MHz与Mbps之间的关系
信道间隔的公式

信道间隔的公式
信道间隔的公式因信道类型的不同而有所不同。
在计算信道间隔时,一般使用以下公式:1.对于带间信道,信道间隔等于信道带宽加上信道间隔。
具体计算公式为:信道
间隔= 信道带宽+ 信道间隔。
2.对于通信时隙,可以使用以下公式来计算时隙长度:时隙长度= 2 * 链路长度
/ 信号传播速率。
同时,为了确保数据传输的正确性,每个时隙的开始处只能发送数据,不能在同一时隙的中间发送数据。
3.对于信道频率间隔,可以根据光速和波长间隔的关系进行换算。
具体换算公式
为:光速= 波长间隔* 频率。
根据这个公式,可以得出频率间隔与波长间隔的关系为:频率间隔= 光速/ 波长间隔。
总之,信道间隔的计算公式取决于信道的类型和参数,需要根据具体情况进行选择和应用。
无线信道带宽与11n

无线信道带宽单天线:20MHz max 65Mbps,40MHz max 150Mbps双天线:20MHz max 130Mbps,40MHz max 300Mbps20MHz:72M带宽,穿透性好传输距离远(100米左右),频率越低,波长越长。
40MHz:150M带宽,穿透性差传输距离近(50米左右)。
一般应用于频点较多的5GHz频段。
如果你的接入端是150M,建议用20M好,那样干扰小。
优先选择20MHZ,因为40MHZ抗干扰能力弱。
因此,当距离远时,40M的会自动降到20MHZ。
当网络模式为11b、11g和11b/g混合网络模式时,只能使用20MHz的信道带宽。
当网络模式为11b/g混合模式时,只能使用20MHz的信道带宽。
当网络模式为11b/g/n混合网络模式时,可以同时使用20MHz和40MHz信道带宽。
实际一共有14个信道,但第14信道一般不用。
表中只列出信道的中心频率。
每个信道的有效宽度是20MHz,另外还有2MHz的强制隔离频带(类似于公路上的隔离带)。
即,对于中心频率为2412MHz的1信道,其频率范围为2401~2423MHz。
信道中心频率信道中心频率1 2412MHz 8 2447MHz2 2417MHz 9 2452MHz3 2422MHz 10 2457MHz4 2427MHz 11 2462MHz5 2432MHz 12 2467MHz6 2437MHz 13 2472MHz7 2442MHz信道标号中心频率信道低端/高端频率1 2412MHz 2401/2423MHz2 2417MHz 2406/2428MHz3 2422MHz 2411/2433MHz4 2427MHz 2416/2438MHz5 2432MHz 2421/2443MHz6 2437MHz 2426/2448MHz7 2442MHz 2431/2453MHz8 2447MHz 2436/2458MHz9 2452MHz 2441/2463MHz10 2457MHz 2446/2468MHz11 2462MHz 2451/2473MHz12 2467MHz 2456/2478MHz13 2472MHz 2461/2483MHz如果设备支持,除1、6、11三个一组互不干扰的信道外,还有2、7、12;3、8、13;4、9、14三组互不干扰的信道。
双绞线概论

双绞线由两根具有绝缘保护层的铜导线组成。
把两根绝缘的铜导线按一定密度互相绞在一起,可降低信号干扰的程度,每一根导线在传输中辐射的电波会被另一根线上发出的电波抵消。
双绞线一般由两根22~26号绝缘铜导线相互缠绕而成。
如果把一对或多对双绞线放在一个绝缘套管中便成了双绞线电缆。
在双绞线电缆(也称双扭线电缆)内,不同线对具有不同的扭绞长度,一般地说,扭绞长度在38.1cm至14cm内,按逆时针方向扭绞,相临线对的扭绞长度在12.7cm以上。
与其他传输介质相比,双绞线在传输距离、信道宽度和数据传输速度等方面均受到一定限制,但价格较为低廉。
EIA/TIA为双绞线电缆定义了五种不同质量的型号。
计算机网络综合布线使用第三、四、五类。
这五种型号如下:1、第一类:主要用于传输语音(一类标准主要用于八十年代初之前的电话线缆),不用于数据传输。
2、第二类:传输频率为1MHz,用于语音传输和最高传输速率4Mbps的数据传输,常见于使用4Mbps规范令牌传递协议的旧的令牌网。
3、第三类:指目前在ANSI和EIA/TIA568标准中指定的电缆。
该电缆的传输频率为16MHz,用于语音传输及最高传输速率为10Mbps的数据传输,主要用于10base-T。
4、第四类:该类电缆的传输频率为20MHz,用于语音传输和最高传输速率16Mbps的数据传输,主要用于基于令牌的局域网和10base-T/100base-T。
5、第五类:该类电缆增加了绕线密度,外套一种高质量的绝缘材料,传输频率为100MHz,用于语音传输和最高传输速率为100Mbps的数据传输,主要用于100base-T和10base-T网络,这是最常用的以太网电缆。
6、第六类:用于1000Mbps以太网这个分类标准将成为TIA/ELA-568B标准的附录,它将被正式命名为TIA/ELA-568B.2-1。
TIA指定六类系统组成的成份必须向下兼容(包括三类、五类、超五类布线产品),同时必须满足混合使用的要求。
网线传输速度

网线传输速度网线传输速度可达10 Gbps。
1)一类线:主要用于传输语音(一类标准主要用于八十年代初之前的电话线缆),不同于数据传输。
2)二类线:传输频率为1MHZ,用于语音传输和最高传输速率4Mbps的数据传输,常见于使用4MBPS规范令牌传递协议的旧的令牌网。
3)三类线:在ANSI和EIA/TIA568标准中指定的电缆,该电缆的传输频率16MHz,用于语音传输及最高传输速率为10Mbps的数据传输主要用于10BASE--T。
4)四类线:该类电缆的传输频率为20MHz,用于语音传输和最高传输速率16Mbps的数据传输主要用于基于令牌的局域网和10BASE-T/100BASE-T。
5)五类线:该类电缆增加了绕线密度,外套一种高质量的绝缘材料,传输率为100MHz,用于语音传输和最高传输速率为100Mbps的数据传输,主要用于100BASE-T和10BASE-T网络。
这是最常用的以太网电缆。
6)超五类线:超5类具有衰减小,串扰少,并且具有更高的衰减与串扰的比值(ACR)和信噪比(Structural Return Loss)、更小的时延误差,性能得到很大提高。
超5类线的最大传输速率为250Mbps。
7)六类线:该类电缆的传输频率为1MHz~250MHz,六类布线系统在200MHz时综合衰减串扰比(PS-ACR)应该有较大的余量,它提供2倍于超五类的带宽。
六类布线的传输性能远远高于超五类标准,最适用于传输速率高于1Gbps的应用。
六类与超五类的一个重要的不同点在于:改善了在串扰以及回波损耗方面的性能,对于新一代全双工的高速网络应用而言,优良的回波损耗性能是极重要的。
六类标准中取消了基本链路模型,布线标准采用星形的拓扑结构,要求的布线距离为:永久链路的长度不能超过90m,信道长度不能超过100m。
8)超六类线:超六类线是六类线的改进版,同样是ANSI/EIA/TIA-568B.2和ISO 6类/E级标准中规定的一种非屏蔽双绞线电缆,主要应用于千兆位网络中。
通信基本原理介绍

频域资源——子载波
信道带宽(MHz)
子载波数目
常规载波 多播载波
1.4
3
5
10
15
20
72
180
300
600
900
1200
144
360
600
1200
1800
2400
5G使用正交的子载波来区分频域上的资源,子载波间隔为15KHz或7.5KHz。
常规子载波 MBMS子载波
时域资源——5G无线帧
5G支持两种无线帧结构:Type 1,适用于FDD;Type 2,适用于TDD 5G系统中,利用NFFT=2048的采样周期定义基本时间单元:Ts = 1/Fs =
表 2-1 中移DT速率指标及实测值(20MHz带宽) 注:非20MHz带宽配置时速率=上表速率*实际配置带宽(MHz)/20
UE能力等级
1: Downlink physical layer parameter values set by UE Category
UE Category
Category 1 Category 2 Category 3 Category 4 Category 5
TTI 10296 51024 75376 75376 151376
Total number of soft channel bits
250368 1237248 1237248 1827072 3667200
Maximum number of supported
layers for spatial multiplexing in DL
#19
Type1帧结构
每个10ms无线帧,分为20个时隙,10个子帧 每个子帧1ms,包含2个时隙,每个时隙0.5ms 上行和下行传输在不同频率上进行
数据传输速率的定义

数据传输速率的定义数据传输速率是描述数据传输系统的重要技术指标之一。
数据传输速率在数值上等于每秒种传输构成数据代码的二进制比特数,单位为比特/秒(bit/second),记作bps。
对于二进制数据,数据传输速率为:S=1/T(bps)其中,T为发送每一比特所需要的时间。
例如,如果在通信信道上发送一比特0、1信号所需要的时间是0.001ms,那么信道的数据传输速率为1 000 000bps。
在实际应用中,常用的数据传输速率单位有:kbps、Mbps和Gbps。
其中:1kbps=103bps 1Mbps=106kbps 1Gbps=109bps带宽与数据传输速率在现代网络技术中,人们总是以“带宽”来表示信道的数据传输速率,“带宽”与“速率”几乎成了同义词。
信道带宽与数据传输速率的关系可以奈奎斯特(Nyquist)准则与香农(Shanon)定律描述。
奈奎斯特准则指出:如果间隔为π/ω(ω=2πf),通过理想通信信道传输窄脉冲信号,则前后码元之间不产生相互窜扰。
因此,对于二进制数据信号的最大数据传输速率Rmax与通信信道带宽B(B=f,单位Hz)的关系可以写为:Rmax=2.f(bps)对于二进制数据若信道带宽B=f=3000Hz,则最大数据传输速率为6000bps。
奈奎斯特定理描述了有限带宽、无噪声信道的最大数据传输速率与信道带宽的关系。
香农定理则描述了有限带宽、有随机热噪声信道的最大传输速率与信道带宽、信噪比之间的关系。
香农定理指出:在有随机热噪声的信道上传输数据信号时,数据传输速率Rmax与信道带宽B、信噪比S/N 的关系为:Rmax=B.log2(1+S/N)式中,Rmax单位为bps,带宽B单位为Hz,信噪比S/N通常以dB(分贝)数表示。
若S/N=30(dB),那么信噪比根据公式:S/N(dB)=10.lg(S/N)可得,S/N=1000。
若带宽B=3000Hz,则Rmax≈30kbps。
香农定律给出了一个有限带宽、有热噪声信道的最大数据传输速率的极限值。
数据传输速率的定义

数据传输速率的定义数据传输速率是描述数据传输系统的重要技术指标之一。
数据传输速率在数值上等于每秒种传输构成数据代码的二进制比特数,单位为比特/秒(bit/second),记作bps。
对于二进制数据,数据传输速率为:S=1/T(bps)其中,T为发送每一比特所需要的时间。
例如,如果在通信信道上发送一比特0、1信号所需要的时间是0.001ms,那么信道的数据传输速率为1 000 000bps。
在实际应用中,常用的数据传输速率单位有:kbps、Mbps和Gbps。
其中:1kbps=103bps 1Mbps=106kbps 1Gbps=109bps带宽与数据传输速率在现代网络技术中,人们总是以“带宽”来表示信道的数据传输速率,“带宽”与“速率”几乎成了同义词。
信道带宽与数据传输速率的关系可以奈奎斯特(Nyquist)准则与香农(Shanon)定律描述。
奈奎斯特准则指出:如果间隔为π/ω(ω=2πf),通过理想通信信道传输窄脉冲信号,则前后码元之间不产生相互窜扰。
因此,对于二进制数据信号的最大数据传输速率Rmax与通信信道带宽B(B=f,单位Hz)的关系可以写为:Rmax=2.f(bps)对于二进制数据若信道带宽B=f=3000Hz,则最大数据传输速率为6000bps。
奈奎斯特定理描述了有限带宽、无噪声信道的最大数据传输速率与信道带宽的关系。
香农定理则描述了有限带宽、有随机热噪声信道的最大传输速率与信道带宽、信噪比之间的关系。
香农定理指出:在有随机热噪声的信道上传输数据信号时,数据传输速率Rmax与信道带宽B、信噪比S/N 的关系为:Rmax=B.log2(1+S/N)式中,Rmax单位为bps,带宽B单位为Hz,信噪比S/N通常以dB(分贝)数表示。
若S/N=30(dB),那么信噪比根据公式:S/N(dB)=10.lg(S/N)可得,S/N=1000。
若带宽B=3000Hz,则Rmax≈30kbps。
香农定律给出了一个有限带宽、有热噪声信道的最大数据传输速率的极限值。
数据与计算机通信答案(第3章)

而对于数字彩色电视机,相当不错了。如果不提高数据率,还可以通过降低分辨率或刷新速 率,来换取色彩数的提高,但这也不实用的方法。
已知视频带宽 B=5MHz,所以有 5=P/105,则每行的像素数 P=5x105=525。 然而,通常 CCIR-M/NTSC 制式每行只约有 450 像素,带宽 B=P/105=450/105=4.3MHz (实 际技术指标 4.2Hz) 。 带宽由 4.2MHz 增加到 5MHz 时,水平分辨率约增加 75 像素,增幅 16.7%。 (2)计算垂直分辨率的增幅 由于信号最高频率 fH=5MHz,即最短的信号周期 1/fH=0.2υs。 又因为每个最短周期包含 2 个像素,则有 225 周期/行。那么,每行扫描时间为 0.2υs×225=45υs。加上水平回扫 11υs,每行往返扫描时间为 56υs ,即 56x10-6 s, 假定每屏 V 行,每秒扫描 30 场(帧、屏),则每秒扫描行数为 30V。 因此对于画面刷新,有 30V×56x10-6 = 1s,V = 595 行/屏。目前 NSTL 制式每行只有 525 行。垂直分辨率增加了 70 行,增幅 13.3%。
cos 2 t = cos t cos t = 1 (cos 2t + cos 0) = 1 (cos 2t + 1)
2
2
所以, f (t) = (10 cos t)2 = 100 cos 2 t = 50 + 50 cos 2t
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MHz与Mbps之间的关系
概念分析
随着网络的普及、综合布线的应用日趋广泛,传输等级也愈来愈高,从3类到4类再到5类,到目前已有6类布线产品投放市场。
描述语定义这些等级的主要参数就是传输带宽(MHZ)。
与此同时,网络应用也层出不穷。
传输介质从10Base5(粗缆)、10Base2(细缆)、
10BaseT(双绞线)、10BaseFL(光纤) 到100BaseTX(STP/UTP)、100BaseT4(4/5类UTP)、100BaseFX(光纤),到目前千兆快速网业已出现。
用来描述这些应用得主要参数则是速率(Mbps)。
事实上,申农公式早已概括出带宽B和速率C 之间的关系:
C=B*Log(1+SNR)
式中B为信道带宽,所谓带宽是指能够以适当保真度传输信号的频率范围,其单位似Hz,它是信道本身国有的,与所载信号无关。
SNR为信噪比,它由系统的发收设备以及传输系统所处的电磁环境共同决定。
而速率C是一个计算结果,它由B和SNR共同决定,其单位为bps,在概念上表征为每秒传输的二进制位数。
可见,给定信道,则带宽B也随之给定,改变信噪比SNR可得到不同的传输速率C 。
MHz与Mbps有着一对多的关系,即同样带宽可以传输不同的位流速率。
同时,Mbps是依赖于应用的;而MHz则与应用无关。
技术探讨
如果要给与打一个形象的比喻,那么汽车时速与引擎转速恰到好处。
当给定旋转速度,在齿轮已知的情况下可以计算出汽车的速度。
在这个类比当中,齿轮起了一个桥梁的作用。
事实上,齿轮之于汽车和引擎就如编码系统之于速率和带宽。
编码是为计算机进行信息传输而被采用的。
通过对信息进行编码,许多技术上的问题,比如同步、带宽受限等都可以得到解决。
编码对于信息的可靠传输是至关重要的。
目前有两种基本的编码系列。
第一种是每N位添加一个同步位,以使同步成为可能(如当N=1时,为Manchester编码;当N=4时,为4B5B编码),但这需要一个比原来更大的带宽。
而且同步位越多,带宽需要越大。
为了减小带宽,采用每7位添加一个同步位(即 7B8B 编码)的编码系统是可能的,但随之而来的是,当传输较长一串相同类型的位流时,同步就变得非常困难了。
另一种编码系列是通过增加电平个数以减小带宽,电平数越多,带宽需要越少。
然而,当传输一长串由0 编码后得到的连续信号时,同步就变得几乎不可能了。
如,当我们采用5个电平数的时候就需要4个比较器,而且每个比较器都应该有其合适的公差范围。
这就是说,当我们选择电平总数的时候,我们还应该把信噪比(SNR)考虑进去,以便能识别这几种不同的电平。
Manchester、NRZ1以及MLT-3编码是目前主要采用的三种编码系统,。
它们的传输因子分别为1、0.5和0.25。
这些转变因子可以被定义为MHz对的比率。
表1列出了几种编码系统在同步与带宽方面的概要特征。
由此看来,任何一种编码系统都有其技术上的限制。
此外,还有一些参数比如直流元件也对编码提出某些限制,在实际应用中,当前主要几种编码系统都是兼而使用以便对带宽与同步作出折衷,或者有所偏重,比如,一个对同步要求比较高的应用可以选择Manchester 编码系统或者其他能够产生时序的编码方式。
又如,采用MLT-3编码的100 Mbps应用,需要25 MHz的带宽;当联合使用4B5B编码方式时,系统就需增加额外的25 Mbps 开销,整个系统需要31.25 MHz的带宽,其好处是系统在同步方面变得更容易了。
另外,值得一提的是,100快速以太网使用的是5B6B编码系统(IEEE802.13),这可以说是对带宽与同步折衷的典型范例。
表2列出了当前部分应用及其所采用的编码系统。
结论
作为用户,最感兴趣的是通信速率。
速率是从应用层次对通信作出描述的。
为提高通信速率,有两个途径可以考虑:一个是提高线缆系统的传输性能,由此决定了带宽;另一个是选择合适的编码系统,从而决定了转换因子。
布线制造厂家早已开发出能够支持100 MHz以上的5类电缆系统。
而且他们还在继续投资研究开发更高性能的电缆系统。
国际组织如EIAAA/TIA,ISO/IEC已经制定出通过带宽来定义局域网组件级别的标准。
尽管带宽在物理上受到限制,但是通过合适得编码系统可以获得更高的通信速率。
尤其需要指出的是,编码系统是依赖于应用的,这意味着一个具有相同位流速率但采用不同编码方式的新应用,并不一定能得到原系统的支持,所以在设计的时候,如果仅仅考虑那些支持目前已有应用系统的布线组件,并且选择位流速率MHz来描述的话,那么这将导致严重错误的决策。
从这个角度来说,任何一个开放系统都应该独立于应用。
而且只有使用MHz 来描述通信速率,我们才能从当前以及未来广阔应用领域之中作出充分的选择。
对于综合布线系统的性能定级问题,我们只能用带宽而不能用速率进行衡量。