水位自动控制系统的原理是什么

合集下载

全自动水位控制器工作原理

全自动水位控制器工作原理

全自动水位控制器工作原理1. 水位控制器的概念在我们日常生活中,水可是不可或缺的,无论是浇花、洗衣,还是洗澡,水的需求随处可见。

想象一下,你在家里准备给花儿们浇水,却发现水桶空了,真是让人心急如焚啊!这时候,全自动水位控制器就像是个可靠的好朋友,它能帮我们解决水位问题,确保我们不再为“缺水”而烦恼。

1.1 水位控制器的构造那么,这个水位控制器究竟是个什么东西呢?其实,它的构造简单得很,主要由传感器、控制器和阀门三部分组成。

传感器就像是水位的“侦探”,负责探测水面的高低;控制器则是大脑,接收传感器传来的信号,发出指令;而阀门就像是水的“守门员”,根据指令来开关水流。

简简单单,但功能却强大无比!1.2 工作原理工作原理嘛,其实也不复杂。

传感器监测到水位低于设定值,就会将信号传给控制器。

控制器接到信号后,立即命令阀门打开,水源开始涌入水槽,直到水位达到预设的高点,阀门再自动关闭。

这样的过程就像是一场默契的舞蹈,水位在“舞动”,生活也因此更加便捷。

2. 应用场景全自动水位控制器的应用场景可真是广泛,从家庭到工业,无处不在。

在家庭中,水位控制器常常被用在水箱、游泳池和鱼缸里。

想象一下,家里的鱼缸如果水位太低,鱼儿们可就要“干涸”了,幸好有了这个小设备,鱼儿们可以悠然自得地游来游去,真是美滋滋啊!而在工业上,水位控制器更是发挥着不可替代的作用,保障着生产线的正常运转。

2.1 维护与保养不过,像任何设备一样,全自动水位控制器也需要定期维护和保养。

我们得定期检查传感器,确保它的灵敏度;阀门的清洁也很重要,不然一旦堵塞,水流就会受到影响。

就像我们人一样,保持身体健康才能更好地工作嘛!2.2 注意事项在使用过程中,还要注意一些细节。

比如,不要让水位控制器长时间暴露在阳光直射下,这样会影响它的寿命;另外,定期给它做个“体检”,确保各个部分都在良好的工作状态。

只有这样,才能让这个“水管小助手”长久陪伴我们的生活。

3. 总结全自动水位控制器就像是生活中的一个小精灵,默默地守护着我们的水源,让我们能随心所欲地使用水,不再为水位问题操心。

全自动水位控制阀原理

全自动水位控制阀原理

全自动水位控制阀原理
全自动水位控制阀是一种用于控制液体水位的设备,其原理是根据测量到的水位信号来自动调节阀门的开启程度,以实现自动控制水位。

该系统由水位传感器、阀门执行机构和控制器组成。

水位传感器用于监测液体的实时水位,并将其转化为电信号。

阀门执行机构则根据控制器的指令,调节阀门的开度。

控制器负责接收水位传感器的信号,并根据设定的水位值进行比较和计算,然后发送控制信号给阀门执行机构,以调节阀门的开启程度。

在系统正常运行时,水位传感器会持续地监测液体水位,并将信号传输给控制器。

控制器会根据设定的水位值来判断当前水位与目标水位之间的差距,并计算出相应的控制信号。

控制信号经过传输后,阀门执行机构会根据信号调节阀门的开度,使液体的流量得到控制,从而实现水位的自动控制。

当水位低于设定值时,控制器会发送开启阀门的信号,使阀门打开,允许液体流入。

当水位达到设定值时,控制器会发送关闭阀门的信号,使阀门关闭,阻止液体继续流入。

通过不断地调节阀门的开启程度,控制器能够精确地控制水位在设定范围内波动。

总之,全自动水位控制阀利用水位传感器、阀门执行机构和控制器的协作,实现了对液体水位的自动控制。

这种阀门在工业生产和民用生活中都有广泛的应用,可以方便地控制水位,提高生产效率和节约资源。

水位控制器工作原理

水位控制器工作原理

水位控制器工作原理
水位控制器是一种常见的自动控制设备,常用于对水位的监测和调节。

其工作原理可以概括如下:
1. 水位传感器:水位控制器通过安装在水箱或储水器中的水位传感器来监测水位的高低。

水位传感器可以是浮球开关、电极式传感器或压力传感器等。

2. 控制电路:水位传感器将水位信息传输给控制电路,通过对水位信号进行处理和判断,控制电路能够判断水位处于高位、低位还是中位。

3. 控制输出:根据控制电路的判断结果,水位控制器会输出相应的控制信号。

这些信号可以通过继电器或晶体管等元件控制水泵、进水阀或排水阀等设备的开关状态。

4. 动作控制:根据输出信号的控制,水泵、进水阀或排水阀等设备会被启动或关闭。

当水位过低时,水位控制器会使水泵启动,将水箱或储水器中的水增加到设定水位;当水位过高时,水位控制器会使水泵停止或排水阀启动,将水箱或储水器中的水减少至设定水位。

通过以上的工作原理,水位控制器可以实现对水位的自动监测和调节,从而避免水位过高或过低带来的问题,确保水位在设定范围内维持稳定。

这对于一些需要定量供水或排水的应用场合非常重要,如水处理系统、智能农业灌溉系统等。

水位控制系统工作原理

水位控制系统工作原理

水位控制系统工作原理
水位控制系统是一种用于监测和控制水位的设备,常用于水池、水塔、河流和水利工程等地方。

该系统的工作原理基于水位测量和控制装置。

首先,系统中安装有水位传感器,用于测量水位的高度。

传感器能够根据水位的变化发出相应的信号。

接下来,传感器将测量到的水位信号传送给控制器。

控制器根据接收到的信号来判断水位的高低,并根据预设的水位设定值来进行调整。

控制器与一台或多台执行器连接,这些执行器可以是阀门、泵或其他类型的控制装置。

当水位高于或低于设定值时,控制器将通过操作执行器来调整水位。

例如,当水位过高时,控制器通过控制阀门或泵将多余的水排出,直到水位降至设定值为止。

相反,当水位过低时,控制器将通过开启阀门或泵来补充水源,直到水位升至设定值。

通过不断监测和调整水位,水位控制系统能够确保水位在所需的范围内稳定运行。

这对于保护水资源、防止水位溢出或干涸具有重要意义。

总之,水位控制系统通过水位传感器、控制器和执行器之间的协调工作,实现对水位的监测和控制,以确保水位稳定运行。

水位控制系统工作原理

水位控制系统工作原理

水位控制系统工作原理水位控制系统是一种用于监测和控制液体水位的自动化系统,它在工业生产、环境监测、农业灌溉等领域有着广泛的应用。

其工作原理主要包括传感器检测、信号传输、控制执行等几个方面。

首先,水位控制系统的工作原理是基于传感器的检测。

传感器通常安装在液体容器的上、下部位,通过测量液位高度来实现对水位的监测。

常用的传感器有浮子式传感器、电容式传感器、超声波传感器等。

这些传感器能够将检测到的水位信息转化为电信号,为后续的控制提供准确的数据支持。

其次,水位控制系统通过信号传输将传感器获取的水位信息传送至控制中心。

传统的信号传输方式主要是通过导线连接,将传感器采集的信号传输至控制设备。

而随着无线技术的发展,如今也有许多水位控制系统采用无线传输技术,通过无线模块将信号传输至控制终端,实现远程监控和控制。

接着,控制中心接收到传感器传来的水位信息后,根据预设的控制策略,通过控制执行器对水位进行调节。

控制执行器通常是阀门、泵或其他控制装置,它们能够根据控制中心发送的指令,自动调节液体的流入或流出,从而实现对水位的精确控制。

此外,水位控制系统还包括了一些辅助设备,如控制面板、报警装置等。

控制面板用于设置和调整控制参数,监视系统运行状态;报警装置则能够在水位异常时发出警报信号,提醒操作人员进行处理,确保系统安全运行。

总的来说,水位控制系统通过传感器检测、信号传输、控制执行等环节,实现了对液体水位的自动化监测和控制。

它能够提高生产效率,减少人力成本,保障生产安全,对于各种液位控制场景都具有重要的意义和价值。

随着科技的不断进步,水位控制系统的工作原理也在不断完善和创新,为各行各业的发展带来了更多可能性。

1-1下图表示一个水位自动控制系统,试说明其作用原理

1-1下图表示一个水位自动控制系统,试说明其作用原理

1-1下图表示一个水位自动控制系统,试说明其作用原理.1-2下图为电动机速度控制系统原理示意图.图中,r U 为给定参考电压,M 为电动机,a U 为M的电枢电压,Ω为M 的输出轴角速度,TG 为测速发电机,c U 为TG 的输出电压.要求:(1) 将该速度控制系统接成负反馈系统(2) 画出系统原理方框图1-3下图是恒温箱的温度自动控制系统.要求:(1) 画出系统的原理方框图;(2) 当恒温箱的温度发生变化时,试述系统的调解过程;(3) 指出系统属于哪一类型?1-4下图为电动机电压自动控制系统.图中,1为电动机,2为减速器,3为电动机,4为电压放大器,5为可调电位器.试问:(1)该系统由哪几部分组成,各起作用?(2)系统中有哪些可能的扰动量?(3)当输出电压降低时,系统的调节过程如何?(4)该系统属于哪种类型?1-5 下图为位置随动系统,输入量为转角r θ,输出量为转角c θ,p R 为圆盘式滑动电位器,s K 为功率放大器SM 为伺服电动机.要求:(1)说明系统由哪几部分组成,各起什么作用?(2)画出系统原理方框图;(3)说明当r θ 变化时, c θ的跟随过程.1-6下图为转速控制系统,g U 为输入量,f E 为发电机电势,转速n 为输出量.试画出系统原理方框图.1-7设描述系统的微分方程如下,其中c(t)为输出量,r(t)为输入量,试判断它们属于何种类型? (1) λλd r dt t dr t r t c t )(5)(6)(3)(⎰∞-++= (2) 222)()(2)(dt t r d t t r t c +=(3) )()(2t r t c =(4) t t r t c ωcos )(5)(+=(5) ⎩⎨⎧≥<=6,)(6,0)(t t r t t c (6) )()(8)(6)(3)(2233t r t c dtt dc dt t c d dt t c d =+++ (7) dtt dr t r t c dt t dc t )(3)()()(+=+ 1-8下图为温度自动控制系统,改变a 点位置可以改变恒温温度.试说明该系统的工作原理和性能,并指出它属何种类型?1-9下图为直流恒速控制系统.系统中除速度反馈外, 还设置了电流反馈以补偿负载变化的影响.试画出系统原理方框图.1-10下图是烘烤面包的速度调节装置.待烘烤的面包用传送带按一定速度和一定时间通过烘箱.传送带由无级变速机驱动,根据安装在烘箱内的温度检测测量的烘箱实际温度,通过控制器可以调节传送带的速度.若烘箱温度过高,传送带速度应加快,反之,则应减慢,以保证烘烤面包的质量.试说明传送带速度自动控制系统的工作原理,并绘制相应的原理方框图.1-11下图是一种用电流控制的气动调节阀,用来控制液体的流量.图中,与杆固连的线圈内有一块永久磁铁,当电流通过线圈时,便产生使杆绕支点转动的力矩, 从而带动档板关闭或打开喷嘴时,进入膜片腔的空气压力将增大,从而将膜片下压, 并带动弹簧,阀杆一起下移;反之,当喷嘴被打开时,由于空气从喷嘴中跑出,进入,膜片上腔的空气压力将减小,膜片连同弹簧,阀杆便一起上升.此外,阀杆位移反馈回去, 并由与杆连接的弹簧产生一个平衡力矩.这样,通过电流控制阀杆位移, 从而改变阀门开度,达到控制液体流量的目的.要求:(1) 确定该系统装置的输入量,输出量,控制对象和扰动量;(2) 绘出其原理方框图;(3) 指出该系统属于哪种类型的装置?1-12 图1-31(A)和(B)均为自动调压系统,假设空载时,(A)于(B)的发电机端电压相同,均为110V试问带上负载后,(A)和(B)哪种系统能保持110V端电压不变? 哪种系统的端电压会低于110V?为什么?1-13试绘制图1-31(A)于(B)所示的原理方框图,分别说明各系统的测量元件, 放大元件及执行元件是时么,并指出各系统的输入量,输出量和控制对象.1-14 图1-32为水温控制系统,冷水在热交换器中由通入的蒸气加热,,从而得到一定温度的热水.冷水流量的变化可用流量计测得.要求:(1) 说明为了保持热水温度给定值为定值,系统是如何工作的?(2) 指出系统的控制对象及控制器;(3) 绘制系统的原理方框图;(4) 指出系统属于哪种类型1-15 图1-33为调速系统.图中G 为发电机,M 为电动机,TG 为测速发电机,SM 为伺服电动机.要求:(1)说明系统的工作原理;(2)绘制系统原理方框图.1-16图1-34为工作台位置液压控制系统.图中,1为控制电位器,2为反馈电位器,3为工作台.该系统可使工作台按照控制电位器给定的信号运动.要求:(1)指明系统的输入量,输出量和控制对象;(2) 绘制系统原理方框图(3) 说明系统属于何种类型1-17 图1-35为自动记录仪系统.电位器1和2组成测量电桥,当电位器1和2 的两个话臂不在同一位置时,测量电桥不平衡,线圈3中便有电流产生.由于线圈处于两个磁极中间,故会发生转动.线圈转动时,记录笔4和电位器2的滑壁跟着一起转动,直到2 的滑臂与1的滑臂位置一致为止.同时,记录笔相应记下两个滑臂间的位置偏差.试绘制该系统原理方框图1-18 图1-36为水位自动控制系统.要求绘制系统的原理方框图1-19下图所示为热水电加热器。

水位自动控制电路的工作原理

水位自动控制电路的工作原理

水位自动控制电路的工作原理
 该电路的工作原理:用一个交流接触器,二只微动开关和浮球支架组成深水井、或水井、水位控制电路,经单位、家庭3年的实际使用得到验证,效
果很好,维修量等于零。

电路如图所示。

合上QS1、K1、K2限位开关。

K1
处于常开状态,K2处于常闭状态。

KM是一只交流接触器。

 当水井、水位处于高水位时,靠浮球棒的顶力,浮球连杆凸起1把K1常开触点接通,电源经过L到K1、K2、KM线圈N构成电源回路。

交流接触
器线圈得电吸合工作,KM主触点接通主电源使电动机转动,开始抽水。


水井水位逐渐下降时,浮球连杆凸起l把K1脱离。

靠I(~I的辅助触点自锁,电机继续通电抽水。

当水位下降到水井,下限水位开关K2时,浮球连杆凸
起2把限位开关常闭触点K2断开,交流接触器线圈断电,是KM辅助触点、主触点释放断开主电源电机停转,抽水也相应停止。

 随着水井水位的上升,不断重复上述过程,周而复始。

 元件的选择:限位开关K1、K2,选用LXWS-11G2(触点电流为6A),KM是交流接触器型号为CJO-20A,线圈吸合电压为220V。

浮球支撑用环氧玻璃布板自制,尺寸根据深水井、水位指定相应高度来确定。

绝缘胶木板。

水位开关的原理

水位开关的原理

水位开关的原理
水位开关是一种常用于控制液体水位的装置。

它的原理是基于液位的变化,通过漂浮在液体表面上的开关来实现开关的自动控制。

具体来说,水位开关通常由一个浮子和一个固定在容器内壁上的开关组成。

当液位上升到浮子靠近容器顶部时,浮子会随着液位的上升而上升,最终触碰到开关并将其关闭。

反之,当液位下降时,浮子也会下降,开关则会被浮子控制打开。

水位开关的工作原理是基于浮力和重力的平衡原理。

当浮子浸泡在液体中时,液体的浮力会使浮子产生向上的浮力,而等效重力会使浮子产生向下的力。

当液位达到一定高度时,液体的浮力等于等效重力,此时浮子将停留在液体表面,触碰到开关并将其关闭。

通过调整浮子的位置或液体的液位,可以精准地控制水位开关的触发点。

当水位高于或低于设定值时,水位开关将自动切换相应的开关状态,从而实现液体的自动控制。

总之,水位开关通过浮子与开关的作用,根据液体的水位变化来实现开关的自动控制。

这种原理简单、可靠,被广泛应用于水泵、冷却系统、防溢流装置等液位控制场合中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水位自动控制系统就是将水位信号转换为开关信号,再用这个开关信号去控制交流接触器,交流接触器再控制一个水泵,就可以达到水位自动控制的目的。

水泵有各种各样的工作方式,所以交流接触器也有多种设计方案,这些电气元件按照设计方案连接起来就是电气控制箱。

现有多种成熟的设计方案,如GKY1X单台泵系统、GKY2X双台泵系统等等,在网上可以查到各种各样的设计原理图。

水泵电气控制箱是很常用的控制设备,工作可靠、使用寿命长。

影响水位自动控制系统可靠性和使用寿命的关键因素是液位传感器,就是将水位信号转换为开关信号这一部分。

现在主要有电极式、UQK/GSK干簧管式、光电式、压力式、GKY和超声波式等几种方式。

这些方式检测原理不同,因而水位自动控制的原理也不同。

下面,我们根据液位传感器的检测方式来讲解水位自动控制系统的原理,这是决定水位自动控制系统使用寿命和可靠性的主要因素。

一、电极式液位控制原理
电极式是最早的液位控制方式,其控制原理很简单:因为水是导体,有水的时候两个电极间导电,交流接触器吸合,水泵就开始抽水。

图1为电极式在水中控制原理示意图。

但是电极在水中会分解而且会吸附很多杂质。

如果不及时清理,电极就会失去作用,这是电极式液位传感器固有的缺陷。

电极式液位传感器的制造非常简单,有人将导线外皮拨开,插到水里就可以做成电极式液位控制器。

所以电极式液位控制器造价很低,价格便宜,但使用寿命很短。

即使采用不锈钢做电极,也需要2-3个月清理一下,在污水中电极的使用寿命就更短了。

图1
二、UQK/GSK干簧管液位控制原理
干簧管将电极触点密封在玻璃管内,这样就不直接接触液体了,所以电极不会吸附杂质,使用寿命提高。

干簧管的特点就是接近磁铁,触点就会吸合。

所以我们将干簧管固定在管壁内固定的位置。

浮子里装上磁铁,随着浮力沿着管壁上下滑动,见图2。

当浮子经过干簧管时,触点吸合。

干簧管触点一般直接驱动交流接触器,可以控制水泵启动。

GSK上下限位置精确,但管壁不能有脏东西,安装不能倾斜(小于30°),否则会影响浮子的上下移动。

图2
制作UQK/GSK浮子的材质通常采用塑料或不锈钢。

塑料材质的浮子价格便宜,但使用寿命短,因为塑料很容易变形。

一旦浮子或管壁变形,浮子就无法正常上下移动。

所以最好采用不锈钢材质。

但无论什么材质,浮子与管壁之间仅1mm左右的缝隙,很容易被脏东西堵住。

所以这种方式是不能在污水中使用的。

即使在清水中使用,使用寿命也只有一年多。

因为干簧管触点直接使用220V或380V交流电,而水位波动,触点频繁吸合,干簧管寿命较短。

这和现代微电子产品形成了鲜明的对比。

现代微电子产品,如收音机、电视机等,使用寿命可达十年以上,而传统液位控制方式使用寿命一般就是一年左右。

所以现在人们经常采用用一些控制器、仪表等设备将强电转换为弱电来使用,不仅可以延长液位传感器的使用寿命而且可以增加一些功能,但传感器本身一些固有的缺陷是无法改变的。

下面是一些需要使用仪表等转换设备的液位控制原理。

三、光电式液位控制原理
光电式液位控制采用光反射原理:当传感器玻璃反射面有水时,如图3.1,发射光从反射面透射出去,不发生全反射。

这时接收端检测不到光,输出很小的电流,说明有水。

当传感器反射面无水时,如图3.2,发射的光在玻璃反射面回来,发生全反射。

这时接收端可以检测到光,输出毫安级的电流,说明无水。

这种信号通过GKY-GD仪表转换为开关信号再去控制交流接触器,从而达到自动控制水位的目的。

GKY-GD光电式液位传感器工作于12V直流电,属于弱电,使用寿命长。

在清水中光电式液位传感器一般寿命可以超过三年,但不能在污水中使用。

因为光电式液位传感器的反射玻璃面如果变脏或被脏东西挡住时,即使有水,光也会被反射回来,造成判断失误。

所以光电式液位传感器使用时也需注意清理玻璃面。

图3.1图3.2
四、GKY液位控制原理
GKY液位传感器结合传统浮子和微电子技术的特点,使用寿命在三年以上,适用于清水、污水、热水中。

其检测原理与水质无关。

第一,GKY液位传感器利用液体浮力改变传感器方向,如图4。

这一点类似传统浮子,传感器通过细软线固定在悬索的某一点,这样它可以随水位灵活上下翻转,检测这一点是否有水,检测位置精确。

第二,密封在传感器内部的微电路可以在不同方向下产生不同的电流(类似手机自动旋转屏幕),这一点类似光电式弱电控制的特点:有水时电流很小,无水时产生毫安级的电流。

GKY液位传感器工作于12V安全电压,检测方式和水质无关,且只需两根普通传输线传输,传输距离可达几十公里,是近几年出现的液位控制方式。

GKY液位传感器是耐污性最强的液位传感器,可以用于宾馆酒店等很脏的污水池中。

GKY 仪表将检测到的水位信号转换为开关信号,再去控制交流接触器,从而达到自动控制水位的目的。

图4
五、压力式液位传感器
压力式液位传感器利用液体压力来检测液位,它将压力模拟量通过量化转化为数字显示。

因为存在量化、电流飘移和传输干扰等影响,显示的液位高度和实际的液位高度往往存在较大的误差。

如果用在密闭的管道系统中,这种误差对使用者并无大碍。

比如显示5MPa,因为误差,实际并不是准确的5MPa。

但客户无所谓,如果觉得压力过低,再调高一些就可以了。

至于是不是准确的5MPa,没有多大关系。

但要是用在敞开的容器,如水箱水池,这种误差就容易产生误动作。

比如显示的液位高度为2.4米,实际上可能超过2.8米。

所以在水箱或水池中使用这种传感器经常由于不准确而造成自动控制失灵,越小的水箱越容易失控。

另外这种传感器不能在污水中使用,因为透水孔径很小,很容易被泥沙堵住。

所以投入式压力传感器一般要求安装不能放在水池/水箱底部,因为常有泥沙堵住透水孔。

另外传输线也一定要用屏蔽线,距离不能太长,这是为了减少干扰造成的测量误差。

所以,投入式压力液位传感器将液体压力转换为电流信号,再通过仪表将电流信号转换为开关信号去控制交流接触器,从而达到液位自动控制的目的。

液位自动系统由于液位检测原理不同,因而控制设计方案也不同。

使用者需要关注液位传感器的使用注意事项。

比如使用超声波液位传感器时,厂家就会告诉大家,超声波传感器表面不能有水珠,水平面不要有波动,还有水蒸气、雾气等都会影响检测液位的准确度。

这样大家就可以根据使用场合来选择液位传感器。

如果大家按照传感器使用注意事项来使用,会延长液位自动控制系统的使用寿命。

总而言之,由于各种各样原因,多数液位传感器的使用寿命一般就是一年多。

如果用在污水中使用寿命更短,可靠性也很低。

目前在液位传感器市场上,很少有厂家承诺质保期超过一年,只有GKY液位传感器厂家承诺三年内包换。

在污水中最好选用耐污性较强的GKY液位传感器,其它的在污水中无法使用。

相关文档
最新文档