《风电场规划与设计》课程设计报告

合集下载

风电机课程设计

风电机课程设计

风电机课程设计一、课程目标知识目标:1. 学生能够理解风能的基本概念,掌握风力发电的原理和过程。

2. 学生能够描述风电机组的主要构成部件及其作用。

3. 学生能够解释风电机的运行特性及影响因素。

技能目标:1. 学生能够运用所学知识分析风力发电的优缺点,并提出改进措施。

2. 学生能够设计简单风电机模型,并展示其工作原理。

3. 学生能够通过实际操作,学会使用相关工具和仪器进行风力发电实验。

情感态度价值观目标:1. 学生能够认识到风能作为一种清洁、可再生能源的重要性,培养环保意识。

2. 学生能够积极参与风力发电技术的学习和实践,形成探究精神和团队合作意识。

3. 学生能够关注风力发电行业的发展趋势,激发对新能源事业的热爱和责任感。

课程性质:本课程为自然科学领域的探究性课程,结合理论知识与实践操作,培养学生对风力发电技术的认识和理解。

学生特点:六年级学生具备一定的科学知识基础和动手操作能力,对新能源题材感兴趣,善于合作与分享。

教学要求:结合学生特点,注重理论与实践相结合,提高学生的科学素养和创新能力,培养其环保意识和责任感。

通过分解课程目标为具体学习成果,为教学设计和评估提供明确方向。

二、教学内容1. 引言:介绍风能作为一种可再生能源的重要性和风力发电的概况。

- 教材章节:第一章《新能源概述》2. 风能基本概念:讲解风的产生、风能的转换和风力发电的原理。

- 教材章节:第二章《风能及其利用》3. 风电机组结构:分析风电机组的主要组成部分,包括叶片、塔架、发电机等。

- 教材章节:第三章《风力发电机组》4. 风电机工作原理:阐述风电机如何将风能转换为电能的过程。

- 教材章节:第四章《风力发电原理》5. 风电机运行特性及影响因素:探讨风速、风向等因素对风电机运行的影响。

- 教材章节:第五章《风力发电运行与管理》6. 风力发电优缺点及改进措施:分析风力发电的优势和局限性,并提出相应的改进方法。

- 教材章节:第六章《风力发电的挑战与未来》7. 实践操作:设计并制作简单风电机模型,进行风力发电实验。

风电机课程设计

风电机课程设计

风电机课程设计一、课程目标知识目标:1. 学生能理解风能的基本概念,掌握风力发电的原理和过程。

2. 学生能了解风电机组的主要组成部分及其功能,掌握其工作原理。

3. 学生能掌握风电机组在我国能源结构中的应用及其意义。

技能目标:1. 学生能够运用所学的知识,分析风电机组的工作原理,并进行简单的故障排查。

2. 学生能够设计并制作简单的风力发电模型,提高动手实践能力。

3. 学生能够通过小组合作,收集和分析风能相关数据,提高团队协作和数据处理能力。

情感态度价值观目标:1. 学生能够树立绿色能源意识,认识到风能对环境保护的重要作用。

2. 学生能够培养对新能源技术的兴趣,激发创新精神。

3. 学生能够通过学习风电机课程,提高对我国新能源产业的自豪感和责任感。

课程性质:本课程属于科学探究类课程,注重理论与实践相结合,以提高学生的科学素养和动手实践能力。

学生特点:六年级学生具有一定的科学知识基础和动手能力,好奇心强,善于合作与探究。

教学要求:结合学生特点,课程设计要注重启发式教学,激发学生兴趣,引导他们主动探究风电机组的奥秘。

同时,教学过程中要关注学生的个体差异,鼓励他们积极参与,培养创新精神和团队合作能力。

通过本课程的学习,使学生能够达到以上课程目标,为后续深入学习新能源领域奠定基础。

二、教学内容根据课程目标,本章节教学内容主要包括以下三个方面:1. 风能基本概念及风力发电原理- 教材章节:第三章“风能及其利用”- 内容列举:风能的定义、风能资源的分布、风力发电的原理和过程。

2. 风电机组结构与工作原理- 教材章节:第四章“风力发电机组”- 内容列举:风电机组的主要组成部分、各部分功能、工作原理及性能参数。

3. 风电机组在我国的应用及发展- 教材章节:第五章“风力发电在我国的应用”- 内容列举:我国风能资源现状、风电机组在我国的应用案例、我国新能源政策及风电机组发展前景。

教学进度安排:第一课时:风能基本概念及风力发电原理第二课时:风电机组结构与工作原理第三课时:风电机组在我国的应用及发展教学内容确保科学性和系统性,结合教材章节,通过理论讲解、案例分析、小组讨论等多种教学方式,帮助学生掌握风电机相关知识。

风力发电站课程设计

风力发电站课程设计

风力发电站课程设计一、课程目标知识目标:1. 学生能理解风力发电的基本原理,掌握风力发电站的工作流程及组成结构。

2. 学生能掌握风力发电在我国能源领域的地位和作用,了解相关能源政策及发展趋势。

3. 学生能够描述不同类型的风力发电机特点,并分析其优缺点。

技能目标:1. 学生能够运用所学知识,分析风力发电站建设的地理环境和技术条件。

2. 学生能够通过实际操作,掌握风力发电机模型的制作方法,培养动手实践能力。

3. 学生能够运用科学探究方法,对风力发电站的运行效率进行评估。

情感态度价值观目标:1. 培养学生关注可再生能源利用和环境保护的意识,增强节能减排的责任感。

2. 培养学生对新能源技术的兴趣和好奇心,激发创新精神。

3. 培养学生团队协作精神,提高沟通与交流能力。

课程性质:本课程为科学探究类课程,结合学生所在年级的知识深度,注重理论与实践相结合,培养学生的动手操作能力和科学思维。

学生特点:学生具备一定的科学知识和动手能力,对新能源技术感兴趣,具有较强的探索欲望。

教学要求:教师需采用启发式教学方法,引导学生主动参与课堂,注重培养学生的实践能力和创新能力。

同时,关注学生的个体差异,因材施教,确保每位学生都能达到课程目标。

通过课后评估,检验学生的学习成果,为后续教学提供依据。

二、教学内容1. 引言:介绍风力发电的基本概念,引导学生关注新能源领域的发展。

- 章节关联:课本第三章“新能源的开发与利用”。

2. 风力发电原理:- 风能转化为电能的过程;- 风力发电机的基本结构及工作原理;- 课本第二章“电与磁”相关知识。

3. 风力发电站的构成与运行:- 风力发电机、塔架、控制器、逆变器等组成部分;- 风力发电站的运行流程及管理;- 课本第四章“电力系统及其自动化”。

4. 风力发电机类型及特点:- 水平轴风力发电机、垂直轴风力发电机;- 各类型风力发电机的优缺点对比;- 课本第三章“风力发电技术”。

5. 风力发电站建设与评估:- 风力发电站建设的地理环境和技术条件;- 风力发电站运行效率的评估方法;- 课本第五章“能源项目的环境影响评价”。

风力发电厂的课程设计

风力发电厂的课程设计

风力发电厂的课程设计一、课程目标知识目标:1. 学生能够理解风力发电的原理,掌握风力发电的基本组成结构。

2. 学生能够描述风力发电的优势和在我国的应用现状。

3. 学生能够了解风力发电对环境的影响,认识到可再生能源的重要性。

技能目标:1. 学生能够运用所学知识,分析风力发电厂的建设条件,具备初步的项目评估能力。

2. 学生能够通过实际操作,掌握风力发电机的简单制作方法,培养动手操作能力。

3. 学生能够利用图表和数据,进行风力发电效率的对比分析,提高数据分析能力。

情感态度价值观目标:1. 学生能够认识到风力发电等可再生能源对于缓解能源危机、保护环境的重要性,增强环保意识。

2. 学生能够关注风力发电领域的发展动态,培养对新能源产业的兴趣和热情。

3. 学生能够通过团队合作,学会倾听、沟通、协作,培养团队精神。

课程性质:本课程为自然科学领域的探究性课程,结合课本知识,注重实践与理论相结合。

学生特点:六年级学生具有一定的科学素养,对新能源有一定了解,好奇心强,具备一定的动手能力和团队协作能力。

教学要求:教师应注重启发式教学,引导学生主动探究,关注学生的个体差异,鼓励学生积极参与课堂讨论和实践活动。

通过本课程的学习,使学生在知识、技能和情感态度价值观方面均取得具体、可衡量的学习成果。

二、教学内容1. 引入新课:通过展示风力发电的图片和视频,激发学生对风力发电的兴趣,引入本节课的主题。

相关教材章节:第一章《新能源概述》2. 理论知识学习:(1)风力发电原理及优势(2)风力发电机的组成结构(3)风力发电在我国的应用现状及发展前景相关教材章节:第二章《风力发电》3. 实践操作:(1)风力发电机的简单制作(2)风力发电效率的对比分析相关教材章节:第三章《风力发电实践》4. 案例分析:(1)分析风力发电厂的建设条件(2)讨论风力发电对环境的影响相关教材章节:第四章《新能源与环境保护》5. 课堂总结与拓展:(1)总结风力发电的相关知识(2)探讨新能源的未来发展趋势相关教材章节:第五章《新能源的发展趋势》教学内容安排与进度:第一课时:引入新课,学习风力发电原理及优势第二课时:学习风力发电机的组成结构,进行简单制作实践第三课时:学习风力发电在我国的应用现状及发展前景,进行风力发电效率对比分析第四课时:案例分析,总结课堂知识,探讨新能源发展前景三、教学方法1. 讲授法:在讲解风力发电的基本原理、优势、组成结构等理论知识时,采用讲授法,结合多媒体演示,使学生系统、全面地掌握风力发电的相关知识。

风力发电技术课程设计

风力发电技术课程设计

风力发电技术课程设计一、教学目标通过本节课的学习,学生需要达到以下教学目标:1.了解风力发电的基本原理和技术流程。

2.掌握风力发电的关键技术和设备组成。

3.认识风力发电的优缺点及应用前景。

4.能够运用所学知识分析风力发电场的布局和设计。

5.能够运用所学知识评估风力发电的经济性和环保性。

6.能够运用所学知识解决风力发电过程中遇到的问题。

情感态度价值观目标:1.培养学生对新能源技术的兴趣和关注。

2.培养学生保护环境、节约能源的责任感。

3.培养学生创新思维和团队协作的能力。

二、教学内容本节课的教学内容主要包括以下几个部分:1.风力发电的基本原理:介绍风能转化为电能的过程,以及风力发电的关键技术。

2.风力发电设备的组成:讲解风力发电机、塔架、叶片等主要组成部分的功能和作用。

3.风力发电的优缺点:分析风力发电的优点,如清洁、可再生;同时指出其缺点,如不稳定、投资成本高等。

4.风力发电的应用前景:介绍风力发电在全球范围内的应用情况,以及我国风力发电产业的发展趋势。

三、教学方法为了提高教学效果,本节课将采用以下教学方法:1.讲授法:教师讲解风力发电的基本原理、设备组成和应用前景等内容。

2.讨论法:学生分组讨论风力发电的优缺点,以及其在实际应用中的可行性。

3.案例分析法:分析国内外典型的风力发电项目,让学生了解风力发电的实际运作过程。

4.实验法:学生参观风力发电实验基地,亲身体验风力发电的原理和设备。

四、教学资源为了支持本节课的教学,将准备以下教学资源:1.教材:风力发电技术教程,用于引导学生系统地学习风力发电知识。

2.参考书:风力发电技术及其应用,为学生提供更多的学习资料。

3.多媒体资料:制作风力发电相关课件,通过图片、视频等形式展示风力发电的设备和工作原理。

4.实验设备:安排学生参观风力发电实验基地,了解实际操作过程。

五、教学评估为了全面、客观地评估学生的学习成果,本节课将采用以下评估方式:1.平时表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习态度和理解程度。

课程设计--99WM风电场

课程设计--99WM风电场
注:本标准中逐小时风速、风向、温度和气压数据分别是每个小时的平均风速、出现频率最大的风向、平均温度和平均气压。
二、风场测风数据
按照GB/T 18709-2002年的规定进行测风,获取风场的风速、风向、气温、气压和标准偏差的实测时间序列数据,极大风速及其风向。
三、测风数据处理
测风数据处理包括对数据的验证、订正,并计算评估风能资源所需要的参数。
风能资源评估
建设风电场最基本的条件是要有能量丰富、风向稳定的风能资源。随着风电事业的发展.复杂地形下的风资源评估成为一项重要的课题。为满足风电场微观选址的要求,大都采用丹麦Ris 国家实验室开发的风图谱分析及应用程序WAsP软件。
一、测风数据要求
1.风场附近气象站等长期测站的测风数据
收集长期测站的测风数据时应对站址现状和过去的变化情况进行考察,包括观测记录数据的测风仪型号、安装高度和周围障碍物情况(如树木和建筑物的高度,与测风杆的距离等),以及建站以来站址、测风仪器及安装位置、周围环境变动的时间和情况等。
4.风电场的选址;
5.风电场机组选型;
6.风电场电气系统设计;
7.机组的排列布置。
我国的风资源及风电场现状
一、我国的风能分布
根据风资源类别划分标准,按年平均风速的ห้องสมุดไป่ตู้小,各地风力资源大体可划分为4个区,如表1所示。
1.三北地区
该地区包括东北三省、河北、内蒙古、甘肃、青海、西藏和新疆等省/自治区近200 km宽的地带,风功率密度在200~300 以上,有的可达500 以上,可开发利用的风能储量约200GW,占全国陆地可利用储量的79%。这些地区随着经济发展,电网将不断延伸和增强,风电的开发将与地区电力规划相协调。
(2)风速和风能频率分布

风电场规划与设计课程设计报告

风电场规划与设计课程设计报告

《风电场规划与设计》课程设计班级:姓名:学号:成绩:2023年1月目录一、风电场资料 (1)1.地图坐标 (1)2.跨度及分辨率 (1)3.地图及风能情况 (1)二、风电场选址方案1计算报告 (2)1.参数设置 (2)2.优化曲线 (2)3 发电量统计 (3)4 相关报表 (3)5.视觉影响区域图 (5)6.噪音影响区域图 (5)7.风电场道路示意图 (6)8各台风机的年满负荷利用小时数 (7)三、风电场选址方案2计算报告 (7)1.参数设置 (7)2.优化曲线 (7)3 发电量统计 (8)4 相关报表 (9)5.视觉影响区域图 (10)6.噪音影响区域图 (10)7.风电场道路示意图 (11)8各台风机的年满负荷利用小时数 (13)四、风电场选址方案3计算报告 (13)1.参数设置 (12)2.优化曲线 (13)3 发电量统计 (14)4 相关报表 (14)5.视觉影响区域图 (16)6.噪音影响区域图 (16)7.风电场道路示意图 (17)8各台风机的年满负荷利用小时数 (18)五、风电场选址方案4计算报告 (19)1.参数设置 (18)2.优化曲线 (18)3 发电量统计 (20)4 相关报表 (20)5.视觉影响区域图 (21)6.噪音影响区域图 (22)7.风电场道路示意图 (23)8各台风机的年满负荷利用小时数......................... 错误!未定义书签。

六、各方案对比分析 (25)1.计算风电场的年满负荷利用小时数 (24)2.风电场容量系数的计算 (24)3.各方案对比分析 25一、风电场资料1.地图坐标左下角坐标:(497526.0000,4546241.0000)右上角坐标:(503130.0000,4549813.0000)2.跨度及分辨率X方向跨度:5.6040km;Y方向跨度:3.5720km;网格分辨率:149.0m3.地图及风能情况图1 主地图图2 平均风速分布图图3 风能密度图二、风电场选址方案1计算报告工程名称: 方案1报告日期: 2023-1-51.参数设立总迭代次数: 60;无效迭代次数: 10;最小间距类型: 圆形圆半径: 4倍风轮直径;最大坡度: 50.00度2.优化曲线图4 风机优化曲线3 发电量记录表1 风电场发电量总发电量单台月平均发电量无尾流年发电量(MWh) 118367 493.2含尾流年发电量(MWh) 114845.17 478.52尾流损失[%] 2.984.相关报表表2 风机报表风机编号类型X坐标(m) Y坐标(m) 海拔(m) 是否固定平均风速(m/s)无尾流年发电量(MWh)含尾流年发电量(MWh)尾流损失(%)M1 金风77-1500kW499907 4546539 1536 否9.06 6378.96 6280.99 1.54M2 金风77-1500kW499460 4546985 1546 否8.88 6268.84 6203.16 1.05 M3 金风499163 4546985 1533.99 否8.75 6210.54 6083.99 2.04表3 视点报表表4噪音点报表表5 视点观测到的风机报表5.视觉影响区域图从每台风机中心开始计算视觉影响的最远距离: 500米地表以上高度: 2米图5 视觉影响区域图6.噪音影响区域图地表以上高度: 2米图6 噪音影响区域图7.风电场道路示意图图7 风电场道路示意图8.各台风机的年满负荷运用小时数表6各台风机的年满负荷运用小时数风机编号含尾流年发电量(MWh)年满负荷运用小时数(h)风机编号含尾流年发电量(MWh)年满负荷运用小时数(h)M1 6280.994187.327M11 5675.963783.973 M2 6203.164135.44M12 5518.913679.273 M3 6083.994055.993M13 5556.283704.187 M4 6023.264015.507M14 5308.273538.847 M5 5957.443971.627M15 5252.073501.38 M6 5828.163885.44M16 5686.013790.673 M7 6099.74066.467M17 5187.243458.16 M8 5772.443848.293M18 5583.263722.173 M9 5893.213928.807M19 5434.623623.08 M10 5824.373882.913M20 5675.813783.873三、风电场选址方案2计算报告工程名称: 方案2报告日期: 2023-1-51.参数设立总迭代次数: 50;无效迭代次数: 10;最小间距类型: 圆形圆半径: 4倍风轮直径;最大坡度: 50.00度2.优化曲线图4 风机优化曲线3 发电量记录表1 风电场发电量4 相关报表表2 风机报表表3 视点报表表4 噪音点报表3 N3 500559 4548078 1499.78 2 53.744 N4 499420 4547651 1514.87 2 58.295 N5 499124 4548380 1512.06 2 57.416 N6 499955 4548858 1510.41 2 58.57表5 视点观测到的风机报表序号视点编号风机编号风机X坐标(m) 风机Y坐标(m) 风机海拔(m)1 S2 M12 499312 4548027 1515.62 S2 M13 499312 4547730 1519.25.视觉影响区域图从每台风机中心开始计算视觉影响的最远距离: 500米地表以上高度: 2米图5 视觉影响区域图6.噪音影响区域图地表以上高度: 2米图6 噪音影响区域图7.风电场道路示意图图7 风电场道路示意图方案28.各台风机的年满负荷运用小时数表6 各台风机的年满负荷运用小时数四、风电场选址方案3计算报告工程名称: 方案3报告日期: 2023-1-51.参数设立总迭代次数: 50;无效迭代次数: 10;最小间距类型: 圆形圆半径: 4倍风轮直径;最大坡度: 50.00度2.优化曲线图4 风机优化曲线3.发电量记录表1 风电场发电量总发电量单台月平均发电量无尾流年发电量(MWh) 123039.52 512.66含尾流年发电量(MWh) 119945.48 502.31尾流损失[%] 1.924.相关报表表2 风机报表风机类型X坐标Y坐标海拔(m) 是否平均风无尾流含尾流尾流表3 视点报表表4 噪音点报表表5 视点观测到的风机报表1 S1 M7 499907 4547878 1510.432 S1 M11 499312 4547730 1519.23 S1 M17 499907 4548176 1502.84 S2 M12 498716 4546837 15365 S2 M14 499014 4546688 15466 S2 M20 498865 4546390 15405.视觉影响区域图从每台风机中心开始计算视觉影响的最远距离: 500米地表以上高度: 2米图5 视觉影响区域图6.噪音影响区域图地表以上高度: 2米图6 噪音影响区域图7.风电场道路示意图图7 风电场道路示意图8.各台风机的年满负荷运用小时数表6 各台风机的年满负荷运用小时数风机编号含尾流年发电量年满负荷运用小时风机编号含尾流年发电量年满负荷运用小时五、风电场选址方案4计算报告工程名称: 方案4报告日期: 2023-1-51.参数设立总迭代次数: 50;无效迭代次数: 10;最小间距类型: 圆形;圆半径: 4倍风轮直径;最大坡度: 50.00度2.优化曲线图4 风机优化曲线3.发电量记录表1 风电场发电量总发电量单台月平均发电量无尾流年发电量(MWh) 118433.95 493.47含尾流年发电量(MWh) 113599.33 473.33尾流损失[%] 4.084.相关报表表2 风机报表风机编号类型X坐标(m)Y坐标(m)海拔(m) 是否固定平均风速(m/s)无尾流年发电量(MWh)含尾流年发电量(MWh)尾流损失(%)M1 金风77-1500kW501693 4547134 1536.8 否8.64 6021.99 5633.6 6.45M2 金风77-1500kW501395 4547283 1525.2 否8.73 6064.95 5660.1 6.68 M3 金风501246 4546837 1512 否8.49 5906.13 5599.97 5.18表3 视点报表表4 噪音点报表表5 视点观测到的风机报表6 S2 M1 501693 4547134 1536.87 S2 M5 501991 4547581 1525.28 S2 M8 501842 4546837 15349 S2 M14 501991 4547283 1529.210 S2 M15 501544 4546837 15325.视觉影响区域图从每台风机中心开始计算视觉影响的最远距离: 500米地表以上高度: 2米图5 视觉影响区域图6.噪音影响区域图地表以上高度: 2米图6 噪音影响区域图7.风电场道路示意图图7 风电场道路示意图8. 各台风机的年满负荷运用小时数表6 各台风机的年满负荷运用小时数风机编号含尾流年发电量年满负荷运用小时风机编号含尾流年发电量年满负荷运用小时(MWh)数(h ) (MWh)数(h ) M1 5633.6 3755.733 M11 5680.69 3787.127 M2 5660.1 3773.4 M12 5738.08 3825.387 M3 5599.97 3733.313 M13 5818.89 3879.26 M4 5733.63 3822.42 M14 5839.37 3892.913 M5 5654.02 3769.347 M15 5667.88 3778.587 M6 5716.75 3811.167 M16 5405.84 3603.893 M7 5473.03 3648.687 M17 5768.43 3845.62 M8 5722.3 3814.867 M18 5781.22 3854.147 M9 5362.07 3574.713 M19 6098.01 4065.34 M105545.263696.84M205700.193800.127六、各方案对比分析1.计算风电场的年满负荷运用小时数方案1h 17.3828205.117.114845=⨯==风电场装机容量年实际发电量时数风电场年满负荷利用小方案2h 16.3967205.1119014.36=⨯==风电场装机容量年实际发电量时数风电场年满负荷利用小方案3h 52.4018205.1120555.48=⨯==风电场装机容量年实际发电量时数风电场年满负荷利用小方案4h 64.3786205.1113599.33=⨯==风电场装机容量年实际发电量时数风电场年满负荷利用小2.风电场容量系数的计算方案1437.0876017.38288760C f ===)全年小时数(时数风电场年满负荷利用小风电场容量系数方案2453.0876016.39678760C f ===)全年小时数(时数风电场年满负荷利用小风电场容量系数方案3459.0876052.40188760C f ===)全年小时数(时数风电场年满负荷利用小风电场容量系数方案4432.0876064.37868760C f ===)全年小时数(时数风电场年满负荷利用小风电场容量系数3.各方案对比分析方案编号1 2 3 4年发电量[Mwh] 114845.17 119014.36 119945.48 113599.33 年满负荷运用小时数[小时] 3828.39 3967.13 3988.18 3786.64 容量系数 0.437 0.453 0.456 0.432 尾流损失[%] 2.98 3.81 1.92 4.08 风电场实际占地面积[Km 2]3.7523.663.903.441通过对上述表格的分析, 其中方案3为最优方案。

风力发电场课程设计报告

风力发电场课程设计报告

综合实验报告( 2013 -- 2014 年度第1学期)名称:《风力发电场》课程设计院系:可再生能源学院班级:风能1001班学号:1101540115学生姓名:孙莹指导教师:韩爽刘永前设计周数:2周成绩:提交日期:2014 年1月15 日一.课程设计目的与要求1.设计目的通过使用WAsP、WindFarmer等软件,掌握风电场风能资源评估、微观选址原理及方法。

2.设计任务使用W AsP软件进行风资源评估及发电量计算;选择3个区域划定边界,分别进行风资源评估与布机;在上述3个区域内,结合测风塔的选址原则,分别树立测风塔,并在测风塔所在地设置障碍物及粗糙度;使用W AsP软件进行风资源评估及发电量计算;生成风图谱报告,并手算一个扇区数据,与之对比;计算出选定区域的风速分布图及风功率分布图;计算出测风塔所在区域的风图谱;结合微观选址原则,在选定区域安装至少20台风电机组(自己生成功率曲线和推力曲线文件),计算发电量;使用WindFarmer软件进行优化布机;选择上述3个区域中的一个,使用WindFarmer软件进行优化布机,并计算发电量,与W AsP中的结果进行比较;3.设计要求掌握风资源评估和微观选址的基本原理和方法掌握上述软件的使用方法独立撰写设计报告二.实验内容1.插入风图谱,建立气象站;2.选择气象站,插入观测风气候,以及障碍组;如图:3.插入矢量地图并进行气象站定位;4.建立风机站并选择风机;(风机定位)(风资源)(所选机型)5.建立风场;Site description X-location[m]Y-location[m]Elev.[m]RIX[%]d.RIX[%]Height.[m]Speed[m/s]GrossAEP[GWh]Net AEP[GWh]Turbine site 00220389284625982139500507.45 2.966 2.894Turbine site 00320389434624112139900507.39 2.922 2.87Turbine site 00420387544624214140000507.39 2.917 2.886Turbine site 00520386544626440139900507.45 2.97 2.947Turbine site 00620389364627035139700507.46 2.976 2.905Turbine site 00720388414628514139900507.46 2.975 2.942Turbine site 00820389404627970139800507.46 2.976 2.914Turbine site 00920389334625013138200507.34 2.885 2.815Turbine site 010*******4627528139900507.46 2.975 2.92Turbine site 01120387444627868140000507.45 2.968 2.931Turbine site 01220386564627426140000507.45 2.963 2.947Turbine site 01320387494625081140000507.43 2.952 2.901Turbine site 01420388434625302139800507.44 2.96 2.892Turbine site 01520387514626780139900507.46 2.97 2.924Turbine site 01620386524625540140000507.44 2.959 2.94Turbine site 01720389464629007139900507.47 2.981 2.947Turbine site 01820386424624571140000507.41 2.934 2.927Turbine site 01920388554626508139800507.46 2.972 2.909Turbine site 020*******4624333139900507.41 2.934 2.88风电场1风电场2风电场3风电场1风电场2风电场3 6.选择栅格(坐标转换)7.风资源风电场1 风电场2风电场38.年发电量三.三个风电场布局,尾流影响及年发电量的对比:风电场1:所选机型 Bonus 1MWAEP尾流损失风功率密度风电场2:所选机型Vestas 1650kwAEP风功率密度风电场3:所选机型 Vestas 1500KWAEP尾流损失风功率密度四.扇区手动计算(选择第三扇区:33.75°-56.25°)vi pi xi yi p0.5-1.5 0.031055901 0 -3.456233744 0.0190217391.5-2.5 0.093167702 0.693147181 -2.324853777 0.3043478262.5-3.5 0.183229814 1.098612289 -1.597521627 1.4894021743.5-4.5 0.313664596 1.386294361 -0.977132515.1130434784.5-5.5 0.51863354 1.609437912 -0.313168881 15.692934785.5-6.5 0.680124224 1.791759469 0.130872599 21.365217396.5-7.5 0.810559006 1.945910149 0.509030623 27.402717397.5-8.5 0.881987578 2.079441542 0.759386779 22.48.5-9.5 0.940993789 2.197224577 1.040316487 26.347010879.5-10.5 0.972049689 2.302585093 1.274615865 19.0217391310.5-11.5 0.98757764 2.397895273 1.478932152 12.6589673911.5-12.5 0.99068323 2.48490665 1.542430053 3.28695652212.5-13.5 0.99689441 2.564949357 1.753460599 8.35815217413.5-14.5 1 2.63905733 5.219565217 计算结果:C=6.06;k=1.93;v=5.60m/s ;p=168.68 w/m^2对比:五、WindFarmer优化布机本次课程设计选择A区域的文件导入WindFarmer进行优化优化步骤1)将地图文件(map)导入WindFarmer中2)将WasP软件生成的wrg文件导入3)导入WAsP生成的tab文件建立关联,提高精确度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《风电场规划与设计》课程设计
班级:
姓名:
学号:
成绩:
2016年1月
目录
一、风电场资料 (1)
1. 地图坐标 (1)
2. 跨度及分辨率 (1)
3. 地图及风能情况 (1)
二、风电场选址方案1计算报告 (2)
1. 参数设置 (2)
2. 优化曲线 (2)
3 发电量统计 (3)
4 相关报表 (3)
5. 视觉影响区域图 (5)
6. 噪音影响区域图 (5)
7. 风电场道路示意图 (6)
8各台风机的年满负荷利用小时数 (6)
三、风电场选址方案2计算报告 (7)
1. 参数设置 (7)
2. 优化曲线 (7)
3 发电量统计 (7)
4 相关报表 (8)
5. 视觉影响区域图 (10)
6. 噪音影响区域图 (10)
7. 风电场道路示意图 (11)
8各台风机的年满负荷利用小时数 (11)
四、风电场选址方案3计算报告 (12)
1. 参数设置 (12)
2. 优化曲线 (13)
3 发电量统计 (13)
4 相关报表 (13)
5. 视觉影响区域图 (16)
6. 噪音影响区域图 (16)
7. 风电场道路示意图 (17)
8各台风机的年满负荷利用小时数 (17)
五、风电场选址方案4计算报告 (18)
1. 参数设置 (18)
2. 优化曲线 (18)
3 发电量统计 (19)
4 相关报表 (19)
5. 视觉影响区域图 (21)
6. 噪音影响区域图 (22)
7. 风电场道路示意图 (23)
8各台风机的年满负荷利用小时数 (23)
六、各方案对比分析 (24)
1、计算风电场的年满负荷利用小时数 (24)
2、风电场容量系数的计算 (24)
3、各方案对比分析 (25)
1
一、风电场资料
1. 地图坐标
左下角坐标:(497526.0000,4546241.0000) 右上角坐标:(503130.0000,4549813.0000)
2. 跨度及分辨率
X 方向跨度:5.6040km ;Y 方向跨度:3.5720km ;网格分辨率:149.0m
3. 地图及风能情况
图1 主地图
图2 平均风速分布图
2
图3 风能密度图
二、风电场选址方案1计算报告
工程名称:方案1 报告日期:2017-1-5
1. 参数设置
总迭代次数:60; 无效迭代次数:10; 最小间距类型:圆形 圆半径:4倍风轮直径; 最大坡度:50.00度
2. 优化曲线
图4 风机优化曲线
3 发电量统计
4.相关报表
3
4
5. 视觉影响区域图
从每台风机中心开始计算视觉影响的最远距离:500米地表以上高度:2米
图5 视觉影响区域图
6. 噪音影响区域图
地表以上高度:2米
5
图6 噪音影响区域图7. 风电场道路示意图
图7 风电场道路示意图8.各台风机的年满负荷利用小时数
表6各台风机的年满负荷利用小时数
6
三、风电场选址方案2计算报告
工程名称:方案2
报告日期:2017-1-5
1. 参数设置
总迭代次数:50;
无效迭代次数:10;
最小间距类型:圆形
圆半径:4倍风轮直径;
最大坡度:50.00度
2. 优化曲线
图4 风机优化曲线3 发电量统计
7
4 相关报表
表5 视点观察到的风机报表
5. 视觉影响区域图
从每台风机中心开始计算视觉影响的最远距离:500米地表以上高度:2米
图5 视觉影响区域图
6. 噪音影响区域图
地表以上高度:2米
图6 噪音影响区域图7. 风电场道路示意图
图7 风电场道路示意图
方案2
8.各台风机的年满负荷利用小时数
四、风电场选址方案3计算报告
工程名称:方案3
报告日期:2017-1-5
1. 参数设置
总迭代次数:50;无效迭代次数:10;最小间距类型:圆形圆半径:4倍风轮直径;最大坡度:50.00度
2.优化曲线
图4 风机优化曲线3.发电量统计
4.相关报表
表2 风机报表
5. 视觉影响区域图
从每台风机中心开始计算视觉影响的最远距离:500米地表以上高度:2米
图5 视觉影响区域图
6. 噪音影响区域图
地表以上高度:2米
图6 噪音影响区域图7. 风电场道路示意图
图7 风电场道路示意图8.各台风机的年满负荷利用小时数
五、风电场选址方案4计算报告
工程名称:方案4
报告日期:2017-1-5
1. 参数设置
总迭代次数:50;无效迭代次数:10;最小间距类型:圆形;
圆半径:4倍风轮直径;最大坡度:50.00度
2. 优化曲线
图4 风机优化曲线
3.发电量统计
4.相关报表
表3 视点报表
表4 噪音点报表
5. 视觉影响区域图
从每台风机中心开始计算视觉影响的最远距离:500米地表以上高度:2米
图5 视觉影响区域图6. 噪音影响区域图
地表以上高度:2米
图6 噪音影响区域图
7. 风电场道路示意图
图7 风电场道路示意图8.各台风机的年满负荷利用小时数
六、各方案对比分析
1、计算风电场的年满负荷利用小时数
方案1
h 17.382820
5.117.114845=⨯==
风电场装机容量年实际发电量时数风电场年满负荷利用小114850.171.5×20=3828.39 h 方案2
119014.361.5×20=3967.13 h
方案3
h 52.401820
5.1120555.48=⨯==
风电场装机容量年实际发电量时数风电场年满负荷利用小119945.481.5×20=3998.18 ℎ
方案4
h 64.378620
5.1113599.33=⨯==
风电场装机容量年实际发电量时数风电场年满负荷利用小113599.331.5×20=3786.64 h
2、风电场容量系数的计算
方案1
437.08760
17.38288760C f ===
)全年小时数(时数风电场年满负荷利用小风电场容量系数3828.398760=0.437 h 16.396720
5.1119014.36=⨯==
风电场装机容量年实际发电量时数风电场年满负荷利用小
方案2
453.08760
16
.39678760C f ===)全年小时数(时数风电场年满负荷利用小风电场容量系数3967.138760=0.453
方案3
459.08760
52.40188760C f ===
)全年小时数(时数风电场年满负荷利用小风电场容量系数3998.188760=0.456 方案4
432.064.37868760C f ===
)全年小时数(时数风电场年满负荷利用小风电场容量系数=0.432 3、各方案对比分析
通过对上述表格的分析,其中方案3为最优方案。

在四个法案的单机容量,风力机数目相同,风电场实际占地面积基本相同的条件下,方案3的年发电量最大,年满负荷利用小时数最大,容量系数最大,尾流损失最小。

综上,方案3为最优方案。

相关文档
最新文档