选修2-2导数及其应用单元复习知识总结
人教版高中数学选修2-2知识点汇总

人教版高中数学必修2-2知识点第一章导数及其应用一.导数概念的引入1.导数的物理意义:瞬时速率。
一般的,函数()y f x =在0x x =处的瞬时变化率是000()()lim x f x x f x x ∆→+∆-∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =',即0()f x '=000()()lim x f x x f x x∆→+∆-∆2.导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。
容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即0000()()lim ()n x n f x f x k f x x x ∆→-'==-3.导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数.()y f x =的导函数有时也记作y ',即0()()()lim x f x x f x f x x∆→+∆-'=∆二.导数的计算1.基本初等函数的导数公式:若()f x c =(c 为常数),则()0f x '=;若()f x x α=,则1()f x x αα-'=;若()sin f x x =,则()cos f x x'=若()cos f x x =,则()sin f x x '=-;若()x f x a =,则()ln x f x a a'=若()x f x e =,则()xf x e '=若()log x a f x =,则1()ln f x x a '=若()ln f x x =,则1()f x x '=2.导数的运算法则[()()]()()f xg x f x g x '''±=±[()()]()()()()f xg x f x g x f x g x '''∙=∙+∙2()()()()()[]()[()]f x f x g x f x g x g x g x ''∙-∙'=3.复合函数求导()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数(())()y f g x g x '''=∙三.导数在研究函数中的应用1.函数的单调性与导数一般的,函数的单调性与其导数的正负有如下关系:在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在这个区间单调递增;如果()0f x '<,那么函数()y f x =2.函数的极值与导数极值反映的是函数在某一点附近的大小情况;求函数()y f x =的极值的方法是:如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么0()f x 是极大值;如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么0()f x 是极小值;3.函数的最大(小)值与导数函数极大值与最大值之间的关系;求函数()y f x =在[,]a b 上的最大值与最小值的步骤求函数()y f x =在(,)a b 内的极值;将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的是一个最大值,最小的是最小值.四.生活中的优化问题利用导数的知识,求函数的最大(小)值,从而解决实际问题第二章推理与证明1.归纳推理把从个别事实中推演出一般性结论的推理,称为归纳推理(简称归纳)。
人教版高中数学选修2-2第一章导数及其应用复习优质

3.利用导数研究函数的极值和最值
1.应用导数求函数极值的一般步骤: (1)确定函数f(x)的定义域; (2)解方程f′(x)=0的根; (3) 检 验 f′(x) = 0 的 根 的 两 侧 f′(x) 的 符 号. 若左正右负,则f(x)在此根处取得极大值; 若左负右正,则f(x)在此根处取得极小值; 否则,此根不是f(x)的极值点.
(2)法一:设切点为(x0,y0), 则直线 l 的斜率为 f′(x0)=3x2 0+1, ∴直线 l 的方程为 3 y=(3x2 + 1)( x - x ) + x 0 0 0+x0-16, 又∵直线 l 过点(0,0), 3 ∴0=(3x2 + 1)( - x ) + x 0 0 0+x0-16, 3 整理得,x0=-8, ∴x0=-2.
解之得,x0=-2, 3 ∴y0=(-2) +(-2)-16=-26, k=3×(-2)2+1=13. ∴直线 l 的方程为 y=13x, 切点坐标为(-2, -26). x (3)∵切线与直线 y=- +3 垂直, 4 ∴切线的斜率 k=4. 设切点坐标为(x0, y0),则 f′ (x0)= 3x2 0+ 1= 4, ∴ x0= ± 1, x0=1 x0=-1, ∴ 或 y0=- 14 y0=- 18. 即切点为 (1,- 14)或 (- 1,- 18). 切线方程为 y=4(x- 1)-14 或 y= 4(x+ 1)-18. 即 y=4x- 18 或 y=4x- 14.
例 3: 已知函数 f(x)=-x3+ax2+bx, 在区间(-2,1) 2 内,当 x=-1 时取极小值,当 x= 时取极大值. 3 (1)求函数 y=f(x)在 x=-2 时的对应点的切线方程; (2)求函数 y=f(x)在[-2,1]上的最大值与最小值.
高中数学人教版选修22导数及其应用知识点总结.pdf

数学选修 2-2 数系的扩充和复数的概念知识点必记
30.复数的概念是什么? 答:形如 a.+.b.i.的数叫做复数,其中 i 叫虚数单位, a 叫实部, b 叫虚部,数集
C = a + bi | a,b R 叫做复数集。
规定:a + bi = c + di a.=.c.且.b.=.d.,强调:两复数不能比较大小,只有相等或不相
和综合法常结合使用,不要将它们:即反证法:是指从否定的结论出发,经过逻辑推理,导出矛盾,证实结论的
否定是错误的,从而肯定原结论是正确的证明方法。
25.反证法的一般步骤是什么?
答:(1)假设命题结论不成立,即假设结论的反面成立;
(2)从假设出发,经过推理论证,得出矛盾;
22.什么是综合法?
答:综合法就是“由因导果”,从已知条件出发,不断用必要条件代替前面的条
件,直至推出要证的结论。
23.什么是分析法?
答:分析法就是从所要证明的结论出发,不断地用充分条件替换前面的条件或者
一定成立的式子,可称为“由果索因”。
要注意叙述的形式:要证 A,只要证 B,B 应是 A 成立的充分条件. 分析法
个是最小值。 注:实际问题的开区间唯一极值点就是所求的最值点;
9.求曲边梯形的思想和步骤是什么?
答:分割 → 近似代替 → 求和 → 取极限 (“以直代曲”的思想)
10.定积分的性质有哪些? 根据定积分的定义,不难得出定积分的如下性质:
性质 1
b
1dx = b − a
a
性质 5
若 f (x) 0,
特别地:
b
kf (x)dx = k
a
b f (x)dx(k为常数)
a
高中数学选修2-2知识点总结(最全版)

高中数学选修2-2知识点总结第一章、导数1.函数的平均变化率为=∆∆=∆∆xfx y x x f x x f x x x f x f ∆-∆+=--)()()()(111212 注1:其中x ∆是自变量的改变量,平均变化率 可正,可负,可零。
注2:函数的平均变化率可以看作是物体运动的平均速度。
2、导函数的概念:函数)(x f y =在0x x =处的瞬时变化率是xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或|'x x y =,即)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(lim lim 0000.3.函数的平均变化率的几何意义是割线的斜率; 函数的导数的几何意义是切线的斜率。
4导数的背景(1)切线的斜率;(2)瞬时速度;5、常见的函数导数 函数 导函数 (1)y c ='y =0 (2)n y x =()*n N ∈ 1'n y nx -= (3)x y a =()0,1a a >≠ 'ln x y a a =(4)x y e ='x y e =(5)log a y x =()0,1,0a a x >≠> 1'ln y x a =(6)ln y x = 1'y x=(7)sin y x = 'cos y x =(8)cos y x = 'sin y x =-6、常见的导数和定积分运算公式:若()f x ,()g x 均可导(可积),则有: 和差的导数运算[]'''()()()()f x g x f x g x ±=± 积的导数运算[]'''()()()()()()f x g x f x g x f x g x ⋅=±特别地:()()''Cf x Cf x =⎡⎤⎣⎦商的导数运算[]'''2()()()()()(()0)()()f x f x g x f x g x g x g x g x ⎡⎤-=≠⎢⎥⎣⎦ 特别地:()()21'()'g x g x g x ⎡⎤-=⎢⎥⎣⎦复合函数的导数x u x y y u '''=⋅微积分基本定理()baf x dx =⎰F(a)--F(b)(其中()()'F x f x =)和差的积分运算1212[()()]()()b bbaaaf x f x dx f x dx f x dx±=±⎰⎰⎰ 特别地:()()()bb aakf x dx k f x dx k =⎰⎰为常数积分的区间可加性()()()()bcbaacf x dx f x dx f x dx a c b =+<<⎰⎰⎰其中.用导数求函数单调区间的步骤: ①求函数f (x )的导数'()f x②令'()f x >0,解不等式,得x 的范围就是递增区间. ③令'()f x <0,解不等式,得x 的范围,就是递减区间; [注]:求单调区间之前一定要先看原函数的定义域。
高中数学选修2-2(人教B版)第一章导数及其应用1.2知识点总结含同步练习题及答案

′
解:(1)y ′ = (e3x+2 ) = e3x+2 ⋅ (3x + 2)′ = 3e3x+2 ; (2)y ′ = (ln(2x − 1))′ =
1 2 . ⋅ (2x − 1)′ = 2x − 1 2x − 1
2.利用导数求函数的切线方程 描述: 利用导数求函数的切线方程 步骤一:求出函数 y = f (x) 在点 x0 处的导数 f ′ (x0 ) ; 步骤二:根据直线方程的点斜式,得到切线方程为 y − f (x0 ) = f ′ (x0 )(x − x0 ). 例题: 求曲线 y = ex + 1 在 (0, 2) 处的切线方程. 解:因为 y = ex + 1,所以 y ′ = ex ,故曲线 y = ex + 1在 (0, 2)处的切线斜率为
解:(1)因为 y =
所以在点 P 处的切线的斜率等于 4 .所以在点 P 处的切线方程是
y−
即
8 = 4(x − 2), 3
12x − 3y − 16 = 0.
(2)设切点为 (x 0 , y 0 ),则由(1)知切线的斜率 k = x2 ,切线方程为 y − y 0 = x2 (x − x 0 ) . 0 0 又切线过点 P (2,
8 1 ) 且 (x0 , y 0 ) 在曲线 y = x3 上,所以 3 3 ⎧ ⎪ 8 − y = x2 (2 − x0 ), 0 0 ⎨3 1 ⎪ ⎩ y = x3 , ⎪ 0 3 0 − 3x2 + 4 = 0, x3 0 0
整理得
即
(x0 − 2)2 (x0 + 1) = 0.
新版【部编人教版】高中数学选修2-2知识点、考点

数学选修2----2知识点第一章 导数及其应用 知识点:一.导数概念的引入1. 导数的物理意义:瞬时速率。
一般的,函数()y f x =在0x x =处的瞬时变化率是000()()limx f x x f x x∆→+∆-∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =', 即0()f x '=000()()limx f x x f x x∆→+∆-∆2. 导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。
容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即000()()lim()n x n f x f x k f x x x ∆→-'==-3. 导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有时也记作y ',即0()()()limx f x x f x f x x∆→+∆-'=∆考点:无 知识点:二.导数的计算1)基本初等函数的导数公式:1若()f x c =(c 为常数),则()0f x '=; 2 若()f x x α=,则1()f x xαα-'=;3 若()sin f x x =,则()cos f x x '=4 若()cos f x x =,则()sin f x x '=-;5 若()xf x a =,则()ln xf x a a '=6 若()x f x e =,则()xf x e '=7 若()log xa f x =,则1()ln f x x a '=8 若()ln f x x =,则1()f x x'=2)导数的运算法则1. [()()]()()f x g x f x g x '''±=±2. [()()]()()()()f x g x f x g x f x g x '''•=•+•3. 2()()()()()[]()[()]f x f xg x f x g x g x g x ''•-•'= 3)复合函数求导()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数 (())()y f g x g x '''=•考点:导数的求导及运算★1、已知()22sin f x x x π=+-,则()'0f =★2、若()sin x f x e x =,则()'f x =★3.)(x f =ax 3+3x 2+2 ,4)1(=-'f ,则a=( )319.316.313.310.D C B A ★★4.过抛物线y=x 2上的点M )41,21(的切线的倾斜角是() A.30° B.45° C.60° D.90°★★5.如果曲线2932y x =+与32y x =-在0x x =处的切线互相垂直,则0x =三.导数在研究函数中的应用知识点:1.函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系:在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在这个区间单调递增; 如果()0f x '<,那么函数()y f x =在这个区间单调递减. 2.函数的极值与导数极值反映的是函数在某一点附近的大小情况. 求函数()y f x =的极值的方法是:(1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么0()f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么0()f x 是极小值; 4.函数的最大(小)值与导数函数极大值与最大值之间的关系.求函数()y f x =在[,]a b 上的最大值与最小值的步骤 (1) 求函数()y f x =在(,)a b 内的极值;(2) 将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的是一个最大值,最小的是最小值.四.生活中的优化问题利用导数的知识,,求函数的最大(小)值,从而解决实际问题考点:1、导数在切线方程中的应用2、导数在单调性中的应用3、导数在极值、最值中的应用4、导数在恒成立问题中的应用 一、题型一:导数在切线方程中的运用★1.曲线3x y =在P 点处的切线斜率为k,若k=3,则P 点为( ) A.(-2,-8) B.(-1,-1)或(1,1)C.(2,8)D.(-21,-81)★2.曲线53123+-=x x y ,过其上横坐标为1的点作曲线的切线,则切线的倾斜角为( ) A.6π B.4π C.3π D.π43二、题型二:导数在单调性中的运用★1.(05广东卷)函数32()31f x x x =-+是减函数的区间为( ) A.(2,)+∞ B.(,2)-∞ C.(,0)-∞ D.(0,2)★2.关于函数762)(23+-=x x x f ,下列说法不正确的是( ) A .在区间(∞-,0)内,)(x f 为增函数 B .在区间(0,2)内,)(x f 为减函数C .在区间(2,∞+)内,)(x f 为增函数D .在区间(∞-,0)),2(+∞⋃内,)(x f 为增函数★★3.(05江西)已知函数()y xf x '=的图象如右图所示(其中'()f x()f x 的导函数),下面四个图象中()y f x =的图象大致是( )★★★4、(2010年山东21)(本小题满分12分)已知函数).(111)(R a xaax nx x f ∈--+-= (Ⅰ)当处的切线方程;在点时,求曲线))2(,2()(1f x f y a=-=(Ⅱ)当12a ≤时,讨论()f x 的单调性. 三、导数在最值、极值中的运用:★1.(05全国卷Ⅰ)函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( ) A .2B. 3C. 4D.5★2.函数5123223+--=x x x y 在[0,3]上的最大值与最小值分别是( ) A.5 , - 15 B.5 , 4 C.- 4 , - 15 D.5 , - 16 ★★★3.(根据04年天津卷文21改编)已知函数)0()(3≠++=a d cx ax x f 是R 上的奇函数,当1=x 时)(x f 取得极值-2.(1)试求a 、c 、d 的值;(2)求)(x f 的单调区间和极大值;★★★4.(根据山东2008年文21改编)设函数2312)(bx ax e x x f x ++=-,已知12=-=x x 和为)(x f 的极值点。
高中数学选修2-2最全知识点汇总

1.函数的单调性与导数:
一般的,函数的单调性与其导数的正负有如下关系:在某个区间 内
(1)如果 ,那么函数 在这个区间单调递增;(2)如果 ,那么函数 在这个区间单调递减.
2.函数的极值与导数
极值反映的是函数在某一点附近的大小情况.
求函数 的极值的方法是:(1)如果在 附近的左侧 ,右侧 ,那么 是极大值(2)如果在 附近的左侧 ,右侧 ,那么 是极小值;
3.导函数:当x变化时, 便是x的一个函数,我们称它为 的导函数. 的导函数有时也记作 ,即
二.导数的计算
基本初等函数的导数公式:
1若 (c为常数),则 ;2若 ,则 ;
3若 ,则 4若 ,则 ;
5若 ,则 6若 ,则
7若 ,则 8若 ,则
导数的运算法则
1. 2.
3.
复合函数求导 和 ,称则 可以表示成为 的函数,即 为一个复合函数
根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理.
类比推理的一般步骤:
(1)找出两类事物的相似性或一致性;
(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);
(3)一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的.
2,几个重要的结论
(1) (2) (3)若 为虚数,则
3.单位i的一些固定结论:
(1) (2) (3) (2)
(4)一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠.
考点二演绎推理(俗称三段论)
(完整版)高中数学人教版选修2-2导数及其应用知识点总结,推荐文档

19 反证法:是指从否定的结论出发,经过逻辑推理,导出矛盾,证实结论的否 定是错误的,从而肯定原结论是正确的证明方法。
反证法的一般步骤(1)假设命题结论不成立,即假设结论的反面成立; (2)从假设出发,经过推理论证,得出矛盾;(3)从矛盾判定假设不正确, 即所求证命题正确。反证法的思维方法:正难则反。矛盾(1)与已知条件矛盾: (2)与已有公理、定理、定义矛盾; (3)自相矛盾. 20 常见的“结论词”与“反义词”
常见的导数和定积分运算公式:若 f x, g x均可导(可积),则有:
和差的导数运算 积的导数运算 商的导数运算 复合函数的导数 微积分基本定理
和差的积分运算
积分的区间可加性
-1-
六安一中东校区高二数学选修 2-x)的导数 f '(x) ②令 f '(x) >0,解不等
证明当 n=k+1 时命题也成立.由(1),(2)可知,命题对于从 n0 开始的所有正整数
n
都正确
新疆 王新敞
[注]:常用于证明不完全归纳法推测所得命题的正确性的证明。
b
f (x)dx
a
a
c1
ck
11 定积分的取值情况:定积分的值可能取正值,
也可能取负值,还可能是 0.
( l )当对应的曲边梯形位于 x 轴上方时,
定积分的值取正值,且等于 x 轴上方的图形面积;
(2)当对应的曲边梯形位于 x 轴下方时, 定积分的值取负值,且等于 x 轴上方图形面积的 相反数;
(3)当位于 x 轴上方的曲边梯形面积等于 位于 x 轴下方的曲边梯形面积时,定积分的值 为 0,且等于 x 轴上方图形的面积减去下方的图 形的面积.
原结论词
反义词
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选修2-2导数及其应用单元复习知识总结2018-6-14一、导数的计算:1.定义;2.常见函数的导数公式、四则运算法则;3.复合函数求导(链式法则);4.如何求一个函数的导函数 答案:1.定义:称函数()y f x =在0x x =处的瞬时变化率0000()()limlim x x f x x f x yx x ∆→∆→+∆-∆=∆∆为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =',即000000()()|()limlim x x x x f x x f x yy f x x x=∆→∆→+∆-∆''===∆∆。
注:函数||y x =在0x =处没有导数。
2.常见函数的导数公式: 0c '=,1x '=,()kx b k k '+=(为常数),2()2x x '=,211()x x '=-,'=,1()n n x nx -'=,(sin )cos x x '=,(cos )sin x x '=-,()ln x x a a a '=,()x x e e '=,1(log )ln a x x a '=,1(ln )x x'= 导数的四则运算法则:;)(;)(;)(2vv u v u vuv u v u uv v u v u '-'=''+'=''±'='± [()()]()()f x g x f x g x '''±=±;[()()]()()()()f x g x f x g x f x g x '''⋅=+(轮番求导);2()()()()()[](()0)()[()]f x f x g x f x g x g x g x g x ''-'=≠(轮番求导); 3.复合函数求导(链式法则):设()y f u =,()u g x =,则复合函数(())y f g x =的导数为()()(())()x u x y y u f u g x f g x g x '''''''=⋅==,4.求一个函数的导数应先判断该函数的结构,它是两个函数的加减乘除还是两个函数的复合,然后进行下一步的计算。
二、导数的应用1.导数的代数意义、几何意义;利用导数求切线的关键及其注意点答案:(1)代数意义:0()f x '近似地表示函数()y f x =在0x 附近变化快慢的程度。
(2)几何意义:曲线()y f x =在点00(,())x f x 的切线的斜率等于0()f x '。
(3)利用导数求切线关键是求切点坐标,需要注意:(ⅰ)所给点是切点吗?(ⅱ)所求的是“在”还是“过”该点的切线?2.导数与函数单调性的关系及求单调区间的步骤、注意点答案:导数与函数单调性的关系:()y f x =在(,)a b 内有定义且可导, (1)若()0f x '>,则()y f x =在(,)a b 内单调递增;若()0f x '<,则()y f x =在(,)a b 内单调递减; (2)若恒有()0f x '=,则()y f x =在(,)a b 内为常数函数;(3)若()0f x '≥,且“=”仅在有限个点处成立,则()y f x =在(,)a b 内单调递增;若()0f x '≤,且“=”仅在有限个点处成立,则()y f x =在(,)a b 内单调递减。
(4)对于可导函数()f x 来说,()0(()0)f x f x ''><是()y f x =在(,)a b 内为增(减)函数的充分不必要条件。
例如3()f x x =在R 上为增函数,而(0)0f '=,故在0x =处不满足()0f x '>。
求单调区间的步骤:求定义域→求导函数→解不等式()0f x '>(()0f x '<)→确定单调区间注意:1 单调区间不能用“∪”连结;(单调区间不能以“并集”出现)2 上述单调区间均为开区间,若区间端点在定义域内,也可以写成闭区间。
3 有些函数(例如ln x )容易忽略定义域(误认为是R )。
4°在实际解题中,若()f x 在(,)a b 内单调递增,则应有()0f x '≥,而不是()0f x '>。
3.导数与函数极值的关系及求极值的步骤、注意点答案:导数与函数极值的关系:点0x 是可导函数()f x 的极值点的充要条件:①0()0f x '=;②点0x 两侧()f x '的符号不同。
其中,如果在0x 附近的左侧0()0f x '>,右侧0()0f x '<,那么0()f x 是极大值;如果在0x 附近的左侧0()0f x '<,右侧0()0f x '>,那么0()f x 是极小值。
导数为0的点不一定是函数的极值点(3y x =),极值点也不一定可导(||y x =),函数的极值点必为驻点或不可导点。
用导数求函数极值的步骤:求定义域→求导函数→解方程()0f x '=→列表(划分区间)→确定极值。
注意点:已知极值求参数,需要进行验证极值点。
4.利用导数函数最值的三种情形及其步骤。
答案:(1)闭区间上的连续函数必有最大值和最小值,且最值一定在极值点处或区间的端点处取得;(实际上只需要将导数为零的点与区间端点的函数值进行比较即可求出最大值和最小值)(2)若开区间上的连续函数有唯一的极值,则此极值必是最值。
(3)若连续函数()f x 在[,]a b 上单调,则最大值、最小值在端点处取得。
(4)用导数求函数极值的步骤:求定义域→求导函数→解方程()0f x '=→列表(划分区间)→求极值与端点函数值→确定最值。
5. .利用导数证明的几个不等式(注意证明过程)(1)sin ,(0,)x x x π<∈; (2)1,0x e x x >+≠ (3)ln ,0x x x e x <<> (4)ln 1,01x x x x <->≠且三、定积分:原函数表、定积分的运算性质、计算方法、曲边梯形的面积①⎰⎰=baba dx x f k dx x kf )()( (k 常数);②⎰⎰⎰±=±bab ab adx x f dx x f dx x f x f )()()]()([2121;③⎰⎰⎰+=bcb ac adx x f dx x f dx x f )()()( (其中)b c a <<。
3.定积分的计算:(1)微积分基本定理(牛顿—莱布尼兹公式):⎰-==bab a a F b F x F dx x f )()(|)()(; (2)利用曲边梯形的面积求最值。
4. 曲边梯形的面积()baS f x d x=⎰()baS f x dx=-⎰xyoa bc)(xfy=)(xfy=)(xgy=()()c ba cS f x dx f x dx=-+⎰⎰()()baS f x g x d x=-⎡⎤⎣⎦⎰)(x)(x ()()baS f x g x dx=-⎡⎤⎣⎦⎰21[()()]baA f x f x dx=-⎰四、导数常用方法:(两种题型:含参、不含参或者已知函数求其性质(单调性、极值、最值等),已知函数的性质(单调性、极值、最值等)求其中的参数;两种方法:分离变量、分类讨论)1.数形结合(可化原函数与导函数图像帮助分析)2转化化归(导函数的符号、零点的判断)3.定义域优先(lny x=)4因式分解、通分的化简原则5.分离变量6.对参数分类讨论(分类的标准)7.切线问题求切点(切线的条数可转化为方程根的个数,即函数零点的个数)8.构造函数法9.恒成立与能成立问题10.根据导函数图像观察函数的极值点时,有的学生回答的是导函数的极值点,而回答导函数的极值点时,却又回答的正负转换的点。
11.求一个函数的单调性,即研究导函数的的符号,可以画出导函数的图像或利用穿根法进行判断12.导函数要进行因式分解或通分,以便方便判断符号,还要注意定义域。
13.函数在某区间上不单调即为该区间内有极值点(稳定点),因为极值点处函数图象拐弯。
14.研究函数极值点的分布问题即为研究导函数的零点的分布问题(例如三次函数的导数为二次函数,从而研究二次函数的零点分布问题)。
15.观察法:通过验证注意到特殊的点(零点)16.导数)(xf'为二次函数。
f'为一次函数;)(xf'常见问题:)(x。