液位自动控制系统
水箱液位自动控制系统设计

第一章水箱液位自动控制系统原理液位自动控制是通过控制投料阀来控制液位的高低,当传感器检测到液位设定值时,阀门关闭,防止物料溢出;当检测液位低于设定值时,阀门打开,使液位上升,从而达到控制液位的目的。
在制浆造纸工厂常见有两种方式的液位控制:常压容器和压力容器的液位控制,例如浆池和蒸汽闪蒸罐。
液位自动控制系统由液位变送器(或差压变送器)、电动执行机构和液位自动控制器构成。
根据用户需要也可采用控制泵启停或改变电机频率方式来进行液位控制。
结构简单,安装方便,操作简便直观,可以长期连续稳定在无人监控状态下运行。
应用范围在制浆造纸过程中涉及的所有池、罐、槽体液位自动控制。
图1.1中,是控制器的传递函数,是执行机构的传递函数,是测量变送器的传递函数,是被控对象的传递函数。
图5.1中,控制器,执行机构、测量变送器都属于自动化仪表,他们都是围绕被控对象工作的。
也就是说,一个过程控制的控制系统,是围绕被控现象而组成的,被控对象是控制系统的主体。
因此,对被控对象的动态特性进行深入了解是过程控制的一个重要任务。
只有深入了解被控对象的动态特性,了解他的内在规律,了解被控辩量在各种扰动下变化的情况,才能根据生产工艺的要求,为控制系统制定一个合理的动态性能指标,为控制系统的设计提供一个标准。
性能指标顶的偏低,可能会对产品的质量、产量造成影响。
性能指标顶的过高,可能会成不必要的投资和运行费用,甚至会影响到设备的寿命。
性能指标确定后,设计出合理的控制方案,也离不开对被控动态特性的了解。
不顾被控对象的特点,盲目进行设计,往往会导致设计的失败。
尤其是一些复杂控制方案的设计,不清楚被控对象的特点根本就无法进行设计。
有了正确的控制方案,控制系统中控制器,测量变送器、执行器等仪表的选择,必须已被控对象的特性为依据。
在控制系统组成后,合适的控制参数的确定及控制系统的调整,也完全依赖与对被控对象动态特性的了解。
由此可见,在控制工程中,了解被控制的对象是必须首先做好的一项工作。
水箱液位自动控制系统工作原理

水箱液位自动控制系统工作原理引言水箱液位自动控制系统是一种常见的自动化控制系统。
本文将对水箱液位自动控制系统的工作原理进行详细的介绍和探讨。
其中包括传感器的使用、控制器的设计以及执行器的操作等方面。
传感器水箱液位传感器是水箱液位自动控制系统的核心组件之一。
传感器通过测量水箱中的液位高度来获取相应的液位信息。
常见的液位传感器包括浮球式液位传感器和压力式液位传感器。
浮球式液位传感器浮球式液位传感器利用浮球的浮力来测量液位。
当液位上升时,浮球会随之上升;当液位下降时,浮球也会下降。
传感器通过检测浮球的位置来确定液位的高度。
压力式液位传感器压力式液位传感器通过测量液体对传感器的压力来确定液位的高度。
当液位上升时,液体对传感器的压力增加;当液位下降时,压力减小。
传感器通过检测液体对传感器的压力变化来确定液位的高度。
控制器控制器是水箱液位自动控制系统的另一个重要组成部分。
控制器根据传感器提供的液位信息,判断水箱液位是否在设定范围之内,然后发出相应的控制信号。
PID控制器PID控制器是一种常用的控制器类型。
它根据当前的偏差以及偏差的变化率来调整输出信号,使得系统的输出能够稳定在设定值附近。
PID控制器由比例项、积分项和微分项组成,分别对应于当前偏差、累积偏差和变化率。
控制信号控制信号是控制器向执行器发送的命令信号,用于控制水箱液位的变化。
通过调整控制信号的大小和方向,控制器可以实现水箱液位的自动上升和下降。
执行器执行器是控制水箱液位的关键部件。
执行器根据控制器发出的命令信号,调整水箱进水和排水的流量,从而实现水箱液位的自动控制。
电动阀门电动阀门是一种常用的执行器类型。
它通过电动机驱动阀门的开闭,从而调节水箱的进水和排水流量。
控制器通过控制电动阀门的开度,使得水箱液位保持在设定范围之内。
水泵水泵也是一种常见的执行器类型。
它通过驱动液体流动来调节水箱的液位。
控制器根据液位信息,调整水泵的工作状态,从而实现水箱液位的自动控制。
液位自动控制系统的技术要求和工艺要求

液位自动控制系统的技术要求和工艺要求
1、系统技术要求
(1)某工厂的水箱液位采用自动控制系统,现系统将采用PLC进行自动控制,系统的操作均在触摸屏上进行,并可以在触摸屏中看到系统的监控界面;
(2)在水箱下部设置了手动阀门,阀门可以进行出水量大小的调节工作;
(3)本系统的操作均在触摸屏上进行,液位控制系统的启动和停止要求能够用手动和自动两种方式控制,并且水箱的实时液位高度在触摸屏中可以直观显示;
(4)系统使用液位传感器来检测水塔的液位高度,液位传感器与PLC 的A/D模块将通过液位变送器进行数据的传送,水箱的液位变化范围为0~100,变送器的对应输出为4~20mA;
(5)系统使用变频器来水泵电机的转速大小,水量可以通过液位进行调节。
按下启动按钮后,系统的频率为50Hz,当液位达到了设定值的70%时,变频器的频率为40Hz;当液位达到触摸屏设定值的80%时,变频器的频率为30Hz;当液位达到触摸屏设定值的90%时,变频器频率减小为低速15Hz,当液位高度达到了液位设定值时,水泵关闭,系统停止运行。
1、系统工艺要求
(1)掌握三菱PLC特殊模块A/D模块的使用方法。
(2)掌握三菱触摸屏(GOT系列)的使用方法。
(3)掌握变频器的参数设置。
(4)掌握用PLC实现液位自动控制设计的方法。
(5)按照液位自动控制系统的要求完成系统的设计、安装、调试。
(6)系统完成后调试运行良好,能够满足系统要求。
液位自动控制系统工作原理

液位自动控制系统工作原理
液位自动控制系统的工作原理是通过传感器感知液位的变化,并将这些信号转换成电信号,然后由控制器对这些信号进行处理和分析,最终通过执行机构调节流量或液位来控制液位的变化。
具体而言,液位自动控制系统通常包括以下几个基本组成部分:
1. 传感器:常用的液位传感器有浮子传感器、电容式传感器、超声波传感器等。
传感器可以感知液位的变化,并将其转换成电信号。
2. 控制器:控制器接收传感器发出的电信号,并对其进行处理和分析。
根据预设的控制策略和设定值,控制器计算出相应的控制命令。
3. 执行机构:执行机构根据控制器发出的控制命令,控制液体的流量或液位。
常见的执行机构包括阀门、泵等。
4. 反馈回路:为了确保控制的准确性,液位自动控制系统通常还需要建立反馈回路。
反馈回路将实际液位信息反馈给控制器,控制器可以根据实际液位与设定值之间的差异进行调整,以实现闭环控制。
整个液位自动控制系统的工作原理是不断地感知、处理和调控液位的变化,以使液位保持在设定值附近。
通过控制液体流量
或液位,液位自动控制系统可以实现液位的稳定、准确的控制,从而满足工业生产的需求。
水箱液位自动控制系统工作原理

水箱液位自动控制系统工作原理
1水箱液位自动控制系统
水箱液位自动控制系统是一种控制水箱液位的自动化控制系统,它包括一个液位探测器、一个液位计算机、水箱液位控制装置和一个加水控制装置。
1.1液位探测器
液位探测器是系统的最重要的组成部分,它可以实时测量水箱中液位和水温,并将其实时数据发送到液位计算机。
1.2液位计算机
液位计算机负责接收液位探测器发送过来的实时温度和液位数据,并对其进行分析,计算出水箱当前的液位状态和液位变化趋势,并将运算结果发送给控制装置。
1.3水箱液位控制装置
水箱液位控制装置接收到液位计算机发送过来的水箱当前液位状态和液位变化趋势,根据实际情况确定是否需要加水,并根据设定的液位变化趋势来决定加水的次数和加水量。
1.4加水控制装置
加水控制装置接收来自水箱液位控制装置发送过来的控制信号,根据设定次数和加水量,控制加水泵启动停止,最终实现自动控制水箱液位,保持水箱液位的稳定。
水箱液位自动控制系统通过液位探测器实时测量水箱液位和温度,液位计算机对测量数据进行分析,水箱液位控制装置根据设定液位趋势确定是否需要加水,加水控制装置根据设定次数和加水量控制加水泵启动停止,实现了水箱液位的稳定控制。
液位控制系统的工作原理及应用

液位控制系统的工作原理及应用1. 液位控制系统的概述液位控制系统是一种用于测量、监控和控制液体在容器中的高度的系统。
它主要通过测量液体的高度来调节液体的进出量,以保持液体在设定的液位范围内。
2. 液位控制系统的工作原理液位控制系统通常由以下几个组成部分组成:传感器、控制器和执行器。
下面是液位控制系统的工作原理:2.1 传感器液位传感器是液位控制系统中最关键的部分之一。
它通常通过物理或电子方法来测量液体的高度,并将测量结果转化为电信号。
常见的液位传感器包括浮球传感器、电容传感器和超声波传感器等。
2.2 控制器控制器是液位控制系统中的中枢部件,负责接收传感器的信号并进行处理和判断。
根据设定的液位范围,控制器可以发出控制信号来调节液体的进出量。
控制器还可以通过显示屏或指示灯等方式提供工作状态和警告信息。
2.3 执行器执行器是液位控制系统中用于调节液体进出量的设备。
常见的执行器包括阀门、泵和搅拌器等。
根据控制器的信号,执行器可以自动打开或关闭阀门、启动或停止泵等操作,从而实现液位的控制。
3. 液位控制系统的应用3.1 工业生产液位控制系统在工业生产中广泛应用。
例如,在化工过程中,液位控制系统可以用于调节液体的进出量,保持反应器中恰当的液位,从而确保反应的稳定性和安全性。
在石油行业,液位控制系统可以用于储罐中的油品或化学品的管理,提高生产效率和安全性。
3.2 水处理液位控制系统在水处理领域也有广泛的应用。
例如,在污水处理厂,液位控制系统可以用于调节混凝剂的投加量,控制沉淀池的液位,以确保废水的处理效果。
在供水系统中,液位控制系统可以用于监控水库或水井的液位,并自动控制水泵的启停,保持水源的稳定供应。
3.3 智能家居随着智能家居的发展,液位控制系统也开始在家庭生活中得到应用。
例如,在水器中,液位控制系统可以用于检测水位,防止水箱溢出。
在洗衣机中,液位控制系统可以用于监测洗衣机内的水位,确保洗衣的效果和节约水资源。
液位控制系统原理

液位控制系统原理
液位控制系统主要是根据液体容器中的液位变化来实现自动控制。
其基本原理是通过传感器或测量设备对液位进行实时监测,并将监测到的数据传输给控制器进行处理。
控制器根据设定的液位目标值和系统的工作要求,对执行机构进行控制,从而实现液位的稳定控制。
具体而言,液位控制系统的原理包括以下几个关键步骤:
1. 传感器测量液位:液位控制系统中,通常使用传感器来测量液体容器中的液位。
常见的液位传感器有浮子式液位传感器、压力传感器、毛细管传感器等。
传感器会将液位信息转换为电信号,以便后续的控制。
2. 信号处理与转换:液位传感器输出的电信号可能需要进行处理和转换,以适应控制器的要求。
通常使用信号调理器或模拟转换器对信号进行放大、滤波或线性化处理,并将其转化成数字信号,以便后续的控制器处理。
3. 控制器处理信号:控制器接收传感器发送的信号,并进行处理。
其主要任务是将测量到的液位与预设的目标液位进行比较,并根据控制策略确定控制命令。
控制器通常具有PID控制算
法或其他控制算法,并可以根据实际情况进行参数调整。
4. 执行机构控制:控制器根据处理结果,生成相应的控制信号,控制执行机构以实现液位的调节。
执行机构根据控制信号的不同,可以是开关阀门、调节阀、泵或其他调节装置。
通过对执
行机构的控制,液位控制系统可以实现液位的自动调节。
总体来说,液位控制系统利用传感器监测液位并将信号转换为控制器可处理的形式,控制器根据设定的液位目标值进行处理,并通过控制信号控制执行机构,从而实现液位的稳定控制。
这种液位控制系统常应用于化工、制药、水处理、液体储存等领域。
液位自动控制系统分析

二.系统分析2.1系统工作原理浮球杠杆式液位自动控制系统原理示意图工作原理:当电位器电刷位于中点位置时,电动机不动,控制阀门有一定的开度,使水箱中流入水量与流出水量相等,从而液面保持在希望高度上。
一旦流入水量或流出水量发生变化,水箱液面高度便相应变化。
例如,当液面升高时,浮子位置亦相应升高,通过杠杆作用使电位器电刷从中点位置下移,从而给电动机提供一定的控制电压,驱动电动机通过减速器减小阀门开度,使进入水箱的流量减少。
此时,水箱液面下降,浮子位置相应下降,知道电位器电刷回到中点位置,系统重新处于平衡状态,液面恢复给定高度,反之,若水箱液面下降,则系统会自动增大阀门开度,加大流入的水量,使液面升到给定的高度。
2.2系统分解水位自动控制系统由浮子,杠杆,直流电动机,阀门及水箱控制部分构成。
根据不同的需要可以对各部分进行不同的设计。
该系统结构简单,安装方便,操作简便直观,可以长期连续稳定在无人监控状态下运行。
液位控制系统原理方框图如下所示:图22.3.数学模型2.3.1浮子、杠杆、电位计(比例环节)浮球杠杆测量液位高度的原理式U o=U总b∆ℎal式中Uo为电位计的输出电压,U总为电位计两端的总电势,b a⁄为杠杆的长度比,∆ℎ为高度的变化,l为电位计电阻丝的中点位置到电阻丝边缘的长度。
则:G1(s)=K12.3.2微分调理电路(微分环节)由于水面震荡,导致浮子不稳定,在电位计的输出电压与电动机的输入端之间接一个微分调理电路,对输入的电压进行调理传递函数为G2(s)=K2s2.3.3电动机(惯性环节)查资料知电动机的传递函数:G3(s)=K3Ts+12.3.4减速器(比例环节)这是一个比例环节,增益为减速器的减速比。
故,传递函数为G4(s)=K42.3.5控制阀(积分环节)这是一个积分环节,故,传递函数为G5(s)=K5s2.3.6水箱(积分环节)这是一个积分环节,实际液位Y是流入量Q in与流出量Q out的差值∆Q对时间t的积分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
控制类系统设计
——液位自动控制系统
摘要
随着电子技术、计算机技术和信息技术的发展,工业生产中传统的检测和控制技术发生了根本性的变化。
液位作为化工等许多工业生产中的一个重要参数,其测量和控制效果直接影响到产品的质量,因此液位控制成为过程控制领域中的一个重要的研究方向。
液位控制是工业中常见的过程控制,它对生产的影响不容忽视。
该系统利用了常见的芯片,设计并实现了液位控制系统的智能性及显示功能。
电路组成简单,调试方便,性价比高,抗干扰性好等优点,能较好的实现水位监测与控制的功能。
能够广泛的应用于工业场所。
液位控制有很多方法,如,非接触传感。
只需要将传感器紧贴在非金属容器的外壁,就可以侦测到容器里面液位高度变化,从而及时准确地发出报警信号,有效防止液体外溢或防止机器干烧。
由于不需要与液体接触且安装简便,避免了水垢的腐蚀,可取代传统的浮球传感和金属探针传感,延长寿命。
而本设计是基于纯电路的设计,低成本且抗干扰性好。
在本设计中较好的实现了水位监测与控制的功能。
液位控制系统是以液位为被控参数的系统,液位控制一般是指对某控制对象的液位进行控制调节,以达到所要求的液位进行调节,以达到所要求的控制精度。
1 概述
液位控制系统是以液位为被控参数的系统,是现代工业生产中的一类常见的、重要的控制过程。
而传统的液位控制多采用单回路控制,并采用传统的指针式仪表来显示液位值,使液位控制的精度和显示的直观性受到限制,而随着生产线的更新及生产过程控制要求的提高,要求液位系统有高的控制性能。
基于此,本系统就设计了一种电路简单,调试方便且性价比高的系统,来完成液位的自动调控。
本系统主要由四部分组成:显示模块、振荡模块、传感器模块和声光报警模块,系统简单易行。
系统框图如下:
2 硬结构与功能
2.1 该设计的总体结构
该设计是一块集多种电子芯片于一体的多功能实验板,实现了液位系统的控制及显示。
主要功能器件包括:电源部分的7808,定时部分的555定时器,数字分段的LM3914等。
电路原理图如下图所示:
2.2 各结构的硬件介绍
2.2.1 电源电路介绍
电源电路由两部分组成:220V电源转变到交流15V和交流9V.电源电路的核心就是芯片7805,因为三端固定集成稳压电路的使用方便,电子制作中经常采用。
IC采用集成稳压器7805,C1、C2、C4、C5为输入端滤波电容,C6、C7、C10、C11为输出端滤波电容,RL为负载电阻。
当输出电流较大时,7805应配上散热板。
电源电路图如下:
2.2.2 振荡电路介绍
能够产生振荡电流的电路叫做振荡电路。
一般由电阻、电感、电容等元件和电子器件所组成。
振荡电路图如下:
2.2.3 传感器电路介绍
传感器在现代信息技术中有着举足轻重的地位,因此作为理工科专业的学生学习和掌握现代传感器技术知识是非常必要的。
根据该系统的实用性,考虑使用物理性传感器(包括压电式、超声波式、磁电式、光电式和核辐射传感器)或能量控制型传感器(包括电位器式、应变片式、电容式和电感式传感器)
由于该设计是针对液位高度的,并考虑到价格以及我们使用的熟练性,最终选择使用电容式传感器。
电容式传感器:它的敏感部分就是具有可变参数的电容器。
电容式传感器的优点是结构简单,价格便宜,灵敏度高,过载能力强,动态响应特性好和对温度、辐射、强振等恶劣条件的适应性强等。
缺点是输出有非线性,寄生电容和分布电容对灵敏度
和测量精度的影响较大,以及联接
电路较复杂等。
原理:利用被测介质的特性变换成相应的电量,液位越高,电阻体被短路部分愈多,阻值越小。
传感器电路如下:
2.2.4 控制部分电路介绍
通过信号调理电路调整好零点和最高点,运行中将会显示液位的高度变化。
通过LM3914电路及双色管电路转换为电信号。
双色管显示:用双色管来显示液位的变化,并伴随声光报警功能来提醒用户。
电路图如下:
(LM3914数字分段电路图)
(双色管电路图)
2.2.5 报警电路介绍
当液面高度大于25cm或小于2 cm时,系统发出信号使V2出现高电平,触发蜂鸣器报警装置,蜂鸣器发出响声。
报警电路图如下:
2.2.6 信号调理电路介绍
信号处理电路,把模拟信号变换为用于数据采集、控制过程、执行计算显示读出或其他目的的数字信号。
模拟传感器可测量很多物理量,如温度、压力、光强等,但由于传感器信号不能直接转换为数字数据,这是因为传感器输出是相当小的电压、电流或电阻变化,因此,在变换为数字信号之前必须进行调理。
调理就是放大,缓冲或定标模拟信号等,使其适合于模/数转换器(ADC)的输入。
然后,ADC对模拟信号进行数字化,并把数字信号送到MCU或其他数字器件,以便用于系统的数据处理。
信号调理简单的说就是将待测信号通过放大、滤波等操作转换成采集设备能够识别的标准信号。
是指利用内部的电路(如滤波器、转换器、放大器等…)来改变输入的讯号类型并输出之。
信号调理电路如下:
3 总结
通过对该系统的学习,不仅使我对液位控制系统有了明确的认识,也使我认识到了控制系统对于人们生活的重要性。
经过对该系统的液位监测,报警等部分进行测试,各部分协调工作良好,相信该设计方案具有一定的可行性。
此设计只是为了表达一个简单的思路,模拟一个简单的控制过程,在实际的应用下,现场要求肯定会比这要精确,复杂的多。
因此设计一个系统需要从多个方面进行考虑,尤其是当此设计应用到实际现场时,更要从方方面面进行思考。
电子产品的开发过程,一般经过如下步骤:
(1)原理图设计,包括方案选择、原理图仿真验证。
(2)设计电路板图,画电路版图之前,要画出正确的原理图,才能画电路板图。
(3)购买元件。
(4)画电路板图,按照电流、电压、抗干扰、安装要求等画电路板。
(5)焊接电路板。
(6)调试电路板,实际验证所设计的产品。
在此次设计中,又重温了PCB制版的过程,使我对于PCB制图有了更系统的认识。
并总结以下制图时需要注意的事项:
(1)对各部件的位置安排作合理的、仔细的考虑,主要是从电磁场兼容性、抗干扰
的角度,走线短,交叉少,电源,地的路径及去耦等方面考虑。
(2)在建立元件库和封装库时,一定要注意元件的引脚编号一样。
(3)元件的封装的引脚必须与元件在原理图中的引脚序号一样。
(4)尽量少用过孔,一旦选用了过孔,务必处理好它与周边各实体的间隙,特别是容易被忽视的中间各层与过孔不相连的线与过孔的间隙。
(5)选择元件的焊盘类型要综合考虑该元件的形状、大小、布置形式、振动和受热情况、受力方向等因素。
各元件焊盘孔的大小要按元件引脚粗细分别编辑确定。
(6)同一级电路的接地点应尽量靠近,并且本级电路的电源滤波电容也应接在该级接地点上。
(7)阻抗高的走线尽量短,阻抗低的走线可长一些,因为阻抗高的走线容易发笛和吸收信号,引起电路不稳定。
在制版和焊接时需要注意以下几点:
(1)元器件装焊顺序依次为:电阻器、电容器、二极管、三极管、集成电路、大功率管,其它元器件为先小后大。
(2)芯片与底座都是有方向的,焊接时,要严格按照PCB板上的缺口所指的方向,使芯片、底座与PCB三者的缺口都相应。
(3)焊接时,要使焊点周围都有锡,将其牢牢焊住,防止虚焊。
(4)芯片在安装前最好先两边的针脚稍稍弯曲,使其有利于插入底座对应的插口中。
. 附件:
欢迎下载,谢谢观看!资料仅供参考学习
-。