晶体结构,配合物结构知识点与习题
章习题及答案

8. 试从离子极化观点解释,HgCl 为白色,溶解度较大,HgI 为黄色或红色,溶解度较小。
答:Hg 为 18e 构型的,极化力较强,变形性也比较强,而 Cl 与 I 相比,I 离子半径更大,变形性更强,
所以 Hg 与 I 间附加极化作用很强,其结果使晶体中共价成分增大,而难溶于水和颜色加深。
9. 试比较下列两组化合物中正离子极化能力的大小。<1>. ZnCl、CaCl、FeCl、KCl
10. 下列化合物熔点最高的是( B )
A. MgCl
Hale Waihona Puke B. NaCl C. ZnCl D. AlCl
11. 下列化合物在水中溶解度最大的是( A )
A. AgF
B. AgCl
C. AgBr
D. AgI
12. 下列化合物哪个熔沸点最低( D )
A. KCl
B. CaCl
C. AlCl D. GeCl
13. 下列氧化物属于离子型的是( D )
3. 石墨晶体是( D ) A. 原子晶体 B. 金属晶体 C. 分子晶体 D. 前三种晶体的混合型
4. 关于离子晶体的性质,以下说法中不正确的是( A ) A. 所有高熔点的物质都是离子型的物质; B. 离子型物质的饱和水溶液是导电性很好的溶液;
C. 熔融的碱金属氯化物中,导电性最好的是 CsCl;
9. 填下表:
物质 晶格结点上质点 质点内作用力 晶体类型 预测熔点高低
CaO 离子.Ca .O
离子键
离子晶体 高
SiC
Si.C
共价键
原子晶体 很高
HF
极性分子.HF
分子间力.氢键 分子晶体 低
10. 离子的极化力是某种离子使异号离子被极化而变形的能力,极化力与离子电荷,离子半径 ,以及
2022年高考化学晶体的结构与性质专项训练之知识梳理与训练及答案

2022年高考化学晶体的结构与性质专项训练之知识梳理与训练及答案一、晶体的结构与性质1.经X射线研究证明PCl5在固态时,其空间构型分别是正四面体和正八面体的两种离子构成,下列关于PCl5的推断正确的是()A.PCl5晶体是分子晶体B.PCl5晶体由[PCl3]2+和[PCl2]2-构成,且离子数目之比为1∶1C.PCl5晶体由[PCl4]+和[PCl6]-构成,且离子数目之比为1∶1D.PCl5晶体具有良好的导电性2.下列物质的结构与性质与氢键无关的是①乙醚的沸点②冰的密度比液态水小③邻羟基苯甲酸的熔沸点比对羟基苯甲酸的低④水分子在高温下很稳定⑤氢化镁的晶格能高⑥DNA的双螺旋结构⑦尿素的熔沸点比醋酸高A.④⑥②B.①④⑤C.②⑤⑥D.③⑤⑦3.GaAs 晶体的熔点很高,硬度很大,密度为ρ g•cm-3,Ga和 As的摩尔质量分别为 M Ga g•mol-1 和 M As g•mol-1,原子半径分别为 r Ga pm 和 r As pm,阿伏加德罗常数值为 N A,其晶胞结构如图所示,下列说法错误的是A.该晶体为共价晶体B.该晶体中 Ga 和 As 均无孤对电子,Ga 和 As 的配位数均为 4C .原子的体积占晶胞体积的百分率为-2733AGa As4π10Nρ(r Ga+r As)3(M+M)⨯⨯⨯D.所有原子均满足 8 电子稳定结构4.实验室常用氟化钙固体和浓硫酸混合加热制HF:CaF2+H2SO4(浓)CaSO4+2HF↑。
下列关于该反应的说法错误的是A.该反应利用了浓硫酸的酸性和难挥发性B.CaF2晶体中Ca2+和F-的配位数之比为1:2C.影响H2SO4和CaSO4熔点的作用力不同D.HF是极性分子且分子极性强于HC15.观察下列模型并结合有关信息,判断下列说法不正确的是()晶体硼(其每个结构单元中有12个B原子)NaCl S8HCN结构模型示意图备注熔点2573K——易溶于CS2——A.晶体硼属于原子晶体,结构单元中含有30个B-B键,含20个正三角形B.NaCl晶体中每个Na+周围距离最近且相等的Na+有6个C.S8分子中的共价键为非极性键D.HCN分子中含有2个σ键,2个π键6.下列有关晶体的说法中正确的是A.原子晶体中只存在非极性共价键B.稀有气体形成的晶体属于原子晶体C.在晶体中有阳离子的同时不一定有阴离子D.非金属氧化物固态时都属于分子晶体7.对下列图形解释的说法错误的是()A.晶体金红石的晶胞如图1所示,推知化学式为TiO2(注:氧原子分别位于晶胞的上下底面和内部)B.配合物(如图2)分子中含有分子内氢键C.某手性分子如图3:可通过酯化反应让其失去手性D.可以表示氯化钠晶体,是氯化钠的晶胞8.最近我国科学家预测并据此合成了新型碳材料:T-碳。
晶体结构与性质 晶体结构与性质知识点

晶体结构与性质晶体结构与性质知识点第34讲晶体结构与性质(一)(考纲要求)1、理解离子键的形成,能根据离子化合物的结构特征解释其物理性质。
2、了解原子晶体的特征,能描述金刚石、二氧化硅等原子晶体的结构与性质的关系。
3、理解金属键的含义,能用金属键理论解释金属的一些物理性质。
4、了解化学键和分子间作用力的区别。
5、了解氢键的存在对物质性质的影响,能列举含有氢键的物质。
6、了解分子晶体与原子晶体、离子晶体、金属晶体的结构微粒、微粒间作用力的区别。
7、了解简单配合物的成键情况。
(课前预习区)一、认识晶体1、晶体的定义:微观粒子在空间按一定规律做周期性重复排列构成的固体物质2、晶体的特性:(1)有规则的几何外形(自范性:在适宜的条件下,晶体能够自发的呈现封闭的、规则的多面体外形。
)(2)有确定的熔点(3)各向异性:在不同的方向上表现不同的性质(4)具有特定的对称性3、晶体是由晶胞堆积得到的,故晶胞就能反映整个晶体的组成。
利用晶胞可以求化学式——均摊法。
均摊法是指每个晶胞平均拥有的粒子数目。
若某个粒子为N 个晶胞所共有,则该粒子有1/N属于此晶胞。
以正方体晶胞为例,晶胞中不同位置的粒子对晶胞的贡献为:顶点原子_______属于此晶胞棱上原子_______属于此晶胞面上原子_______属于此晶胞体内原子完全属于此晶胞若晶胞为六棱柱,则顶点原子有________属于此晶胞,棱上有________属于此晶胞。
练习、硼镁化合物刷新了金属化合物超导温度的最高记录。
该化合物晶体结构中的重复结构单元如图所示。
十二个镁原子间形成正六棱柱,两个镁原子分别在棱柱上底、下底的中心;六个硼原子位于棱柱内。
则该化合物的化学式可表示为A 、Mg 14B 6 B 、MgB 2 ()● ○ Mg BC 、Mg 5B 12D 、Mg 3B 2二、晶体结构1、金属晶体(1)金属键:_____________________________________________________________成键微粒:________________________特征:影响金属键强弱因素及对金属性质的影响:(2)金属晶体:(3)金属晶体物理性质的解释2、离子晶体(1)离子键:____________________________________________________________成键微粒:_________________ 特征:____________________________影响离子键强弱因素:(2)离子晶体定义:(3)晶格能:①影响因素②与离子晶体性质的关系:晶格能越大,形成的离子晶体越,且熔点越,硬度越。
无机化学 第十一章配合物结构

② 先阴离子配体,后阳离子和中性配体;
K[PtCl3NH3] 三氯· 氨合铂(Ⅱ)酸钾 配体数目(一、二、三等) →配体名称→合→中心 离子名称(氧化态Ⅰ、Ⅱ、Ⅲ等)
③ 同类配体,按配位原子元素符号的字母顺序排列:
[Co(NH3)5H2O]Cl3
三氯化五氨· 水合钴(Ⅲ)
④ 同类配体而且配位原子相同时,则将含较少原子数
(2)[ 内界 ] 命名顺序:
配体数目(一、二、三等) →配体名称→合→中心 离子名称(氧化态Ⅰ、Ⅱ、Ⅲ等)
[Co(NH3)6]Cl3 [Cu(en)2]SO4 H2[SiF6] [Cu(H2O)4]2+
三氯化六氨合钴(Ⅲ) 硫酸二乙二胺合铜(Ⅱ) 六氟合硅(Ⅵ) 酸 四水合铜(Ⅱ)配离子
(3) 多种配体共存时排列顺序 ① 先无机配体,后有机配体; [PtCl2(Ph3P)2] 二氯· 二(三苯基膦)合铂(Ⅱ)
一般若分子无“对称面”或“反演中心”,则 有对映异构体。 ①Mabcd四面体分子有对映体; ②平面正方形配合物某配体中含有手性C、N、P,As 则有对映体; ③八面体没有σ或i,则有对映体。
m C A A B CC AA AA MM BB CB BC A A M B C M C M B C A A
轨道,可以和CN-离子充满电子的pz轨道重叠,而形
成离域∏98键,增强了[Ni(CN)4]2-配离子的稳定性。
Ni 2 +
CN
N C Ni C N C C
N
2Ni(CN)4
N
价键理论的应用和局限性 价键理论可用来: 1、解释许多配合物的配位数和几何构型。 2、可以说明含有离城键的配合物特别稳定。 3、可以解释配离子的某些性质,如[Fe(CN)6]4-(低 自旋型配离子)配离子为什么比[FeF6]3-(高自旋型配离 子)配离子稳定。 价键理论的局限性: 1、价键理论在目前的阶段还是一个定性的理论, 不能定量地或半定量地说明配合物的性质。 2、不能解释每个配合物为何都具有自己的特征光 谱,也无法解释过渡金属配离子为何有不同的颜色。 3、不能解释过渡金属离子的配合物的稳定性随中 心离子的d电子数的变化而变化。
【人教版】高中化学选修3知识点总结:第三章晶体结构与性质

【人教版】高中化学选修3知识点总结:第三章晶体结构与性质第一篇:【人教版】高中化学选修3知识点总结:第三章晶体结构与性质第三章晶体结构与性质课标要求1.了解化学键和分子间作用力的区别。
2.理解离子键的形成,能根据离子化合物的结构特征解释其物理性质。
3.了解原子晶体的特征,能描述金刚石、二氧化硅等原子晶体的结构与性质的关系。
4.理解金属键的含义,能用金属键理论解释金属的一些物理性质。
5.了解分子晶体与原子晶体、离子晶体、金属晶体的结构微粒、微粒间作用力的区别。
要点精讲一.晶体常识 1.晶体与非晶体比较2.获得晶体的三条途径①熔融态物质凝固。
②气态物质冷却不经液态直接凝固(凝华)。
③溶质从溶液中析出。
3.晶胞晶胞是描述晶体结构的基本单元。
晶胞在晶体中的排列呈“无隙并置”。
4.晶胞中微粒数的计算方法——均摊法如某个粒子为n个晶胞所共有,则该粒子有1/n属于这个晶胞。
中学中常见的晶胞为立方晶胞立方晶胞中微粒数的计算方法如下:注意:在使用“均摊法”计算晶胞中粒子个数时要注意晶胞的形状二.四种晶体的比较2.晶体熔、沸点高低的比较方法(1)不同类型晶体的熔、沸点高低一般规律:原子晶体>离子晶体>分子晶体。
金属晶体的熔、沸点差别很大,如钨、铂等熔、沸点很高,汞、铯等熔、沸点很低。
(2)原子晶体由共价键形成的原子晶体中,原子半径小的键长短,键能大,晶体的熔、沸点高.如熔点:金刚石>碳化硅>硅(3)离子晶体一般地说,阴阳离子的电荷数越多,离子半径越小,则离子间的作用力就越强,相应的晶格能大,其晶体的熔、沸点就越高。
(4)分子晶体①分子间作用力越大,物质的熔、沸点越高;具有氢键的分子晶体熔、沸点反常的高。
②组成和结构相似的分子晶体,相对分子质量越大,熔、沸点越高。
③组成和结构不相似的物质(相对分子质量接近),分子的极性越大,其熔、沸点越高。
④同分异构体,支链越多,熔、沸点越低。
(5)金属晶体金属离子半径越小,离子电荷数越多,其金属键越强,金属熔、沸点就越高。
高考化学复习考点知识归类专题训练37---晶体结构与性质 含解析

2
2-
(4)CO3 的价层电子对数为 2 =3,故 C 原子是 sp 杂化,CO3 空间构型是平面三角形。
(5)由题图可知,堆积方式为六方最密堆积(A3 型);晶胞中 Zn 原子个数为
1
1
65ൈ6
-3
12×6+2×2+3=6,根据
ρ=,可得
Zn
的密度为
A
ൈ6ൈ√43ൈ2g·cm
。
10 2 3
3-
4.答案:(1)[Ar]3d 4s 4p (2)N>P>As NH3 NO4
。
(3)NH3 的沸点高于 PH3,其主要原因
是
。
3-
(4)与 N 具有相同价电子数的三原子分子的空间构型是
。
6 / 15
(5)向 Ni(NO3)2 溶液中滴加氨水,刚开始时生成绿色 Ni(OH)2 沉淀,当氨水过量时,沉淀
2+
2+
会溶解,生成含[Ni(NH3)6] 的蓝色溶液,则 1 mol [Ni(NH3)6] 中含有的 σ 键的物质的
,C 原子的杂化形式
为
。
(5)金属 Zn 晶体中的原子堆积方式如图所示,这种堆积方式称为
。六棱柱
底边边长为 a cm,高为 c cm,阿伏加德罗常数的值为 NA,Zn 的密度为
-3
g·cm (列出计算式)。
4.钴、铁、镓、砷的单质及其化合物在生产、生活中有重要的应用。回答下列问题:
(1)写出 As 的基态原子的电子排布式
(2)N2O 分子中 O 原子只与一个 N 原子相连,N2O 与 CO2 互为等电子体,故 N2O 的电子式为
····· ·····
· N ··N·· O ·,中心原子 N 的杂化类型为 sp,1 分子 N2O 中的 π 键数目为 2,故
结构化学知识点汇总

结构化学知识点汇总关键信息项:1、原子结构原子轨道电子排布原子光谱2、分子结构化学键类型分子几何构型分子的极性3、晶体结构晶体类型晶格结构晶体的性质11 原子结构111 原子轨道原子轨道是描述原子中电子运动状态的数学函数。
主要包括s 轨道、p 轨道、d 轨道和 f 轨道。
s 轨道呈球形对称,p 轨道呈哑铃形,d 轨道和 f 轨道形状更为复杂。
112 电子排布遵循泡利不相容原理、能量最低原理和洪特规则。
电子按照一定的顺序填充在不同的原子轨道上,形成原子的电子构型。
113 原子光谱原子在不同能级间跃迁时吸收或发射的光子所形成的光谱。
包括发射光谱和吸收光谱,可用于分析原子的结构和成分。
12 分子结构121 化学键类型共价键:通过共用电子对形成,分为σ键和π键。
离子键:由正负离子之间的静电引力形成。
金属键:存在于金属晶体中,由自由电子和金属离子之间的相互作用形成。
氢键:一种特殊的分子间作用力,比一般的范德华力强。
122 分子几何构型通过价层电子对互斥理论(VSEPR)和杂化轨道理论来解释和预测。
常见的分子构型有直线型、平面三角形、四面体型、三角双锥型和八面体型等。
123 分子的极性取决于分子中正负电荷中心是否重合。
极性分子具有偶极矩,非极性分子则没有。
13 晶体结构131 晶体类型离子晶体:由离子键结合而成,具有较高的熔点和硬度。
原子晶体:通过共价键形成,硬度大、熔点高。
分子晶体:分子间以范德华力或氢键结合,熔点和硬度较低。
金属晶体:由金属键维系,具有良好的导电性和导热性。
132 晶格结构晶体中原子、离子或分子的排列方式。
常见的晶格有简单立方、体心立方、面心立方等。
133 晶体的性质各向异性:晶体在不同方向上的物理性质不同。
自范性:能够自发地呈现出多面体外形。
固定的熔点:在一定压力下,晶体具有固定的熔点。
21 量子力学基础211 薛定谔方程是描述微观粒子运动状态的基本方程,通过求解该方程可以得到粒子的能量和波函数。
晶体结构,配合物结构知识点与习题1-1

117晶体结构一、基本概念(The Basic Concepts ): 1.晶体(Crystals ):(1)物质的质点(分子、离子或原子)在空间有规则地排列而成的、具有整齐外形的、以多面体出现的固体物质,称为晶体。
(2) 晶体有同质多象性 由同样的分子(或原子)可以以不同的方式堆积成不同的晶体,这种现象叫做同质多象性。
但同一种物质的气态、液态只存在一种结构。
(3) 晶体的几何度量和物理效应常随方向不同而表现出量上的差异,这种性质称为各向异性。
2.晶格(Crystal lattices )(1) 以确定位置的点在空间作有规则的排列所具有一定的几何形状,称为晶体格子,简称为晶格。
Fig. 8.10 The 14 Bravais unit cells3.晶胞(Unit cells )(1) 在晶格中,含有晶体结构,具有代表性的最小单元,称为单元晶胞,简称晶胞。
(2) 在晶胞中的各结点上的内容必须相同。
(3) 晶胞参数 晶胞参数:a、b、c、α、β、γ (4) 分数坐标 用来表示晶胞中质点的位置例如: 简单立方 立方体心 立方面心(0, 0, 0) , (0, 0, 0), (21,21,21) (0, 0, 0) (21,21,0), (21,0,21), (0,21,21) αβγbc a118在分数坐标中,绝对不能出现1,因为1即0。
这说明晶胞是可以前后、左右、上下平移的。
等价点只需要一个坐标来表示即可,上述三个晶胞中所含的质点分别为1、2、4,所以分数坐标分别为1组、2组和4组。
(5) 晶面指数 晶面在三维空间坐标上的截距的倒数(h 、k 、l )来表示晶体中的晶面,称为晶面指数,如立方晶系中(100),(110),(111)面分别为(100) (110)(111)lFig. 8.12 Selected planes and their Miller indices for cubic system用X-ray 的衍射可以测量晶体中的面间距,2d ·sin θ = n ·λ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
配合物结构一、配位化合物的定义由提供孤电子对(NH 3、H 2O 、X -)或π电子(H 2C =CH 2、 )的物种与提供适当空轨道的物种(金属原子或金属离子)组成的化合物称为配位化合物,简称为配合物。
二、配位化合物的组成1.配合物由内界(inner )和外界(outer )组成。
外界为简单离子,配合物可以无外界,但不可以无内界。
例如:Fe(CO)5 Pt(NH 3)2Cl 22.内界由中心体(center )和配位体(ligand )组成。
(1) 中心体:提供适当的空轨道的原子或离子,绝大部分是d 区或ds 区元素。
用M 表示。
(2) 配位体 (L)(简称配体):提供孤对电子对或π电子的离子,离子团或中性分子。
三、配位化合物的分类(Classification )1.Classical complexes :配体提供孤电子对,占有中心体的空轨道而形成的配合物。
例如:+23)Ag(NH ,-34Cu(CN)2.π-complexes :配体提供π电子,占有中心体的空轨道而形成的配合物。
例如:255)H Fe(C ,)]H C (K[PtCl 423(第一个π配合物,Zeise ’s salt )H 2CCH 2M配体提供:2个π电子 4个π电子 6个π电子四、配位体(L )Ligand1.根据配体中配位原子的不同,配体可分类成:(1) 单基(齿)配体(unidentate ligand ):配体中只含有一个配位原子; 例如:NH 3、H 2O 、X -、 (py)(2) 多基(齿)配体(multidentate ligand ):配体中含有两个或两个以上的配位原子。
由单齿配体组成的配合物,称为简单配合物;由多齿配体组成的配合物,称为螯合物(chelate )。
2.一些常见的配体:(1) 单基配体:X -:F -(fluoro)、Cl -(chloro)、Br -(bromo)、I -(iodo)、H 2O (aquo)、CO (carbonyl)、NO (nitrosyl)、C 5H 5N (py)、OH -(hydroxo)(2) 双基配体:en (乙二胺) H 2NCH 2CH 2NH 2(ethylenediamine )ox 2-(草酸根) (oxalate ion ) gly - (氨基乙酸根)bipy (联吡啶) (2,2’-dipyridyl )(3) 多基配体:EDTA (乙二胺四乙酸)(六齿)(H 4Y)(ethylenediaminetetracetato )五、配位数(Coordination Number )1.中心原子(或离子)所接受的配位原子的数目,称为配位数2.若单基配体,则配位数 = 配体数;若多基配体,则配位数 = 配体数 ⨯ 配位原子数 / 每个配体 3.确定配位数的经验规则—EAN 规则(Effective atomic number rule )或十八电子(九轨道)规则(1) 含义:a .EAN 规则:中心体的电子数加上配体提供给中心体的电子数等于某一稀有气体的电子构型(36,54,86)b .十八电子规则:中心体的价电子数 + 配体提供的电子数 =18,(n - 1)d 10n s 2n p 6NO C O COO H 2NCH 2C O O N N HOOCH 2CNCH 2CH 2N HOOCH 2C CH 2COOH CH 2COOHc .九轨道规则:五个 (n - 1)d 轨道(或者五个n d 轨道),1个n s 轨道和3个n p 轨道(9个价轨道)都充满电子。
(2) 应用a .确定配位数:Fe(CO)x (NO)y 8 + 2x + 3y = 18∴x = 5,y = 0 或 x = 2,y = 2b .判断配合物是否稳定:4HCo(CO) -4Co(CO) 4Co(CO) 18e (stable) 18e (stable) 17e (unstable) c .可以判断中性羰基配合物是否双聚Mn(CO)5 17e ,2Mn(CO)5 → Mn 2(CO)10,Co(CO)4,2Co(CO)4 → Co 2(CO)8 d .判断双核配合物中金属原子之间是否存在金属键(式中数字为配体提供的电子数以及中心体的价电子数)18216421=++++⨯+x 1811725=+++++x∴ x = 0 无金属键 ∴ x = 2 有金属键 e .正确书写配合物的结构式:455)H Fe(C -21033]CO)(Re H [f .正确书写反应方程式: Re 2O 7 + 17CO Re 2(CO)10 + 7CO 2+ Fe(CO)2 + 2COCr(CO)6 + 4NOCr(CO)4 + 6CO六、配位化合物的命名(The Nomenclature of Coordination Compounds )1.从总体上命名(1) 某化某:外界是简单阴离子,[Cr(H 2O)4Cl 2]Cl ,氯化二氯·四氨合铬(Ⅲ) (2) 某酸某:a .外界是含酸根离子:[Co(NH 3)5Br]SO 4:硫酸溴·五氨合钴(Ⅲ)b .内界是配阴离子:K 3[Fe(CN)6]:六氰合铁(Ⅲ)酸钾 2.内界的命名(1) 内界的命名顺序:配体名称 + 合 + 中心体名称 + (用罗马数字表示的中心体氧化数)例如:[PtCl 2(NH 3)(C 2H 4)]:二氯·氨·(乙烯)合铂(Ⅱ)(2) 配体的命名顺序:a .先无机配体后有机配体,有机配体名称一般加括号,以避免混淆;b .先命名阴离子配体,再命名中性分子配体;c .对于都是中性分子(或阴离子),先命名配体中配位原子排在英文字母顺序前面的配体,例如NH 3和H 2O ,应先命名NH 3;d .若配位原子数相同,则先命名原子数少的配体。
例如:NH 3、NH 2OH ,先命名NH 3。
(3) 配体的名称a .英文的数字前缀mono(一) di(二) tri(三) tetra(四) penta(五)Cl(OC)4W 4Cl (C 5H 5)(OC)MnMn(CO)(C 5H 5)O O CCx Re H CORe Re COCO COH HOC OCOCOCCOCOFe(CO)3hexa(六) hepta(七) octa(八) nona(九) deca(十) b .M ←SCN 硫氰酸根 (-SCN) thiocyano M ←NCS 异硫氰酸根 (-NCS) isothiocyanoM ←NO 2 硝基 (-NO 2) nitro 来自HO - NO 2 M ←ONO 亚硝酸根 (-ONO) nitrito 来自H - ONONO 亚硝酰基 nitrosyl CO 羰基 carbonylM ←CN 氰根 cyano M ←NC 异氰根 isocyano3.多核配合物的命名在桥基配体名称前面加上希腊字母μ ,例如:3323Fe(CO)CO)Fe((OC)-μ 三( μ- 羰基)·二[三羰基合铁(0 )] 二( μ- 氯)·二[二氯合铁(Ⅲ)]氯化μ – 羟·二[五氨合铬(Ⅲ)]七 几种常见配位数的配合物的几何异构现象 a .四配位:(i) 正四面体:不存在几何异构体, AA, A 配合物类型 4Ma 22c Ma (cd Ma 2)MabcdM(AA)cd M(AB)cd几何异构体数目1231 2-cis -trans 配合物类型5M a e Ma 4 23d Ma e c Ma 22 de Ma 3 cde Ma 2 Mabcde 三角双锥几何异构体数目 1 23 54 7 10四方锥几何异构体数目1 2 3 6 4 9 15配合物类型 Ma 4e 2(Ma 4ef)Ma 3d 3Ma 3defMa 2c 2e 2MabcdefM(AB)2ef几何异构体数目2245156+]Cl )[Co(NH 243 ]O)(H RuCl [323-cis -trans -fac -mer(4) 确定几何异构体的方法 −− 直接图示法a .只有单齿配体的配合物 以Ma 2cdef 为例 (9种): 第一步,先确定相同单齿配体的位置Cl Fe Cl Cl Cl Fe ClCl [(NH 3)Cr O H Cr(NH 3)5]Cl 5NH 3CoNH 3H 3N Cl H 3N Cl CoCl H 3N NH 33H 3N Cl RuOH 2H 2O Cl H 2O OH 2RuOH 2Cl ClOH 2Cl M aa M aa① ②第二步,再确定其他配体的位置 ① (6种):② (3种):b .既有单齿配体,又有双齿配体的配合物 以M(AB)2ef 为例 (6种)第一步,先固定双齿的位置① ②第二步,确定双齿配体中配位原子的位置. ①②第三步,最后确定单齿配体的位置.八 配合物的化学键理论⑴价键理论1.价键理论的基本内容:(1) 配合物的中心体M 与配体L 之间的结合,一般是靠配体单方面提供孤对电子对与M 共用,形成配键M ←∶L ,这种键的本质是共价性质的,称为σ配键。
(2) 形成配位键的必要条件是:配体L 至少含有一对孤对电子对,而中心体M 必须有空的价轨道。
(3) 在形成配合物(或配离子)时,中心体所提供的空轨道(s 、p ,d 、s 、p 或s 、p 、d)必须首先进行杂化,形成能量相同的与配位原子数目相等的新的杂化轨道。
2.讨论:(1) 配合物中的中心体可以使用两种杂化形式来形成共价键:一种杂化形式为(n 1)d 、n s 、n p 杂化,称为内轨型杂化。
这种杂化方式形成的配合物称为内轨型配合物(inner complexes );M a f a c M d a c e M a d a c M a c a de M a c a d M a c a e M d c a a M e c a a Md c aa M M M B A A BMB A M B B AA MB A M A B M B A A B e MB A B ef M B B A A M B AM B A M A B另一种杂化形式为n s 、n p 、n d 杂化,称为外轨型杂化,这种杂化方式形成的配合物称为外轨型配合物(outer complexes );(2) 对于四配位:a .正四面体配合物:中心体一定采取sp 3杂化,一定是外轨型配合物,对于(n - 1)d 10电子构型的四配位配合物,一定为四面体。
b .平面四方配合物:中心体可以采取dsp 2杂化,也可以采取sp 2d 杂化,但sp 2d 杂化类型的配合物非常罕见。
舍去低能n p 价轨道而用高能n d 价轨道的杂化是不合理的。