初中数学解题技巧—化归思想
化归思想在初中数学解题中的应用策略探究

化归思想在初中数学解题中的应用策略探究化归思想是数学中的一种重要思维方法和解题策略。
在初中数学解题中,通过化归思想可以将复杂的问题转化为简单的问题,从而更容易解决。
本文将通过探究在初中数学中化归思想的应用策略,进一步揭示其重要性和作用。
化归思想在初中数学中的应用主要可以体现在如下几个方面:1. 数字的化归:通过对数字的加减乘除操作,将一个数化为另一个数。
将一个数的个位数连加、连乘,或者用两个相邻的数相减,可以得到一个新的数,从而简化计算。
这种方法常常运用于整数、分数、百分数等数的转化和计算中。
2. 图形的化归:通过将一个复杂的图形化归为几个简单的图形,再分别计算这些简单图形的面积或周长等属性,最终得到原图形的属性。
将一个复杂的多边形分解为矩形、三角形等简单图形进行计算。
这种方法常常运用于几何图形的计算和证明中。
3. 方程的化归:通过对方程的变换和化简,将一个复杂的方程化为一个简单的方程或者一个等价的方程,从而更容易求解。
对二次方程进行配方法化简,将高次方程降阶为低次方程等。
这种方法常常运用于方程的解法和研究中。
化归思想的应用策略主要包括:1. 规律归纳:观察问题中的数字、图形等规律,寻找规律的特点并形成归纳总结。
通过归纳总结,可以将问题中的复杂情况转化为一个简单的规律,从而可以更快地解决问题。
2. 逆向思维:从问题的结果出发,逆向思考问题的起点,通过逆向思维将问题化简。
某个数的平方等于另一个数,可以通过逆向思维将两数之差或者两数之和添加进方程,从而将问题简化为求一个等式的解。
3. 类比求解:将一个与所给问题相似的问题进行求解,并运用类似的方法和策略,再将得到的结果应用到所给问题中。
通过类比求解,可以避免陷入紧张的思维状态,更容易找到解题的思路和方法。
化归思想在初中数学解题中具有重要的应用价值。
通过化归思想,可以将复杂的问题转化为简单的问题,从而更容易解决。
化归思想的应用策略包括规律归纳、逆向思维和类比求解等。
化归思想在初中数学教学中的应用

化归思想在初中数学教学中的应用化归思想是数学中一种非常重要的思想方法,它在初中数学教学中有着广泛的应用。
化归思想的核心是将复杂问题化简为简单问题,并通过解决简单问题来解决复杂问题。
化归思想在初中数学教学中的应用主要体现在以下几个方面。
一、化归思想在初中数学解题中的应用在初中数学解题中,我们经常会遇到一些复杂的问题,如方程、不等式、几何图形的证明等等。
而化归思想可以帮助我们将这些复杂的问题化简为简单问题,从而更容易得到解答。
1.方程的化归在解方程时,通过引入新的变量或进行恰当的变换,可以将复杂的方程化归为一次方程或二次方程,从而更容易求解。
例如,对于一个三次方程,我们可以通过令新的变量等于该方程的根,再进行适当的变换,将该三次方程化归为一个二次方程。
这样一来,我们只需要求解这个二次方程,就可以找到原方程的解。
2.几何证明的化归在几何证明中,有时我们遇到的问题相对复杂,而化归思想可以帮助我们将复杂的几何证明化归为简单的证明。
例如,在证明一点为某个角的平分线时,我们可以通过绘制一条垂直平分线,将原问题化归为证明两个直角三角形全等的问题。
这样一来,我们只需要证明这两个直角三角形全等即可得到结论。
3.不等式的化归在解不等式时,通过引入新的变量或进行恰当的变换,也可以将复杂的不等式化归为简单的不等式。
例如,对于一个含有绝对值的不等式,我们可以通过将绝对值拆分为两个情况,分别进行讨论,从而化归为不含绝对值的简单不等式。
这样一来,我们只需要分别求解这两个简单不等式,就可以得到原不等式的解集。
二、化归思想在初中数学教学中的教学模式化归思想在初中数学教学中还有一种重要的应用,即可以用来引导学生形成良好的解题习惯,提高学生解题能力。
1.引导学生合理化归问题在教学中,教师可以通过设计一些具体问题,引导学生尝试将复杂问题化归为简单问题。
例如,在教学解一次方程时,教师可以设计一些与现实生活有关的问题,让学生先找到问题中的未知数,并通过列方程解决问题。
例谈化归思想在中学数学解题中的应用

例谈化归思想在中学数学解题中的应用化归思想是指把一个复杂的问题转化成一个简单的问题来解决。
在中学数学解题中,化归思想具有广泛的应用。
下面以几个具体的例子来说明化归思想在中学数学解题中的应用。
化归思想在方程解题中的应用。
当我们遇到一元一次方程时,通过化归可以将复杂的方程变成简单的等式。
对于方程2x+3=7,可以通过化归思想将3移到等号右边,得到2x=4,再除以2得到x=2,从而解得方程的根为x=2。
这个例子中,通过化归可以简化方程,使得求解过程更加简单。
化归思想在几何证明中的应用。
几何证明常常需要利用一些几何定理和性质来推导出结论。
通过化归思想,可以把一个几何证明问题转化成另一个等价的几何证明问题,从而简化证明的过程。
在证明两条平行线之间的距离相等时,可以通过化归思想将该问题化归到已知两平行线与第三条直线相交而得到的相似三角形的证明问题,从而简化证明过程。
化归思想在概率问题中的应用也是非常重要的。
概率问题中经常需要计算一些复杂事件的概率,利用化归思想可以将复杂的事件化归为简单的事件来计算概率。
当我们需要计算从一组有重复元素的样本空间中抽取出不同元素的事件的概率时,可以将该问题化归为从一组无重复元素的样本空间中抽取出不同元素的事件的概率来计算。
化归思想在数学归纳法证明中的应用也非常重要。
数学归纳法是一种证明方法,通过化归思想可以将证明问题化归为更简单的情况来进行证明。
当我们需要证明一个数学命题对于所有自然数都成立时,可以通过化归思想将该问题化归为该命题对于一个自然数成立的情况来证明。
化归思想在中学数学解题中具有广泛的应用。
无论是在方程解题、几何证明、概率问题还是数学归纳法证明中,通过化归思想可以将复杂的问题转化为简单的问题来解决,从而提高解题的效率和准确性。
在中学数学学习中,学生应该充分理解化归思想的应用,培养灵活运用化归思想解决问题的能力。
初中数学转化与化归思想——消元

转化与化归思想——消元转化与化归的思想所谓化归与转化的思想是指在研究数学问题时,采用某种手段将问题通过变换使之转化,进而使问题得到解决的一种解题策略.一般情况下,都要将未解决的问题化归转化为已解决的问题。
化归与转化的思想方法是数学中最基本的思想方法,同时也是在解决数学问题过程中无处不存在的基本思想方法。
数形结合的思想体现了数与形的相互转化;函数与方程思想体现了函数、方程、不等式间的相互转化;分类讨论思想体现了局部与整体的相互转化,因此以上三种思想方法都是转化思想的具体体现,各种变换的方法及分析法、反证法、特定系数法、构造法等都是转化的手段。
化归与转化的原则是:将不熟悉和难解的问题转化为熟知的易解的或已经解决的问题:将抽象的问题转化为具体的直观的问题;将复杂的问题转化为简单的问题;将一般性的问题转化为特殊的问题,将实际问题转化为数学问题,使问题便于解决。
解题方法指导1.运用化归与转化的思想解题需明确三个问题:(1)明确化归对象,即对什么问题转化;2)认清化归目标,即化归到何处去;(3)把握化归方法,即如何进行化归;2.运用化归与转化的思想解题的途径:(1)借助函数进行转化;(2)借助方程(组)进行转化;(3)借助辅助命题进行转化;(4)借助等价变换进行转化;(5)借助特殊的数与式的结构进行转化;(6)借助几何特征进行转化。
消元例 用加减法解方程组34165633x y x y +=⎧⎨-=⎩ 分析:这两个方程中未知数的系数既不相反也不相同,直接加减不能消元,试一试,能否对方程变形,使得两个方程中某个未知数的系数相反或相同。
①②解:①×3,得9x+12y=48 ③②×2,得10x-12y=66 ④③+④,得19x=114x=6把x=6代入①,得3×6+4y=164y=-2, y=-1 2所以,这个方程组的解是612 xy=⎧⎪⎨=-⎪⎩。
中学数学中的化归思想

学法教法研究中学数学中的化归思想姚成宝(皖安庆市大观区皖河中学安徽安庆246009)【摘要】化归不仅是一种基本的思维策略,还是一种重要的解题思想,可以有效的运用在数学解题方法中。
数学教育应该培养学生的理性思维,运用数学思想方法来分析并解决问题。
化归思想就是在面对问题时,通过观察、分析、类比、联想等思想过程,将未知的难以解决的问题,化归成自己已知范围内容易解决或已经解决的问题。
而数学内部之间的知识点也存在着各种联系与转化,运用化归思想来解决数学中的问题也成为中学思想方法教学的热点之一。
【关键词】化归思想数学思想方法解题能力【中图分类号】G633.6【文献标识码】A 【文章编号】2095-3089(2016)20-0098-01一、化归思想的含义及作用“化归”是转化和归结的总称。
化归思想,又名转化思想。
是运用某种转化过程把一些待解决、或难以解决的问题划分到一类比较容易解决的问题中去。
就是把一些复杂的,未知的、难以理解的问题,通过仔细的观察,分析,把问题简单化,熟悉化、具体化。
使得问题等到解决。
化归方法包括简单化、熟悉化、具体化、正难则反等原则。
二、数学化归思想教学的优势想要学好数学,死记硬背是不行的。
学好数学的基础就是学会数学思想方法,在实施数学素质教育中,加强对学生的数学思想方法的教学是至关重要的。
学生不仅仅要学会课本上的知识,还要培养自己的解题能力,发展自己的思维。
而化归思想教学可以帮助学生更加快速的接受新知识,更有利于学生理解并掌握知识,提高学生的解题能力。
化归思想贯穿整个中学教材始终,可以帮助学生形成完整的知识结构,促进学生的认知能力。
化归思想引领着众多思想方法,它是中学教学的最基本思想。
运用化归方法学生可以将学到的知识进行总结,提炼,然后灵活地运用起来。
化归思想有三大特征:(1)多向性:为了解决问题,可以从多方面变更问题进行化归。
如变更问题的外部形势、变更问题的内部结构、变更问题的结论等;(2)重复性:有时为了解决问题一次化归可能还是不能很好地解决,这时我们可以对问题进行多次化归,使问题逐渐规范到我们所熟悉的知识中;(3)层次性:化归既能实现学科宏观上的转化,又能运作各种技术活方法,从微观上解决很多细小具体的问题。
化归思想在初中数学解题中的应用

2020摘要:在初中数学教学中,解题教学是重中之重。
初中数学教材中所涉及的很多知识点都适用“化归思想”,引导学生利用化归思想能够达到高效解题之效。
基于此背景,对激活原有经验,化陌生为熟悉;简化数学信息,化复杂为简单;梳理隐含题意,化特殊为一般的策略进行了探究。
关键词:初中数学解题化归思想化归思想是一种重要的数学思想,初中数学教材中所涉及的很多知识点都适用“化归思想”,可以此帮助学生深入理解、高效掌握复杂的数学知识。
在初中数学教学中,不仅要使学生熟悉化归思想,也要能够熟练运用,解决各种数学问题。
当学生遭遇相对陌生的数学问题时,可以利用这一思想和手段将其转化为自己熟悉的问题,以顺利完成对问题的有效解决,既有助于提升学生的解题能力,也有助于促进学科综合素养地全面提升。
那么,如何引导初中生利用化归思想进行高效化的数学解题呢?一、激活原有经验,化陌生为熟悉初中生在数学解题的过程中,如果是他们较为熟悉的问题,解决起来会更轻松、更快捷,但是如果所面对的问题相对陌生,就需要耗费大量的时间和精力,会阻碍解题效率的进一步提升。
通过化归思想的引入,可以成功地将这些陌生的习题转化为学生已经熟悉的习题,使学生能够透过事物表象触及问题本质,从而实现高效解题。
例如,在教学《不等式》一课时,我给学生出示一串数字1,4,5,6,8,10,12,然后设计提问:在这些数字中哪些数字是不等式y +5>12的解?表面上看这道题相对简单,但是对于初中生而言,是首次接触不等式,需要经过较长时间的思考才能够找到有效的解题思路,很显然会影响学生的解题效率,因此,教学中可引入化归思想,要求学生链接自己已经学习过的相关知识,完成对这一问题的解决。
首先带领学生对不等式进行了转化,由此得到y +5=12,这样看来这是一个一元一次方程,学生之前已经学习过与此相关的内容,了解具体的解题方法,能够轻松地解决这一问题,得出y =7,再将其带入不等式:若要使y +5>12,只要y >7。
化归思想在初中数学教学中的运用

探索篇•方法展示化归就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图象、公式或已知条件等将问题通过变换使之转化,进而达到解决问题的一种思想。
化归思想是中学数学最基本的思想方法,也是最重要的思想方法之一,在数学解题中几乎无处不在,它不仅是一种重要的解题思想,也是一种最基本的思维策略,更是一种有效的数学思维方式。
应用化归思想解题时的原则是化难为易、化生为熟、化繁为简、化未知为已知,本文就谈谈化归的几种常用方法在数学解题中的运用。
一、数与形的转化通过挖掘已知条件的内涵,发现式子的几何意义,利用几何图形的直观性化繁为简,从而解决问题。
乘法公式中的平方差公式(a+b )(a-b )=a 2-b 2的几何意义表述就是一个很好的例证,利用几何图形的面积完美地验证了公式的正确性。
例1.如下图,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a 跃b ),再重新拼图,两图中的阴影部分面积分别为a 2-b 2和(a+b )(a-b ),则可得到公式(a+b )(a-b )=a 2-b 2。
a+ba-bbba-ba类似的,完全平方公式(a+b )2=a 2+2ab +b 2也可用数与形的转化来验证。
数与形是数学研究的两大基本对象,由于坐标系的建立,使数与形互相联系,互相渗透,因此,函数问题中此种方法更常见,用函数图象来刻画函数解析式就是很好的例证。
二、函数与方程或不等式的转化函数是中学数学的一个重要概念,它渗透在数学的各部分内容中,是用运动变化的观点分析和研究具体问题中的数量关系。
方程和不等式则是两个不同的概念,但它们之间有着密切的联系。
方程f (x )=0的解就是函数y =f (x )的图象与x 轴交点的横坐标,不等式f (x )>0的解集就是函数图象位于x 轴上方时自变量的取值范围。
要确定函数变化过程中的某些量,经常要转化为求出这些量满足的方程或不等式的解或解集,函数是变量的动态研究,而方程不等式是动中求静,研究运动中的变量关系。
化归思想

化归思想1. 化归思想的概念。
人们在面对数学问题,如果直接应用已有知识不能或不易解决该问题时,往往将需要解决的问题不断转化形式,把它归结为能够解决或比较容易解决的问题,最终使原问题得到解决,把这种思想方法称为化归(转化)思想。
从小学到中学,数学知识呈现一个由易到难、从简到繁的过程;然而,人们在学习数学、理解和掌握数学的过程中,却经常通过把陌生的知识转化为熟悉的知识、把繁难的知识转化为简单的知识,从而逐步学会解决各种复杂的数学问题。
因此,化归既是一般化的数学思想方法,具有普遍的意义;同时,化归思想也是攻克各种复杂问题的法宝之一,具有重要的意义和作用。
2. 化归所遵循的原则。
化归思想的实质就是在已有的简单的、具体的、基本的知识的基础上,把未知化为已知、把复杂化为简单、把一般化为特殊、把抽象化为具体、把非常规化为常规,从而解决各种问题。
因此,应用化归思想时要遵循以下几个基本原则:(1)数学化原则,即把生活中的问题转化为数学问题,建立数学模型,从而应用数学知识找到解决问题的方法。
数学来源于生活,应用于生活。
学习数学的目的之一就是要利用数学知识解决生活中的各种问题,课程标准特别强调的目标之一就是培养实践能力。
因此,数学化原则是一般化的普遍的原则之一。
(2)熟悉化原则,即把陌生的问题转化为熟悉的问题。
人们学习数学的过程,就是一个不断面对新知识的过程;解决疑难问题的过程,也是一个面对陌生问题的过程。
从某种程度上说,这种转化过程对学生来说既是一个探索的过程,又是一个创新的过程;与课程标准提倡培养学生的探索能力和创新精神是一致的。
因此,学会把陌生的问题转化为熟悉的问题,是一个比较重要的原则。
(3)简单化原则,即把复杂的问题转化为简单的问题。
对解决问题者而言,复杂的问题未必都不会解决,但解决的过程可能比较复杂。
因此,把复杂的问题转化为简单的问题,寻求一些技巧和捷径,也不失为一种上策。
(4)直观化原则,即把抽象的问题转化为具体的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学解题技巧—化归思想
第一节 转化为方程的化归思想
初中数学解题技巧—化归思想
例题 1
初中数学解题技巧—化归思想
例题 2
初中数学解题技巧—化归思想
例题 3
初中数学解题技巧—化归思想
例题 4
初中数学解题技巧—化归思想
第二节 图形中的化归思想
初中数学解题技巧—化归思想
例题 1 不规则图形转化为规则图形
初中数学解题技巧—化归思想
例题 2 立体图形转化为平面图形
初中数学解题技巧—化归思想
例题 3 图形的实际应用
初中数学解题技巧—化归思想
第三节 无理方程的化归思想
初中数学解题技巧—化归思想
初中数学解题方法
第七章 化归思想Leabharlann 初中数学解题技巧—化归思想
将一个陌生的、未知的问题转化为一个熟悉的,已知 的问题加以解决的思想叫做化归思想,又叫转化思想。
化归思想是数学中的核心思想,是由“未知”通往 “已知”的桥梁,利用化归思想解题的关键是确定合理, 可行的转化目标,要明确将未知转化为已知的意义,掌握 基本方法、步骤转化思想在中考的各类题中都有所表现, 也是数学思想在中考中的较多体现。
例题1
初中数学解题技巧—化归思想
例题2
初中数学解题技巧—化归思想
例题3
初中数学解题技巧—化归思想
例题4
初中数学解题技巧—化归思想
此课件下载可自行编辑修改,供参考! 感谢你的支持,我们会努力做得更好!