第七章、统计热力学基础习题和答案

合集下载

第七章 统计热力学

第七章  统计热力学

298 800 2000 ()11/V m C He J K mol --g g , 12.48 12.48 12.48 ()112/V m C H J K mol --g g , 20.81 23.12 27.68 ()112/V m C Cl J K mol --g g , 25.53 28.89 29.99 ()112/V m C CO J K mol --g g ,28.8143.1152.02【解析】(1)单原子气体V m C ,值不随T 地升高而变化,多原子气体对于随T 地升高而增大;(2)同温下,分子中原子数越多,V m C ,越大;(3)分子中原子数越多,V m C ,值随温度地升高变化越明显。

10.在同温,同压下,根据下面的表值判断:那种气体的S m ,t 了;了最大?那种气体的S m.r 最大?那种分子的振动频率最小?分 子r M/r K Θ/v K Θ2H2 87.5 5976 HBr81 12.2 3682 2N 28 2.89 3353 2Cl710.35801能级能量 12h ν 32h ν 52h ν 72h ν 92h ν 112h ν 微态数()i t方式1 1 2 3 方式2 1 1 1 6 方式3 2 1 3 方式4213能级上的微粒数0N 1N 2N 3N 4N 5N15i it Ω==∑11mol -g222H I HI(g )+(g )= (g ) 已知298K 时,22HI H I 、、的有关数据如下:物质(),011/m T m KG H TJ K molθ---g g,(),011/m T m KH H TJ K molθ---g g,11f m THJ K molθ--∆g g,2H-101.34 29.099 0 2I-226.61 33.827 62.438 HI-177.67 29.101 26.5222H D HD (g)+(g)= (g)物理量2HHD2D()21/10cm σ--⨯4.371 3.786 3.092 ()472/10I kg m ⨯g0.4850.6130.919物理量H 2O (g ) CO (g ) CO 2(g ) CH 4(g ) H 2(g ) (),011/m Tm K G H TJ K molθ----g g ,155.56168.41182.26152.55102.1711f m H J K molθ--∆g g ,0-238.9 113.81 -393.17 -66.90 0函 数CO (g )H 2O (g ) CO 2(g ) H 2(g )11f m TH J K molθ--∆g g ,-110.52-241.83-393.51(),011/m Tm K HU TJ K mol θθ---g g ,29.09 33.20 31.41 28.48(),011/m Tm K G U TJ K molθ----g g ,168.82 155.53 182.23 102.19分子 ()1/M kg mol -g/r K Θ/v K ΘH 2(g ) I 2(g ) 2.0R ×10-3 253.8×10-3 -385.4 0.054 6100 310【解析】对N 2对N :()()323323232333433214102 3.14 1.381050008.31450006.02106.626101013251.42610N B t m k T RTq h p θθπ---=⎛⎫⨯⨯⨯⨯⨯⨯⨯⨯ ⎪⨯⎝⎭=⨯⨯=⨯ 4e q θ=33331.426104 5.7010N t e q q q θθθ==⨯⨯=⨯()3233708.3510148.314500036235.710 1.868107.27106.0210e -⨯-⨯⨯==⨯⨯⨯⨯。

热力学统计物理课后习题答案

热力学统计物理课后习题答案

第七章 玻耳兹曼统计7.1试根据公式Va P Lll∂∂-=∑ε证明,对于非相对论粒子 ()222222212z y x n n n L m m P ++⎪⎭⎫ ⎝⎛== πε,( ,2,1,0,,±±=z y x n n n )有V U P 32= 上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。

证明:处在边长为L 的立方体中,非相对论粒子的能量本征值为()22222,,2212z y x n n nn n n L m m P zy x ++⎪⎭⎫ ⎝⎛== πε ( ,2,1,0,,±±=z y x n n n )-------(1) 为书写简便,我们将上式简记为32-=aVε-----------------------(2)其中V=L 3是系统的体积,常量()22222)2(z y x n n n ma ++=π,并以单一指标l 代表n x ,n y ,n z 三个量子数。

由(2)式可得VaV V l L εε323235-=-=∂∂----------------------(3) 代入压强公式,有VUa VV a P l ll L ll3232==∂∂-=∑∑εε----------------------(4) 式中 lll a U ε∑=是系统的能。

上述证明未涉及分布的具体表达式,因此上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。

注:(4)式只适用于粒子仅有平移运动的情形。

如果粒子还有其他的自由度,式(4)中的U 仅指平动能。

7.2根据公式Va P Lll∂∂-=∑ε证明,对于极端相对论粒子 ()212222zy x n n n Lc cp ++== πε, ,2,1,0,,±±=z y x n n n 有VUP 31=上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。

证明:处在边长为L 的立方体中,极端相对论粒子的能量本征值为()21222,,2z y x n nn n n n Lczy x++= πε, ,2,1,0,,±±=z y x n n n -------(1)为书写简便,我们将上式简记为31-=aVε-----------------------(2)其中V=L 3是系统的体积,常量()212222z y x n n n c a ++= π,并以单一指标l 代表n x ,n y ,n z 三个量子数。

第七章统计热力学基础

第七章统计热力学基础

第七章统计热⼒学基础第七章统计热⼒学基础⼀、选择题1、统计热⼒学主要研究()。

(A) 平衡体系(B)单个粒⼦的⾏为案(C) ⾮平衡体系(D) 耗散结构2、能量零点的不同选择,在下⾯诸结论中哪⼀种说法是错误的:( )(A) 影响配分函数的计算数值(B) 影响U,H,F,G 的数值(C) 影响Boltzmann分布数N 的数值(D) 影响能级能量εi的计算数值3、最低能量零点选择不同,对哪些热⼒学函数值⽆影响:( )(A) U (B) S (C) G (D) H4、统计热⼒学研究的主要对象是:()(A) 微观粒⼦的各种变化规律(B) 宏观体系的各种性质(C) 微观粒⼦的运动规律(D) 宏观系统的平衡性质5、对于⼀个U,N,V确定的体系,其微观状态数最⼤的分布就是最可⼏分布,得出这⼀结论的理论依据是:()(A) 玻兹曼分布定律(B) 等⼏率假设(C) 分⼦运动论(D) 统计学原理6、以0到9这⼗个数字组成不重复的三位数共有()(A) 648个(B) 720个(C) 504个(D) 495个7、各种不同运动状态的能级间隔是不同的,对于同⼀种⽓体分⼦,其平动、转动、振动和电⼦运动的能级间隔的⼤⼩顺序是:()(A) t > r > v > e(B) t < r < v < e(C) e > v > t > r(D) v > e > t > r8、在统计热⼒学中,对物系的分类按其组成的粒⼦能否被分辨来进⾏,按此原则:()(A) ⽓体和晶体皆属定域⼦体系(B) ⽓体和晶体皆属离域⼦体系(C) ⽓体属离域⼦体系⽽晶体属定域⼦体系(D) ⽓体属定域⼦体系⽽晶体属离域⼦体系9、对于定域⼦体系分布X所拥有的微观状态t x为:()(A) (B)(C) (D)10、当体系的U,N,V确定后,则:()(A) 每个粒⼦的能级 1, 2, ....., i⼀定,但简并度g1, g2, ....., g i及总微观状态数不确定。

统计热力学基础练习题一答案

统计热力学基础练习题一答案

物理化学试卷 答案一、选择题 ( 共10题 20分 )1. 2 分 (1546) [答] (D)2. 2 分 (1369) [答] (B)3. 2 分 (1551) [答] (B)4. 2 分 (1476) [答] (C)Θv = hc v/k = 308.5 K 5. 2 分 (1513) [答] A (2分)因对CO, σ=1 对N 2, σ=2 6. 2 分 (1433) [答] B)/e x p ()/e x p ()/e x p (,e 1,e 00,e 11,e 01kT g g kT g kT g N N εεε∆-=--= (1分) =0.184 (1分) 7. 2 分 (1680) [答] A (2分)8. 2 分 (1548) [答] (A) S r,m = R [ln T /σΘ r +1]σ (CO) = 1;σ (N 2) = 2 则S m (CO) > S m (N 2)9. 2 分 (1304) [答] (D) *. 2 分 (1540) [答] (D)二、填空题 ( 共10题 20分 ) 11. 2 分 (1368)[答] N i = (N /q )×g i exp(-εi /kT ) (1分) 近独立粒子体系,且为处于热力学平衡态的孤立体系 (1分) 12. 2 分 (0093)[答] ΔH +g ΔZ +12ΔU 2=Q -W 轴 (1分)稳流过程中的敞开体系 (1分) 13. 2 分 (1676)[答] N 1/N 0=g r,1exp(-εr,1/kT )/g r,0exp(-εr,0/kT )=3exp(-0.1) (1分) K 152/K 3001.02/1.0r =⨯==T Θ (1分) 14. 2 分 (1681)[答] m,v v v v (298.15K)ln[1exp(/)][/]/[exp(/)1]S R ΘT RΘT ΘT =---+-$(1分) =11mol K J 0014.0--⋅⋅ (1分)15. 2 分 (1512)[答] A h mkT q ⨯=)/π2(2d 2,t (2分) 16. 2 分 (1439)[答] )~exp()exp(1212kTvhc kT g g N N -=-=ε (1分)=exp[-143.98/(T /K)]=exp(-143.98/100)=0.2370 (1分)17. 2 分 (1468)[答] F = -kT ln q N (0.5分) F = -kT ln q N /N ! (0.5分) F = -kT ln Z (1分) 18. 2 分 (1675)[答] kvhc Θ~v ==308.5 K (2分)19. 2 分 (1366)[答] N i+1/N i = exp(-Δε/kT ) = 0.35220. 2 分 (1421)[答] )/exp()/exp(221121kT g kT g N N εε--= (1分) =0.595 (1分) 三、计算题 ( 共 5题 40分 ) 21. 10 分 (1390)[答] (a) q e = g 1exp(-ε1/kT ) + g 2exp(-ε2/kT ) + g 3exp(-ε3/kT )= 1 + 3exp(-100/200) + 5exp(-300/200) = 3.9353 (4分) (b) N 2= (N A /q e )g 2exp(-ε2/kT ) = 2.784×1023 mol -1 (3分) (c) N 1: N 2: N 3= g 1: g 2: g 3= 1 : 3 : 5 ( T → ∞) (3分)22. 10 分 (1387)[答] 因为 ν= 1/λ = ν/c = h ν/hc =ε/hc 所以 q e = g 0exp(-ε0/kT ) + g 1exp(-ε1/kT ) + g 2exp(-ε2/kT )= 5.118 (4分) 电子在基态上分布分数为: N 0/N = g 0/q e = 0.782 (2分) 电子分配在第一激发态上分布分数为:N 1/N = [g 1exp(-ε1/kT )]/q e= 0.218 (2分) 电子分配在第二激发态的分布分数为:N 2/N = [g 2exp(-ε2/kT )]/q e≈ 0 (2分)23. 10 分 (1397)[答] 在转动能级上 Boltzmann 分布为:P = N i /N = [g i exp(-εi ,r /kT )]/q r= [(2J +1)exp{-J (J +1)h 2/(8π2IkT )}/q γ(3分) 能级分布数最多的 J 值应为: d P /d J = 0 而q r 为常数不是 J 的函数 (2分) d P /d J = (1/q r )[2exp(-J (J +1)Θr /T ) - (2J +1)2×(Θr /T )×exp(-J (J +1) Θr /T )] = 0 2 - (2J +1)2Θr /T = 0 J = (T /2Θr )1/2 - 1/2 (2分) 当 T = 270 K , Θr = 2.8 K 时, J = 6.4 ≈ 6 (3分)24. 5 分 (1406)[答] ε0=0 ε1=ε ε2=2 ε3=3分布 g 0=1 g 1= 3 g 2= 4 g 3= 6 (1分) (1) 2 0 0 1 因只有一个量子态,故该分布不可能。

第七章 统计热力学基础自测题

第七章 统计热力学基础自测题

第七章 统计热力学基础自测题I.选择题1、下列各系统中属于独立子系统的是(d )。

(a )绝对零度的晶体 (b )理想液体混合物 (c )纯气体 (d )理想气体混合物2、有6个独立的定位粒子,分布在3个能级能量为 ε0,ε1,ε2上,能级非简并,各能级上的分布数一次为N 0=3,N 1=2,N 2=1。

则此种分布的微观状态数在下列表达式中错误的是(a )。

(a )321631P P P (b)321631C C C(c )6(321)!!!!(d )6313(63)2(32)1(11)!!!!-!!-!!-!3、在分子配分函数的表达式中与压力有关的是(b )。

(a )电子运动的配分函数 (b )平动配分函数 (c )转动配分函数 (d )振动配分函数4、某双原子分子AB 取振动基态能量为零,在温度T 时的振动配分函数为2.0,则粒子分布在基态上的分布分数N 0/N 应为(d )。

(a )2.0 (b )0 (c )1 (d )1/25、NH 3分子的平动、转动、振动自由度分别为(d )。

(a )3, 2, 7 (b )3, 2, 6 (c )3, 3, 7 (d )3, 3, 66、双原子分子在温度很低时且选取振动基态能量为零,则振动配分函数值为(b )。

(a )0 (b )1 (c )<0 (d )>07、忽略CO 和N 2振动运动对熵的贡献差别。

N 2和CO 的摩尔熵的大小关系为(a )。

(a )m m 2(CO)(N )S S > (b )m m 2(CO)(N )S S < (c )m m 2(CO)(N )S S = (d )不确定 8、一个体积为V ,粒子质量为m 的离域子系统,其最低平动能级和其相邻能级间隔为(b )。

(a )2238h mV(b )22338h mV(c )22348h mV(d )22398h mVⅡ.填空题1、 已知CO 的转动惯量I =1.45⨯10-26,k =1.38⨯10-23J ⋅K -1, ,h =6.626⨯10-34J ⋅s,,则CO 的转动特征温度r Θ为_2.78K _。

第七章 统计热力学基础答

第七章 统计热力学基础答

第七章 统计热力学基础答一、选择题二、判断题 三、计算题 1、解:(1)CO 分子有三个自由度,因此,2123338.314273.15 5.65710J22 6.02210R T Lε-⨯⨯===⨯⨯⨯(2)由三维势箱中粒子的能级公式()(){}22222232232222222321233426208888828.0104 5.6571018.314273.15101.325106.626110 6.022103.81110xy zx y z hnn n m am a m Vm nRT n n n hhh p εεεε-=++⎛⎫∴++=== ⎪⎝⎭⨯⨯⨯⨯⨯⎛⎫=⎪⨯⎝⎭⨯⨯⨯=⨯2、解:假设该分子可用刚性转子描述,其能级公式为()()J10077.31045.1810626.61220 ,81224623422---⨯=⨯⨯⨯⨯-=∆+=πεπεIhJ J J22210429.710233807.130010077.3--⨯=⨯⨯⨯=∆kT ε3、解:根据Boltzmann 分布(){}{}003329.01.011exp exp g g kT kT g g kT g g n n =⨯-=--=εε基态的统计权重10=g ,能级()14222=++z y x n n n 的统计权重6=g (量子数1,2,3),因此997.163329.00=⨯=n n4、解:谐振子的能级为非简并的,且为等间隔分布的()⎩⎨⎧⨯=∆-=-+271I for 0.3553HClfor 10409.5exp kT n n jj ε5、解:分子的平动配分函数表示为()()()3133342323233323323109632.21050400314.82106260755.640010380658.1100221367.610142π2π2π2⨯=⨯⨯⨯⨯⎥⎦⎤⎢⎣⎡⨯⨯⨯⨯⨯⨯⨯===---pnRT hmkT V hmkT q t6、解:分子的振动特征温度为K5.308,=∆===∆kk h Θh v εννε分子的振动配分函数为9307.01ee130025.30830025.30822=-=-=⨯-⨯-eeq TΘTΘv v v()()557.130025.308exp 9307.02exp 0=⨯==v r v q T Θq557.10==v v q f7、解:正则系综特征函数()T V N Q kT A ,,ln -=,对理想气体()()!ln ln ln !ln ln !ln,,ln N k q q q q NkT q NkT N kT q NkT N qkT T V N Q kT A n e v r t N+--=+-=-=-=只有平动配分函数与体积有关,且与体积的一次方程正比,因此: NkTpV V NkT V q NkT V A T t T =∴-=⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂ ln8、解:根据计算可知,x n 、yn 和z n 只有分别取2,4,5时上式成立。

热力学_统计物理学答案第七章

− β (ε x + ε y ) − ( pz + ) 1 2m β N( )2∫e dp x dp y dpz = ∫ f ( px , p y , p z )dp x dp y dp z 2πmkT 3

2
由条件(3)知 计算得
∫p
z
f ( p x , p y , p z ) dp x dp y dp z = Np0
co m

⎞ ⎟ ⎟ ⎠
⎛ Sk ⎞ ⎜ e −α − βε s′′ ⎟ ⎜ ⎟ S ′′ ⎝ S = S1 ⎠

⎤ ……⎥ ⎥ ⎦
)
离开正 常位置而占据图中×位置时,晶体中就出现缺位和填隙原子,晶体这种缺陷 叫做弗伦克缺陷。 (1)假设正常位置和填隙位置数都是 N,试证明由于在晶体中形成 n 个缺位和 填隙原子而具有的熵等于 S = 2k ln
S
习题 7.5 固体含有 A、B 两种原子。试证明由于原子在晶体格点的随机分布引起 的混 合熵为 S = k ㏑
ww
是A 原子的百分比, (1-x )是 B 原子的百分比。注意 x<1,上式给出的熵为正值。 证: 显然 Ω=
习题 7.6 晶体含有 N 个原子。原子在晶体中的正常位置如图中 O 所示。当原子
P = −∑ a l
∂ε l ; ∂V
co m
5
2U ,上述结论对玻耳兹曼分布、玻色分布和费米分布都成立。 3V
对极端相对论粒子 类似得
ε = cp = c P = −∑ al
l
1 2πℏ 2 ( nx + n y 2 + n z 2 ) 2 L 1 1 − ∂ 2 ( 2πℏ )( ∑ ni ) 2 V 3 ∂V 1 4 3

物理化学第五版统计热力学答案

第七章统计热力学初步答案一、判断题:1.错。

U,V,N一定时,系统有多少种分布以及每一种分布的微态数都是确定的。

2.错。

U,V,N一定时,粒子可以在不同能级间转移。

3.错。

E,V,N一定时系统处于每一个微观状态的概率相等。

4.前半句话对,后半句话不对。

玻尔兹曼分布就是最概然分布,但它不是平衡分布,只是能代表平衡分布。

5.对。

6.对。

7.错。

8.对。

9.错。

10.对。

11.错。

S、C V与零点选择无关。

12.对。

13.错。

14.错,W B<< Ω。

15.错。

g r = T/σΘ适用的条件是T>> Θr,不能用于低温。

二、单选题:1. B;2. D;3. C;4. B;5. A;6. C;7. B;8. B;9. B;10.C;11.A;12.C;13.D;14.B;15.C;16.C;17.C;18.A;19.B;20.B;21.B;22.B;23.C;24.B;25.D;26.B;27.B;28.C;29.A;30.C;31.D;32.B;33.C;34.D;35.A;36.C;37.D;38.C;39.D;。

三、多选题:1. AC ;2. B ;3. BC ;4. AB ;5. DE ;6. CD ;7. DE ;8. AD ;9. AB ;四、计算题1.解:氟原子的电子配分函数:q(电子) = g0exp(-∈0/kT) + g1exp(-∈1/kT) + g2exp(-∈2/kT)= (2J0 + 1)exp(-∈0/kT) + (2J1 + 1)exp(-∈1/kT) + (2J2 + 1)exp(-∈2/kT)= 4 ×e0 + 2 × exp(-0.5813) + 6 × exp(-147.4) = 5.1182.解:(1) q0,V = 1/[1-exp(-Θv/T)] = 1/[1-exp(-Θv/1000)] = 1.25exp(-Θv/1000) = 1-1/1.25 = 0.20 所以Θv = 3219K(2) N0/N = g0exp(-∈0/kT)/q0,V = g0exp(-∈0/kT)/[exp(-∈0/kT)q0,= 1/q0,V = 1/1.25 = 0.803.解:(1)写出q R= 8π2I kT/(σh2)= 8 × 3.142 × 1.89 × 10-46 × 1.38 × 10-23 × 900/[1 × (6.626 × 10-34)2] = 421.5(2)写出U R,m = RT2(∂ln q R/∂T)N,V = RT2 × (1/T) = RT写出转动对C V,m的贡献C V,m,R= (∂U m,R/∂T)V,N = R = 8.314 J·K-1·mol-14.解:(1)q= Σexp(-εi/kT) = 1 + exp(-ε1/kT)(2)U = N A kT2(∂ln q/∂T)V = N A kT2{[1/[1 + exp(-ε1/kT)]]exp(-ε1/kT)[ε1/kT]= N Aε1/[exp(-ε1/kT)] 或= N Aε1exp(-ε1/kT)/[1 + exp(-ε1/kT)](3)在极高的温度时,kT >> ε1,则exp(-ε1/kT) = 1 ,故U = Nε1在极低的温度时,kT << ε1,则exp(-ε1/kT)0 ,所以U = 05.证明:q = q(平)q(电)(核) = (2πm kT/h2)3/2(RT/p)q(电)q(核)依据S = k ln(q N/N!) + U/T等温时,系统的U不随压力变化,故S2(p2)-S1(p1) = R ln(p1/p2)6.证明:写出U m= ∑n i∈i,n i = (L/q)g i exp(β∈i),得出U m = (L/q)∑g i exp(β∈i)·∈i∵q= ∑g i exp(β∈i) ,∴(∂q/∂β)V= Σg i exp(β∈i) ·∈i故U m = (L/q)( ∂q/∂β)V = L(∂ln q/∂β)V。

热力学与统计物理答案

第一章 热力学的基本规律习题1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数T κ。

解:由得:nRT PV= V nRTP P nRT V ==; 所以, T P nR V T V V P 11)(1==∂∂=αT PV RnT P P V /1)(1==∂∂=βP PnRT V P V V T T /111)(12=--=∂∂-=κ习题 1.2 试证明任何一种具有两个独立参量的物质p T ,,其物态方程可由实验测得的体胀系数α及等温压缩系数T κ,根据下述积分求得:⎰-=)(ln dp dT VT κα如果1Tα=1Tpκ=,试求物态方程。

解: 因为0),,(=p V T f ,所以,我们可写成),(p T V V =,由此,dp p V dT T V dV T p )()(∂∂+∂∂=, 因为T T p p V V T V V )(1,)(1∂∂-=∂∂=κα 所以,dp dT VdVdp V dT V dV T T κακα-=-=,所以,⎰-=dp dT V T καln ,当p T T /1,/1==κα.CT pV pdpT dT V =-=⎰:,ln 得到习题 1.3测得一块铜块的体胀系数和等温压缩系数分别为1510*85.4--=K α和1710*8.7--=n T p κ,T κα,可近似看作常量,今使铜块加热至10°C 。

问(1压强要增加多少np才能使铜块体积不变?(2若压强增加100n p ,铜块的体积改多少解:分别设为V xp n ∆;,由定义得:74410*8.7*10010*85.4;10*858.4----=∆=V x T κ所以,410*07.4,622-=∆=V p xn习题1.4描述金属丝的几何参量是长度L ,力学参量是张力η,物态方 程是0),,(=T L f η实验通常在n p 1下进行,其体积变化可忽略。

线胀系数定义为ηα)(1T L L ∂∂=等杨氏摸量定义为T LA L Y )(∂∂=η其中A 是金属丝的截面积,一般说来,α和Y 是T 的函数,对η仅有微弱的依赖关系,如果温度变化范不大,可看作常数。

化学工业出版社物理化学答案第7章 统计热力学基础

第七章 统计热力学基础习题详解1. (1) 10个可分辨粒子分布于 n 0=4,n 1=5,n 2=1 而简并度 g 0=1,g 1=2,g 2=3 的 3 个能极上的微观状态数为多少?(2) 若能级为非简并的,则微观状态数为多少?。

解: (1)451D g 123W =N =10=120960451i n i i n ⋅⋅Π⋅⋅!!!!!!(2)D 110W =N ==1260451i n Π⋅⋅!!!!!!2. 某一分子集合在100 K 温度下处于平衡时,最低的3个能级能量分别为 0、2.05×10-22J 和 4.10×-22J ,简并度分别为1、3、5。

计算3个能级的相对分布数 n 0:n 1:n 2。

解:-22-2202.051011.38101001==1:2.593N N e⎛⎞−×⎜⎟⎜⎟××⎝⎠⋅()-22-222.05 4.10101.3810100123==0.6965N e N ⎡⎤−×−⎢⎥××⎢⎥⎣⎦⋅123=1:2.59:3.72N N N ::3. I 2分子的振动能级间隔是0.42×10-20 J ,计算在25℃时,某一能级和其较低一能级上分子数的比值。

已知玻尔兹曼常数k =1.3806×10-23 J·cm -1。

解:根据Boltzmann 分布对于一维谐振子,能级为非简并的,即+1==1i i g g ,因此 I 2分子-201+1-230.4210=exp =exp =0.360T1.380610298i+i i i N g N g k ε⎛⎞−∆−×⎛⎞⎜⎟⎜⎟××⎝⎠⎝⎠4. 一个含有N 个粒子的系统只有两个能级,其能级间隔为ε,试求其配分函数q 的最大可能值是多少?最小值是多少?在什么条件下可能达到最大值和最小值?设ε=0.1 k T 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

h2
J
JJ
1 8
2I ,
6.626 10 34
20 12 8
2 1.45 10 46
3.077 10 22 J
3.077 10 22
7.429 10 2
kT 300 1.3807 1023
粒子分布数 ; (2) 随着能级升高, εi 增大,ni 总是减少的 ; (3) 它只适用于可区分的独 立粒子体系 ; (4) 它适用于任何的大量粒子体系其中正确的是: ( )
A. (1)(3)
B. (3)(4)
C. (1)(2)
D. (2)(4)
C
6.对于分布在某一能级 εi 上的粒子数 ni ,下列说法中正确是: ( )
1.某双原子分子 AB 取振动基态能量为零,在 T 时的振动配分函数为 1.02,则粒子
分布在 v = 0 的基态上的分布数 N 0/N 应为 2.已知 CO 的转动惯量 I=1.45×10-26 kg· m2,则 CO 的转动特征温度为 :
1/1.02 2.78K
3. 双原子分子以平衡位置为能量零点, 其振动的零点能等于
C
15.在相同条件下,对于 He 与 Ne 单原子分子,近似认为它们的电子配分函数
相同且等于 1,则 He 与 Ne 单原子分子的摩尔熵是: ( )
A. Sm(He) > Sm (Ne)
B. Sm (He) = Sm (Ne)
C. Sm (He) < S m(Ne)
D. 以上答案均不成立
C
二、填空题
A. 体系是封闭的,粒子是独立的
B 体系是孤立的,粒子是相依的
C. 体系是孤立的,粒子是独立的
D. 体系是封闭的,粒子是相依的
C
3.假定某种分子的许可能级是 0、 ε、2ε 和 3ε ,简并度分别为 1、 1、 2、 3 四个
这样的分子构成的定域体系,其总能量为 3ε 时,体系的微观状态数为: ( )
A. n i 与能级的简并度无关
B. ε i 值越小, ni 值就越大
C. n i 称为一种分布
D.任何分布的 ni 都可以用波尔兹曼分布公式求出 B
7. 15.在已知温度 T 时,某种粒子的能级 εj = 2εi,简并度 gi = 2gj,则 ε j 和εi 上 分布的粒子数之比为: ( )
A. 0.5exp( j/2εkT)
统计权重为 g = 3! = 6,对应于状态 , , , , 。 245 254 425 245 452 542
3.气体 CO 分子的转动惯量 I 1.45 10 46 kg m 2 ,试求转动量子数 J 为 4 与 3 两能级
的能量差 ,并求 T 300 K 时的 kT 。
解:假设该分子可用刚性转子描述,其能级公式为
A. 40
B. 24
C. 20
D. 28
A
4. 使用麦克斯韦 -波尔兹曼分布定律,要求粒子数 N 很大,这是因为在推出该定律
时: ( )
. 假定粒子
是可别的
B. 应用了斯特林近似公式
C. 忽略了粒子之间的相互作用
D. 应用拉氏待定乘因子法 A
5.对于玻尔兹曼分布定律 ni =(N/q) ·gi·exp( -ε i/kT) 的说法: (1) n i 是第 i 能级上的
0.5hv

4. 双原子分子在温度很低时且选取振动基态能量为零,则振动配分函数值为 5. 2molCO2 的转动能 Ur 为
1 2RT
6. NH3 分子的平动自由度为 转动自由度为 振动自由度为
3 ,3 ,6
7. 300K 时,分布在 J=1 转动能级上的分子数是 J=0 能级上的 3exp(-0.1)倍,则分子
D. Θv 越高,表示分子处于基态的百分数越小
C
11.下列几种运动中哪些运动对热力学函数 G 与 A 贡献是不同的: ( )
A. 转动运动
B. 电子运动
C. 振动运动
D. 平动运动
D
12.三维平动子的平动能为 εt = 7h2 /(4mV 2/3 ),能级的简并度为: ( )
A. 1
B. 3
C. 6
(√) (×) (×) (√) (×) (×) (√) (×) (×) (√)
四、计算题
1..按照能量均分定律, 每摩尔气体分子在各平动自由度上的平均动能为 1 mol CO 气体于 0 oC、 101.325 kPa条件下置于立方容器中,试求:
( 1)每个 CO 分子的平动能 ;
RT 2 。现有
B. 2exp(- εj/2kT)
C. 0.5exp( -εj/kT)
D. 2exp( 2 j/kεT)
8. I2 的振动特征温度 Θv= 307K,相邻两振动能级上粒子数之
C n(v + 1)/n(v) = 1/2 的温度
是: ( )
A. 306 K
B. 443 K
C. 760 K
D. 556 K
统计热力学基础
一、 选择题
1. 下面有关统计热力学的描述,正确的是: ( )
A. 统计热力学研究的是大量分子的微观平衡体系
B. 统计热力学研究的是大量分子的宏观平衡体系
C. 统计热力学是热力学的理论基础
D. 统计热力学和热力学是相互独立互不相关的两门学科
B
2.在研究 N、 V 、U 有确定值的粒子体系的统计分布时,令∑ ni = N,∑ niεi = U, 这是因为所研究的体系是: ( )
D. 2
C
13.O2 的转动惯量 J = 19.3×10 -47 kg·m2 ,则 O2 的转动特征温度是: ( )
A. 10 K
B. 5 K
C. 2.07 K
D. 8 K
C
14. 对于单原子分子理想气体,当温度升高时,小于分子平均能量的能级上分布的粒
子数: ( )
A. 不变
B. 增多
C. 减少
D. 不能确定
8ma 2 h2
8mV 2 3 h2
8m h2
23
nRT
p
8 28.0104 5.657 10 21
23
1 8.314 273.15
34 2
26
6.6261 10
6.022 10
101.325 103
3.811 1020
2
2
2
2.某平动能级的 nx ny nz 45 ,使球该能级的统计权重。
解:根据计算可知, nx 、 ny 和 nz 只有分别取 2,4,5 时上式成立。因此,该能级的
B
9.下面哪组热力学性质的配分函数表达式与体系中粒子的可别与否无关: ( )
A. S、G、F、Cv
B. U、 H、 P、C v
C. G、F、H、U
D. S、U、H、 G
B
10. 分子运动的振动特征温度 Θ v 是物质的重要性质之一,下列正确的说法是:
()
A. Θv 越高,表示温度越高
B.Θ v 越高,表示分子振动能越小 C. Θv 越高,表示分子处于激发态的百分数越小
转动特征温度是
15K
8. H2O 分子气体在室温下振动运动时 C v,m 的贡献可以忽略不计。则它的 C p,m /C v,m
值为 (H2 O 可当作理想气体)
1.33
9.三维平动子的平动能 Et=6h2 /8mV 能级的简并度为
3
10.晶体 CH3 D 中的残余熵 S0,m 为
Rln4
三、判断题 1.玻耳兹曼熵定理一般不适用于单个粒子。 2.玻耳兹曼分布是最概然分布, 但不是平衡分布。 3.并不是所有配分函数都无量纲。 4.在分子运动的各配分函数中平均配分函数与压力有关。 5.粒子的配分函数 q 是粒子的简并度和玻耳兹曼因子的乘积取和。 6.对热力学性质 (U、V 、N) 确定的体系,体系中粒子在各能级上的分布数一定。 7.理 想 气 体 的 混 合 物 属 于 独 立 粒 子 体 系 。 8.量子统计认为全同粒子在不同的量子态中不可别。 9.任何两个粒子数相同的独立粒子体系, 不定因子 a的值趋于一致。 10.量热熵由量热实验结果据热力学公式算得。
(2)能量与此
相当的 CO 分子的平动量子数平方和
n
2 x
n
2 y
n
2 y
解:(1)CO 分子有三个自由度,因此,
3RT 2L
3 8.314 273.15 2 6.022 10 23
5.657 10 21 J
( 2)由三维势箱中粒子的能级公式
h2 8ma 2
n
2 x
n
2 y
nz2
n2x
n
2 y
n2z
相关文档
最新文档