的样本统计量与总体参数间的差异。

抽样误差愈小,用样本推算总体的精确度就愈高,反之亦然。

7,正态分布(normal distribution)和标准正态分布():由密度曲线f(x) = (1/√2π)×(1/σ)×EXP[(-1/2)×(x-x0)^2/σ^2]确定的中间高、两边低、左右对称的连续随机变量的分布称为正态分布。

记为N(μ,σ2) ,其中μ为总体均数σ为总体标准差;把总体均数为0,把总体标准差为1的正态分布N(0,1)称为标准正态分布。

一般正态分布可以通过μ=(x-μ)/σ转化为标准正态分布。

8,抽样误差(sampling error):在抽样研究中,由抽样所至的样本与总体参数间的差异称为抽样误差。

9,标准误(standard error):标准误就是样本统计量的标准差,它反映了统计量间的变异程度,也间接的反映抽样误差的大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档