《数字电子技术基础》课后习题答案

合集下载

数字电子技术基础课后答案(太原理工大学教科书)

数字电子技术基础课后答案(太原理工大学教科书)

《数字电子技术基础教程》习题与参考答案(2010.1)第1章习题与参考答案【题1-1】将下列十进制数转换为二进制数、八进制数、十六进制数。

(1)25;(2)43;(3)56;(4)78解:(1)25=(11001)2=(31)8=(19)16(2)43=()2=(53)8=(2B)16(3)56=()2=(70)8=(38)16(4)()2、(116)8、(4E)16【题1-2】将下列二进制数转换为十进制数。

(1);(2);(3);(4)解:(1)=177(2)=170(3)=241(4)=136【题1-3】将下列十六进制数转换为十进制数。

(1)FF;(2)3FF;(3)AB;(4)13FF解:(1)(FF)16=255(2)(3FF)16=1023(3)(AB)16=171(4)(13FF)16=5119【题1-4】将下列十六进制数转换为二进制数。

(1)11;(2)9C;(3)B1;(4)AF解:(1)(11)16=()2(2)(9C)16=()2(3)(B1)16=(1011 0001)2(4)(AF)16=()2【题1-5】将下列二进制数转换为十进制数。

(1)1110.01;(2)1010.11;(3)1100.101;(4)1001.0101解:(1)(1110.01)2=14.25(2)(1010.11)2=10.75(3)(1001.0101)2=9.3125【题1-6】将下列十进制数转换为二进制数。

(1)20.7;(2)10.2;(3)5.8;(4)101.71解:(1)20.7=(10100.1011)2(2)10.2=(1010.0011)22(3)5.8=(101.1100)2(4)101.71=(.1011)2【题1-7】写出下列二进制数的反码与补码(最高位为符号位)。

(1);(2);(3);(4)解:(1)是正数,所以其反码、补码与原码相同,为(2)反码为,补码为(3)反码为,补码为(4)反码为,补码为【题1-8】将下列自然二进制码转换成格雷码。

《数字电子技术基础》课后习题及参考答案

《数字电子技术基础》课后习题及参考答案

第1章习题与参考答案【题1-1】将下列十进制数转换为二进制数、八进制数、十六进制数。

(1)25;(2)43;(3)56;(4)78解:(1)25=(11001)2=(31)8=(19)16(2)43=(101011)2=(53)8=(2B)16(3)56=(111000)2=(70)8=(38)16(4)(1001110)2、(116)8、(4E)16【题1-2】将下列二进制数转换为十进制数。

(1);(2);(3);(4)解:(1)=177(2)=170(3)=241(4)=136【题1-3】将下列十六进制数转换为十进制数。

(1)FF;(2)3FF;(3)AB;(4)13FF解:(1)(FF)16=255(2)(3FF)16=1023(3)(AB)16=171(4)(13FF)16=5119【题1-4】将下列十六进制数转换为二进制数。

(1)11;(2)9C;(3)B1;(4)AF解:(1)(11)16=(00010001)2(2)(9C)16=()2(3)(B1)16=(1011 0001)2(4)(AF)16=()2【题1-5】将下列二进制数转换为十进制数。

(1);(2);(3);(4)解:(1)()2=(2)()2=(3)()2=【题1-6】将下列十进制数转换为二进制数。

(1);(2);(3);(4)解:(1)=()2(2)=()2(3)=()2(4)=()2【题1-7】写出下列二进制数的反码与补码(最高位为符号位)。

(1)01101100;(2);(3);(4)解:(1)01101100是正数,所以其反码、补码与原码相同,为01101100(2)反码为,补码为(3)反码为,补码为(4)反码为,补码为【题1-8】将下列自然二进制码转换成格雷码。

000;001;010;011;100;101;110;111解:格雷码:000、001、011、010、110、111、101、100【题1-9】将下列十进制数转换成BCD码。

数字电子技术基础(第4版)_课后习题答案

数字电子技术基础(第4版)_课后习题答案

第一章1.1二进制到十六进制、十进制(1)(10010111)2=(97)16=(151)10 (2)(1101101)2=(6D)16=(109)10(3)(0.01011111)2=(0.5F)16=(0.37109375)10 (4)(11.001)2=(3.2)16=(3.125)10 1.2十进制到二进制、十六进制(1)(17)10=(10001)2=(11)16 (2)(127)10=(1111111)2=(7F)161621016210)3.19()1010 1(11001.101(25.7)(4))A D7030.6()0101 0000 0111 1101 0110 (0.0110(0.39)(3) B ====1.8用公式化简逻辑函数(1)Y=A+B (3)Y=1)=+(解:1A A 1)2(=+++=+++=+++=C B A C C B A C B Y CB AC B A Y ADC C B AD C B C B AD DC A ABD CD B A Y =++=++=++=)()(Y )4(解:(5)Y=0 (7)Y=A+CDE ABCD E C ABCD CE AD B BC CE AD B BC Y CE AD B BC B A D C AC Y =+=⋅+=+⋅=++++=)()()()()()6(解:CB AC B C B A A C B A C B A C B A C B C B A A C B A C B A C B A Y C B A C B A C B A Y +=++=+++=++++=++++⋅+=++++++=)())(())()(())()((8解:)(D A D A C B Y ++=)9(E BD E D BF E A AD AC Y ++++=)10(1.9 (a) C B C B A Y += (b) C B A ABC Y +=(c) ACD D C A D C A B A Y D AC B A Y +++=+=21,(d) C B A ABC C B A C B A Y BC AC AB Y +++=++=21, 1.10 求下列函数的反函数并化简为最简与或式(1)C B C A Y += (2)DC A Y++=CB C B AC C B AC B A BC AC C A B A BC AC C A B A Y BCAC C A B A Y +=++++=⋅+++=+++=+++=))((]))([())(())(()3(解: (4)C B A Y ++=DC ABD C B D C A D C B D A C A C D C B C A D A Y CD C B C A D A Y =++=+++=++++=+++=)())(())()(()5(解: (6)0=Y1.11 将函数化简为最小项之和的形式CB AC B A ABC BC A C B A C B A C B A ABC BC A CB A AC B B A BC A C B AC BC A Y CB AC BC A Y +++=++++=++++=++=++=)()()1(解:D C B A CD B A D C B A ABCD BCD A D C B A Y +++++=)(2)13()()()(3CD B A BCD A D BC A D C B A D C B A ABCD D ABC D C AB D C AB CD B A D C B A D C B A D C B A CD AB B A B A B A ACD D AC D C A D C A CD A D C A D C A D C A B BCD D BC D C B D C B CD B D C B D C B D C B A Y CDB A Y ++++++++++++=+++++++++++++++++++=++=解:)((4)CD B A D ABC D BC A D C AB D C AB CD B A ABCD BCD A Y +++++++= (5)MN L N M L N LM N M L N M L N M L Y +++++=1.12 将下列各函数式化为最大项之积的形式(1)))()((C B A C B A C B A Y ++++++= (2)))()((C B A C B A C B A Y ++++++= (3)76430M M M M M Y ⋅⋅⋅⋅= (4)13129640M M M M M M Y ⋅⋅⋅⋅⋅= (5)530M M M Y ⋅⋅=1.13 用卡诺图化简法将下列函数化为最简与或形式:(1)D A Y +=(3)1=Y (2)D C BC C A B A Y +++= (4)B AC B A Y ++=B A DC Y ++=AC B A Y +=(5)D C B Y ++= (6)C B AC B A Y ++=(7)C Y = (9)D C A C B D A D B Y +++=(8))14,11,10,9,8,6,4,3,2,1,0(),,,(m D C B A Y ∑= (10)),,(),,(741m m m C B A Y ∑=D A D C B Y ++=ABC C B A C B A Y ++=1.14化简下列逻辑函数(1)D C B A Y +++= (2)D C A D C Y += (3)C A D AB Y ++= (4)D B C B Y += (5)E D C A D A E BD CE E D B A Y +++++=1.20将下列函数化为最简与或式(1)AD D C B D C A Y ++= (2)AC D A B Y ++= (3)C B A Y ++= (4)D B A Y +=第二章2.1解:Vv v V V v T I mA I mA Vv T V v a o B o B BS B o B 10T 3.0~0(2.017.0230103.0207.101.57.05I V 5v 1021.5201.510V 0v )(i i ≈≈∴<=×≈=−≈∴−=×+−=截止,负值,悬空时,都行)饱和-=时,=当截止时,=当都行)=饱和,,-=悬空时,都行)饱和。

《数字电子技术基础》课后习题答案

《数字电子技术基础》课后习题答案

BC A
00
01
11
10
0
0
0
0
0
1
0
1
1
1
则表达结果 Y 的表达式为:
逻辑电路如下:
技能题:
3.20:解:根据题意,A、B、C、D 变量的卡诺图如下:
CD AB
00
01
11
10
00
0
0
0
0
编辑版 word
01
0
0
0
0
11
0
1
1
1
10
0
0
0
0
电路图如下:
编辑版 word
第四章:
自测题:
一、 2、输入信号,优先级别最高的输入信号 7、用以比较两组二进制数的大小或相等的电路,A>B 二、 3、√ 4、√ 三、 5、A 7、C
第六章:
自测题:
一、 1、存储,组合逻辑,存储 3、时钟 CP,时钟 CP,时钟 CP,时钟 CP 9、4,4
二、 2、√ 9、×
三、 3、C 8、D
练习题:
6.2、
(1)输出方程
Y Q2n
(2)驱动方程
n
J0 Q2
J1 K1 Q0n
K0 1
J 2 Q1nQ0n
(3)状态方程
K2 1
Q0n1
练习题:
4.1;解:(a) (b)
,所以电路为同或门
,所以电路为与门。
4.5、解:当 M=0 时,
, 所以此时电路输出反码。
,同理可推:
当 M=1 时,
, 所以此时电路输出原码。
,同理可推:
4.7、Y ABC D ABCD ABC ABC D ABCD ABC D BD ABC BC D

全版《数字电子技术基础》课后习题答案.docx

全版《数字电子技术基础》课后习题答案.docx
A
00
01
11
10
0
0
1
0
1
1
1
0
1
0
另有开关S,只有S=1时,Y才有效,所以
4.14、解:根据题意,画卡诺图如下:
BC
A
00
01
11
10
0
0
0
0
0
1
0
1
1
1
所以逻辑表达式为:Y=AC+AB
(1)使用与非门设计:
逻辑电路如下:
(2)使用或非门设计:
4.15、
(2)解:
1、写出逻辑函数的最小项表达式
2、将逻辑函数Y和CT74LS138的输出表达式进行比较
(45.36)10=(0100 0101.0011 0110)8421BCD=(0111 1000.0110 1001)余3BCD
(136.45)10=(0001 0011 0110.0100 0101)8421BCD=(0100 0110 1001.0111 1000)余3BCD
(374.51)10=(0011 0111 0100.0101 0001)8421BCD=(0110 1010 0111.1000 0100)余3BCD
二、
3、√
4、√
三、
5、A
7、C
练习题:
4.1;解:(a) ,所以电路为与门。
(b) ,所以电路为同或门
4.5、解:当M=0时, ,同理可推:

所以此时电路输出反码。
当M=1时, ,同理可推:

所以此时电路输出原码。
4.7、
4.9、解:设三个开关分别对应变量A、B、C,输出Y’,列出卡诺图如下:

《数字电子技术基础》课后习题及参考答案#(精选.)

《数字电子技术基础》课后习题及参考答案#(精选.)

第1章习题与参考答案【题1-1】将下列十进制数转换为二进制数、八进制数、十六进制数。

(1)25;(2)43;(3)56;(4)78解:(1)25=(11001)2=(31)8=(19)16(2)43=(101011)2=(53)8=(2B)16(3)56=(111000)2=(70)8=(38)16(4)(1001110)2、(116)8、(4E)16【题1-2】将下列二进制数转换为十进制数。

(1)10110001;(2)10101010;(3)11110001;(4)10001000 解:(1)10110001=177(2)10101010=170(3)11110001=241(4)10001000=136【题1-3】将下列十六进制数转换为十进制数。

(1)FF;(2)3FF;(3)AB;(4)13FF解:(1)(FF)16=255(2)(3FF)16=1023(3)(AB)16=171(4)(13FF)16=5119【题1-4】将下列十六进制数转换为二进制数。

(1)11;(2)9C;(3)B1;(4)AF解:(1)(11)16=(00010001)2(2)(9C)16=(10011100)2(3)(B1)16=(1011 0001)2(4)(AF)16=(10101111)2【题1-5】将下列二进制数转换为十进制数。

(1)1110.01;(2)1010.11;(3)1100.101;(4)1001.0101解:(1)(1110.01)2=14.25(2)(1010.11)2=10.75(3)(1001.0101)2=9.3125【题1-6】将下列十进制数转换为二进制数。

(1)20.7;(2)10.2;(3)5.8;(4)101.71解:(1)20.7=(10100.1011)2(2)10.2=(1010.0011)2(3)5.8=(101.1100)2(4)101.71=(1100101.1011)2【题1-7】写出下列二进制数的反码与补码(最高位为符号位)。

数字电子技术基础课后答案

数字电子技术基础课后答案

数字电子技术基础课后答案第一章1.1 选择题答案1.C2.D3.A4.B1.2 填空题答案1.二进制2.163.2^n4.霍尔定律1.3 简答题答案1.数字系统的特征:离散性、离散性变量、离散性元件。

2.多位二进制数的表示:每一位上的位权是2的倍数,从右到左依次是1、2、4、8、16,即从低到高位权递增。

3.数字电路中的常用逻辑门:与门、或门、非门、异或门。

4.二进制加法器:用于实现二进制数的加法操作,可以分为半加器和全加器两种。

第二章2.1 选择题答案1.B2.C3.A4.D2.2 填空题答案1.与非门2.非3.低电平4.与非门2.3 简答题答案1.逻辑代数的基本运算:与运算、或运算、非运算。

2.逻辑门的基本类型:与门、或门、非门。

3.逻辑电位表示:用两个不同的电平来表示逻辑0和逻辑1,常用的是低电平表示逻辑0,高电平表示逻辑1。

4.逻辑门的输入输出关系:根据输入的逻辑电平,逻辑门会产生对应的输出电平。

第三章3.1 选择题答案1.C2.B3.D4.A3.2 填空题答案1.或非门2.与非门3.反相器4.同或门3.3 简答题答案1.反相器的功能:将输入信号的逻辑电平反转。

2.与非门和或非门的功能:与非门将与门的输出进行反向,或非门将或门的输出进行反向。

3.同或门的功能:在输入信号相同的情况下,输出逻辑1;在输入信号不同的情况下,输出逻辑0。

4.逻辑门的级联:逻辑门可以通过级联连接,实现复杂的逻辑功能。

第四章4.1 选择题答案1.C2.D3.A4.B4.2 填空题答案1.半加器2.与非门3.非门4.不可用4.3 简答题答案1.半加器的功能:用于实现两个单独的二进制位的相加操作,产生和位和进位位。

2.全加器的功能:用于实现三个二进制位的相加操作,包括输入的两个二进制位和进位位,产生和位和进位位。

3.二进制加法器的级联:通过将多个全加器级联连接,可以实现多位二进制数的相加操作。

4.数字比较器的功能:用于比较两个多位二进制数的大小,根据比较结果输出大于、小于或等于的信号。

《数字电子技术基础》课后习题及参考答案

《数字电子技术基础》课后习题及参考答案

第1章习题与参考答案【题1-1】将下列十进制数转换为二进制数、八进制数、十六进制数。

(1)25;(2)43;(3)56;(4)78解:(1)25=(11001)2=(31)8=(19)16(2)43=(101011)2=(53)8=(2B)16(3)56=(111000)2=(70)8=(38)16(4)(1001110)2、(116)8、(4E)16【题1-2】将下列二进制数转换为十进制数。

(1)10110001;(2)10101010;(3)11110001;(4)10001000 解:(1)10110001=177(2)10101010=170(3)11110001=241(4)10001000=136【题1-3】将下列十六进制数转换为十进制数。

(1)FF;(2)3FF;(3)AB;(4)13FF解:(1)(FF)16=255(2)(3FF)16=1023(3)(AB)16=171(4)(13FF)16=5119【题1-4】将下列十六进制数转换为二进制数。

(1)11;(2)9C;(3)B1;(4)AF解:(1)(11)16=(00010001)2(2)(9C)16=(10011100)2(3)(B1)16=(1011 0001)2(4)(AF)16=(10101111)2【题1-5】将下列二进制数转换为十进制数。

(1)1110.01;(2)1010.11;(3)1100.101;(4)1001.0101解:(1)(1110.01)2=14.25(2)(1010.11)2=10.75(3)(1001.0101)2=9.3125【题1-6】将下列十进制数转换为二进制数。

(1)20.7;(2)10.2;(3)5.8;(4)101.71解:(1)20.7=(10100.1011)2(2)10.2=(1010.0011)2(3)5.8=(101.1100)2(4)101.71=(1100101.1011)2【题1-7】写出下列二进制数的反码与补码(最高位为符号位)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数字电路与逻辑设计》作业教材:《数字电子技术基础》(高等教育出版社,第2版,2012年第7次印刷)第一章:自测题:一、1、小规模集成电路,中规模集成电路,大规模集成电路,超大规模集成电路5、各位权系数之和,1799、01100101,01100101,01100110;11100101,10011010,10011011二、1、×8、√10、×三、1、A4、B练习题:1.3、解:(1) 十六进制转二进制: 4 5 C0100 0101 1100二进制转八进制:010 001 011 1002 13 4十六进制转十进制:(45C)16=4*162+5*161+12*160=(1116)10所以:(45C)16=(10001011100)2=(2134)8=(1116)10(2) 十六进制转二进制: 6 D E . C 80110 1101 1110 . 1100 1000 二进制转八进制:011 011 011 110 . 110 010 0003 3 3 6 . 6 2十六进制转十进制:(6DE.C8)16=6*162+13*161+14*160+13*16-1+8*16-2=(1758.78125)10 所以:(6DE.C8)16=(011011011110. 11001000)2=(3336.62)8=(1758.78125)10(3) 十六进制转二进制:8 F E . F D1000 1111 1110. 1111 1101二进制转八进制:100 011 111 110 . 111 111 0104 3 7 6 . 7 7 2十六进制转十进制:(8FE.FD)16=8*162+15*161+14*160+15*16-1+13*16-2=(2302.98828125)10 所以:(8FE.FD)16=(100011111110.11111101)2=(437 6.772)8=(2302.98828125)10 (4) 十六进制转二进制:7 9 E . F D0111 1001 1110 . 1111 1101二进制转八进制:011 110 011 110 . 111 111 0103 6 3 6 . 7 7 2十六进制转十进制:(79E.FD)16=7*162+9*161+14*160+15*16-1+13*16-2=(1950. 98828125)10 所以:(8FE.FD)16=(011110011110.11111101)2=(3636.772)8=(1950.98828125)101.5、解:(74)10 =(0111 0100)8421BCD=(1010 0111)余3BCD(45.36)10 =(0100 0101.0011 0110)8421BCD=(0111 1000.0110 1001 )余3BCD(136.45)10 =(0001 0011 0110.0100 0101)8421BCD=(0100 0110 1001.0111 1000 )余3BCD (374.51)10 =(0011 0111 0100.0101 0001)8421BCD=(0110 1010 0111.1000 0100)余3BCD1.8、解(1)(+35)=(0 100011)原= (0 100011)补(2)(+56 )=(0 111000)原= (0 111000)补(3)(-26)=(1 11010)原= (1 11101)补(4)(-67)=(1 1000011)原= (1 1000110)补第二章:自测题:一、1、与运算、或运算、非运算3、代入规则、反演规则、对偶规则二、2、×4、×三、1、B3、D5、C练习题:2.2:(4)解:(8)解:2.3:(2)证明:左边=右式所以等式成立(4)证明:左边=右边=左边=右边,所以等式成立2.4(1)2.5(3)2.6:(1)2.7:(1)卡诺图如下:BCA00 01 11 100 1 11 1 1 1所以,2.8:(2)画卡诺图如下:BC A 0001 11 100 1 1 0 11 1 1 1 12.9:如下:CDAB00 01 11 1000 1 1 1 101 1 111 ×××10 1 ××2.10:(3)解:化简最小项式:最大项式:2.13:(3)技能题:2.16 解:设三种不同火灾探测器分别为A、B、C,有信号时值为1,无信号时为0,根据题意,画卡诺图如下:BC00 01 11 10A0 0 0 1 01 0 1 1 1第三章:自测题:一、1、饱和,截止7、接高电平,和有用输入端并接,悬空;二、1、√8、√;三、1、A4、D练习题:3.2、解:(a)因为接地电阻4.7kΩ,开门电阻3kΩ,R>R on,相当于接入高电平1,所以(e) 因为接地电阻510Ω,关门电0.8kΩ,R<R off,相当于接入高电平0,所以、3.4、解:(a)(c)(f)3.7、解: (a)3.8、解:输出高电平时,带负载的个数2020400===IH OH OH I I N G 可带20个同类反相器输出低电平时,带负载的个数78.1745.08===IL OL OL I I NG反相器可带17个同类反相器3.12EN=1时,EN=0时,3.17根据题意,设A为具有否决权的股东,其余两位股东为B、C,画卡诺图如下,BC00 01 11 10A0 0 0 0 01 0 1 1 1则表达结果Y的表达式为:逻辑电路如下:技能题:3.20:解:根据题意,A、B、C、D变量的卡诺图如下:CD00 01 11 10AB00 0 0 0 001 0 0 0 0 11 0 1 1 1 10 0 0 0 0电路图如下:第四章:自测题:一、2、输入信号,优先级别最高的输入信号7、用以比较两组二进制数的大小或相等的电路,A>B 二、 3、√ 4、√ 三、 5、A 7、C练习题:4.1;解:(a),所以电路为与门。

(b),所以电路为同或门4.5、解:当M=0时,,同理可推:,所以此时电路输出反码。

当M=1时,,同理可推:,所以此时电路输出原码。

4.7、D C B C B A D B D C AB CD B A D C B A C B A CD B A D C B A Y ++=+++++=4.9、解:设三个开关分别对应变量A 、B 、C ,输出Y ’,列出卡诺图如下:BC A 000111100 1 0 1 111另有开关S ,只有S=1时,Y 才有效,所以4.14、解:根据题意,画卡诺图如下:BC00 01 11 10A0 0 0 0 01 0 1 1 1所以逻辑表达式为:Y=AC+AB(1)使用与非门设计:逻辑电路如下:(2)使用或非门设计:4.15、(2)解:1、写出逻辑函数的最小项表达式7421)()(m m m m C B A ABC C B A C B A CB A ABC B A B A Y B ⋅⋅⋅=+++=+++= 2、将逻辑函数Y 和CT74LS138的输出表达式进行比较 设012,,A C A B A A === 则7421Y Y Y Y Y B ⋅⋅⋅=3、画出逻辑图4.18、(1)BC C A C B A Y ++= 解:①写出逻辑函数Y 的最小项表达式BA ABC CB AC B A BC A ABC C B A C B A C B A Y +++=++++=②写出4选1数据选择器的输出逻辑表达式Y ' 设地址变量为A 1、A 0,则301201101001D A A D A A D A A D A A Y +++='③比较逻辑函数Y 和Y '式中变量的对应关系使得Y Y'=设A=A 1,B=A 0以及C D D C D D ====31120,, 即可满足Y Y'=,完成用4选1数据选择器实现BC C A C AB Y ++=④画出逻辑图根据③中的变量对应关系画出逻辑接线图,如下图:4.24、解:(1)分析设计要求并列出真值表设三输入变量用A 、B 、C 表示,表决结果用Y 表示,通过为1,否则为0,由此列出真值表,如下表所示:A B C Y0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 1 1111(2)根据真值表写出逻辑表达式ABC B A BC A ABCC AB C B A BC A Y ++=+++=(3)写出4选1数据选择器的输出逻辑表达式Y '301201101001D A A D A A D A A D A A Y +++='(4)将逻辑表达式Y 和Y '进行比较设01,,A B A A Y Y =='= 以及C D D ==21 和0,103==D D(5)画出逻辑图根据(4)中的变量对应关系画出逻辑接线图,如下图所示4.25解:(1)BC C A Y +=当取A=1、B=1时,则C C Y += 故BC C A Y +=存在0冒险现象。

技能题:4.26; 解:(1)分析设计要求并列出真值表两台电动机为A 、B ,工作时用1表示,出故障时用0表示。

三个指示灯分别为Y 绿、Y 黄、Y 红,灯亮用1表示,灯灭用0表示。

根据题意可列出表:A B Y 绿 Y 黄 Y 红0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 111(2)根据真值表写出输出逻辑表达式BA B A Y BA B A ABY +==+==红黄绿Y(3)根据上式可画出如下图。

第五章:自测题:一、1、0,1,Q6、置0,置1,保持,计数(翻转),,1,1,0,0,1,0,0,1 二、3、×5、√三、4、B5、B练习题:5.15.55.8:5.9 (a)、(e)5.14解:由图P5.14(a )可知n n n Q Q Q 0110=+(CP 下降沿有效)n n Q Q 011=+(CP 上升沿有效)根据给定的CP 电压波形可画出0Q 和1Q 的电压波形图,如下图所示:第六章:自测题:一、1、存储,组合逻辑,存储3、时钟CP ,时钟CP ,时钟CP ,时钟CP 9、4,4 二、 2、√ 9、× 三、 3、C 8、D练习题:6.2、(1)输出方程n Q Y 2=(2)驱动方程nQ J 20= 10=Kn Q K J 011==n n Q Q J 012= 12=K(3)状态方程nn n Q Q Q0210=+nn nn n nn Q Q Q Q Q Q Q 01010111⊕=+=+n n nn Q Q Q Q 01212=+(4)列状态转换真值表设电路的初态为000012=nn n Q Q Q ,可列出状态转换真值表如表所示:n Q 2n Q 1n Q 012+n Q11+n Q10+n QY 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 1 0 0 1 1 1 0 0 0 1 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 0 0 1 0 1 1111(5)状态转换真值表000001010011100101110111/0/0/1/0/0/1/1(6)时序图(7)根据状态转换图可知,该电路具备自启动功能。

相关文档
最新文档