第一节 方差分析原理
单因素方差分析

•
第3步 (需要多重比较时)点击【Post-Hoc】从中选择一种方法,如LSD; (需要均值图时)在
【Options】 下 选 中 【Means plot】 , ( 需 要 相 关 统 计 量 时 ) 选 择 【Descriptive】 , 点 击
【Continue】回到主对话框。点击【OK】
用SPSS进行方差分析
•
如果两个因素对试验结果的影响是相互独立的,分别判断行因素和列因素对试验数据的影
响,这时的双因素方差分析称为无交互作用的双因素方差分析或无重复双因素方差分析
(Two-factor without replication)
•
如果除了行因素和列因素对试验数据的单独影响外,两个因素的搭配还会对结果产生一种
无交互效应的双因素方差分析
• 因为我们考虑不同司机行使时间的差异,所以要对区组做假设检验。两组假设分别为:
• 1. 不同路线均值都相等
•
各路线均值不全相等
• 2. 区组均值都相等
•
H各0区1 组: 均值不全相等
112 1314 1
• 两因素方差分析表的格式与单因素方差分析的格式一致,唯一的区别是加了一行区组变差。
第三节 单因素方差分析
1. 设1为化肥品牌A下产量的均值,2为化肥品牌B下产量的均值,3为化肥品牌C下产量的 2. 提出的假设为
▪ H0 : 1 2 3 ▪ H1 : 1 , 2 , 3 不全相等 3. 计算检验统计量
4. 计算P值,作出决策
因子均方 F残差~ 均 F(k方 1,nk)
例题分析
1. 组内误差(within groups)
▪ 样本数据内部各观察值之间的差异
• 比如,同一位置下不同超市之间销售额的差异的差异
第一节方差分析的基本原理与步骤

第一节方差分析的基本原理与步骤方差分析有很多类型,无论简单与否,其基本原理与步骤是相同的。
本节结合单因素试验结果的方差分析介绍其原理与步骤。
一、线性模型与基本假定假设某单因素试验有k个处理,每个处理有n次重复,共有nk个观测值.这类试验资料的数据模式如表6-1所示.表6—1k个处理每个处理有n个观测值的数据模式处理观测值合计平均A1 x11 x12 …x1j …x 1nA2 x21 x22 …x2j …x 2n……A i x i1 x i2 …x ij …x in……A k x k1 x k2 …x kj …x kn xk .合计表中表示第i个处理的第j个观测值(i=1,2,…,k;j=1,2,…,n );表示第i个处理n 个观测值的和;表示全部观测值的总和;表示第i个处理的平均数;表示全部观测值的总平均数;可以分解为(6—1)表示第i个处理观测值总体的平均数。
为了看出各处理的影响大小,将再进行分解,令(6—2)(6—3)则(6-4)其中μ表示全试验观测值总体的平均数,是第i个处理的效应(treatmenteffects)表示处理i对试验结果产生的影响。
显然有(6—5)εij是试验误差,相互独立,且服从正态分布N(0,σ2)。
(6—4)式叫做单因素试验的线性模型(linearmodel)亦称数学模型。
在这个模型中表示为总平均数μ、处理效应αi、试验误差εij之和。
由εij相互独立且服从正态分布N(0,σ2),可知各处理Ai(i=1,2,…,k)所属总体亦应具正态性,即服从正态分布N(μi,σ2)。
尽管各总体的均数可以不等或相等,σ2则必须是相等的.所以,单因素试验的数学模型可归纳为:效应的可加性(additivity)、分布的正态性(normality)、方差的同质性(homogeneity).这也是进行其它类型方差分析的前提或基本假定。
若将表(6-1)中的观测值xij(i=1,2,…,k;j=1,2,…,n)的数据结构(模型)用样本符号来表示,则(6—6)与(6—4)式比较可知,、、分别是μ、(μi-μ)=、(xij-)=的估计值。
第六章第一节方差分析基本原理

第六章第⼀节⽅差分析基本原理教学内容及组织安排:教学内容及组织安排:回顾卡⽅检验和T检验讲授的有关知识,引进⽅差分析的概念。
第六章⽅差分析⽅差分析的定义⽅差分析(Analysis of variance,ANOV A):⼜叫变量分析,是英国著名统计学家R . A . Fisher于20世纪提出的。
它是⽤以检验两个或多个均数间差异的假设检验⽅法。
它是⼀类特定情况下的统计假设检验,或者说是平均数差异显著性检验的⼀种引伸。
⽅差分析的基本功能t检验法适⽤于样本平均数与总体平均数及两样本平均数间的差异显著性检验,但在⽣产和科学研究中经常会遇到⽐较多个处理优劣的问题,即需进⾏多个平均数间的差异显著性检验。
这时,若仍采⽤t检验法就不适宜了。
这是因为:1、检验过程烦琐例如,⼀试验包含5个处理,采⽤t检验法要进⾏ =10次两两平均数的差异显著性检验;若有k个处理,则要作 k(k-1)/2次类似的检验。
2、⽆统⼀的试验误差,误差估计的精确性和检验的灵敏性低对同⼀试验的多个处理进⾏⽐较时,应该有⼀个统⼀的试验误差的估计值。
若⽤ t 检验法作两两⽐较,由于每次⽐较需计算⼀个,故使得各次⽐较误差的估计不统⼀,同时没有充分利⽤资料所提供的信息⽽使误差估计的精确性降低,从⽽降低检验的灵敏性。
例如,试验有5个处理,每个处理重复6次,共有30个观测值。
进⾏t检验时,每次只能利⽤两个处理共12个观测值估计试验误差,误差⾃由度为 2(6-1)=10 ;若利⽤整个试验的30个观测值估计试验误差,显然估计的精确性⾼,且误差⾃由度为5(6-1)=25。
可见,在⽤t检法进⾏检验时,由于估计误差的精确性低,误差⾃由度⼩,使检验的灵敏性降低,容易掩盖差异的显著性。
3、推断的可靠性低,检验的 I 型错误率⼤即使利⽤资料所提供的全部信息估计了试验误差,若⽤t 检验法进⾏多个处理平均数间的差异显著性检验,由于没有考虑相互⽐较的两个平均数的秩次问题,因⽽会增⼤犯 I型错误的概率,降低推断的可靠性。
第七章方差分析与F检验

• 5、主效应:实验中由一个因素的不 同水平引起的变异。
• 6、交互作用:当一个因素的水平在 另一个因素的不同水平上变化趋势 不一致时,称两个因素之间存在交 互作用。
• 7、处理效应:指实验的总变异中由 自变量引起的变异。如主效应、交 互作用。
• 8、误差变异:指总变异中不能由自变量或 明显的无关变量解释的那部分变异。包括 单元内误差和残差。
1、计算离差平方和:
1总平方和 :
SSt
X
2
X
N
2
2组间平方和 :
SSb
X
n
2
X
N
2
3组内平方和 :
SSw
X
2
X
n
2
(二)计算自由度
总自由度:dft=N-1 组间自由度: dfb=k-1 组内自由度: dfw=k(n-1) (三)计算均方
组间均方:MSb=MSA=SSb/dfb 组内均方:MSw=MSE=SSw/dfw (四)计算F值
一、几个基本术语
• 1、因素:指研究者在实验中感兴趣 的一个变量,研究者通过操纵、改 变它,来估价它对因变量的影响, 也叫自变量。
• 2、因素的水平:实验中所操纵的变 量的每个标定的值。这些值既可以 是数量的,如时间、年龄,也可以 是类别的,如职业、性别等。
• 3、因素设计:通常指多于一个因素的 实验设计。如一个含有两个因素,每个
F= MSb/ MSw
(五)查F值表进行检验并做出决断
假如拒绝虚无假设的p值定为0.05,如 果计算的值大于所确定的显著性水平 的临界值,表明F值出现的机率小于 0.05,就可拒绝虚无假设,可以说不 同组的平均数之间在统计上至少有一 对有显著差异。
如果计算的F值小于p为0.05的临界值, 就不能拒绝虚无假设,只能说不同组 的平均数之间没有显著差异。
方差分析(一):方差分析的基本原理

方差分析(一):方差分析的基本原理本文转自SAS知识(ID: SASadvisor),摘自《深入解析SAS —数据处理、分析优化与商业应用》回复「朝阳35处」可查看「说人话的大数据」系列合辑方差分析可以用来判断几组观察到的数据或者处理的结果是否存在显著差异。
本文介绍的方差分析(Analysis of Variance,简称ANOVA)就是用于检验两组或者两组以上样本的均值是否具备显著性差异的一种数理统计方法。
方差分析在实际应用中,常常需要判断几组观察到的数据或者处理的结果是否存在显著差异。
比如,想要了解不同地区的信用卡用户在月均消费水平上是否存在差异就是多组数据是否存在差异的示例,至于不同处理的结果是否存在差异的示例也有很多,例如,几种用于缓解手术后疼痛的药品,它们之间的治疗效果即药效持续的平均时间是否存在差异,实际上考察的就是不同的处理(将药品作用于患者)其结果是否存在差异。
若上述的信用卡月均消费水平或治疗效果存在差异,那么这种差异是统计显著的吗?也就是说,这种差异是某一个或几个因素作用的结果吗?例如是由于地区差异或不同的药物引起的吗?还是纯粹随机误差(譬如说随机抽样过程)的体现呢?本系列文章介绍的方差分析(Analysis of Variance,简称ANOVA)就是用于检验两组或者两组以上样本的均值是否具备显著性差异的一种数理统计方法。
方差分析的基本原理在方差分析中,我们把要考察其均值是否存在显著差异的指标变量称为响应变量,对响应变量取值有影响的其他变量称为因素。
例如,信用卡消费水平和治疗效果为响应变量,地区和药品则为因素。
在方差分析中,因素的取值应为离散型的,其不同的取值称为水平。
例如,每一个具体地区或者每一种药品都对应着一个水平。
根据因素的个数,方差分析可以分为单因素方差分析和多因素方差分析。
方差分析的模型为了更好地解释方差分析的模型,首先来看看单因素的情形。
考虑如下示例:现有四种用于缓解术后疼痛的药品1、2、3和4,为了研究它们的治疗效果是否存在显著差异,对每一种药品都进行了4次试验。
第9.1节 单因素试验的方差分析——概率论与数理统计(李长青版)

ES A ( s 1) 2 n j 2 j
j 1
s
由此得
Se 2 E , ns
1 s SA 2 2 E n j j s 1 s 1 j 1
在 H0 为真时, 即 1 2 s 0 时, 有
S A ( s 1) 将 从而在 H0 不真时, 比值 S ( n s ) 有偏大的趋势, 其 e
S A ( s 1) . 记为 F, 即 F Se (n s )
则 F 可以作为检验 H0 的统
计量. 将 Se 写成如下分项相加的形式
Se ( xi1 x1 ) 2 ( xi 2 x2 ) 2 ( xis xs ) 2
的 影响.
种子品种代 号 (水平) 重复试验序号及作物实测产量
1 128 125 148 2 126 137 132 3 139 125 139 4 130 117 125 5 142 106 151 133 122 139
A1 A2
A3
这里试验的指标是作物产量, 作物是因素, 三种种 子品种代表三个不同的水平. 首先,形成数据差异的直接原因是种子的不同品 种.因此, 每个品种下产量的均值差异检验是我们的主 要任务.这种由因素(种子品种)造成的差异称为条件(系
s nj
从而有
Se ( ij j ) ,
2 j 1 i 1
s
nj
S A n j ( j j ) 2
j 1
s
由此知, Se 反映了误差的波动, 称其为误差的偏差 平方和(或称为组内平方和), 它集中反映了试验中与因 素及其水平无关的全部随机误差. 在 H0 为真时, SA 反 映误差的波动, 在 H0 不真时, SA 反映因子A 的不同水
第九章 方差分析506312261

第九章 方差分析第一节 方差分析的基本原理及步骤一、方差分析的基本原理假设从一个实验中抽取了9名被试的学习成绩,如表9-1所示。
随后又抽取了9名被试的学习成绩,如表9-2所示。
你能从这些数据发现什么问题吗?首先,从数据可知,不仅组与组之间存在不同,而且同一组内部也存在着不同。
前者称组间变异,后者称组内变异。
其次,从组间变异看,表9-1组间变异大于表9-2。
表9-1 第1次抽取结果表9-2 第2次抽取结果 方法 学生实验成绩 Xt X方法 学生实验成绩 Xt XA 6 5 7 6A 1 7 4 4B 11 9 10 10 7B 6 2 8 6 5C5465C3655再次,从看组内变异看,表9-1比 9-2差异小。
综上所述,表10-1组间变异较大而组内变异较小,表10-2组间变异较小而组内变异较大,组间变异大小与组内变异大小并非正比关系。
这表明,若组间变异与组内变异的比率越大,各组平均数的差异越大。
因此,通过组间变异和组内变异比率大小来推论几个相应平均数差异显著性的思想就是方差分析的逻辑依据或基本原理。
所以说,方差分析是将实验中的总变异分解为组间变异和组内变异,并通过组间变异和组内变异比率的比较来确定影响实验结果因素的数学方法,其实质是以方差来表示变异的程度。
总变异组间变异实验条件随机误差组内变异个体差异随机误差实验误差图10-1 总变异的分解图二、方差分析的基本过程(一)综合虚无假设与部分虚无假设方差分析主要处理多于两个的平均数之间的差异检验问题,需要检验的虚无假设就是“任何一对平均数”之间是否有显著性差异。
综合虚无假设:样本所归属的所有总体的平均数都相等 备择假设:至少有两个总体的平均数不相等(二)方差的可分解性总变异 = 组间变异 + 组内变异变异(V ariance ,用V 表示)即方差(S 2),又称均方差或均方(M ean S quare ,MS ),其公式为()df SS n X X MS V S =--=∑1),(22或或其中,分子为离均差平方和,简称平方和,记为SS ;分母为自由度,记为df ,所以总变异及各变异源记为w b t MS MS MS +=总变异的数学意义是每一原始分数(X )与总平均数(t X )的离差,记为()tX X -组间变异的数学意义是每一组的平均数(i X )与总平均数的离差,记为()t iX X-组内变异的数学意义是每一组内部的原始分数与其组平均数(i X )的离差,记为()iX X -(二)总变异的分解及各部分的计算 1.平方和的分解与计算 1)平方和的定义式根据变异的可加性,任何一个原始分数都有()()()i t itX X X XX X -+-=-对容量为n 的某一小组而言,则有()()()[]∑∑-+-=-i t it X X X XX X为了使平方和不为0,须做代数的处理,即有()()()[]22∑∑-+-=-i t itX X X XX X对k 组页言,则有()()()[]∑∑∑∑-+-=-22ititX X X X X X()()()()∑∑∑∑∑∑-+--+-=222iititiX X X X X X X X ∵ ()()0=--∑∑i t iX X X X∴ ()∑∑-2tX X ()()∑∑∑∑-+-=22itiX X X X即 总平方和 = 组间平方和 + 组内平方和 或 w b t SS SS SS += 2)平方和的计算式()()nX XX X 222∑∑∑-=-总平方和:()()∑∑∑∑∑∑∑-=-=nX X X X SS t t 222组间平方和:()()()∑∑∑∑∑∑∑-=-=n X n X X X SS tib222组内平方和:()∑∑-=2i wX X SS ()∑∑-=2i w X X SS b tSS SS-=例9-1:要探讨噪音对解决数学问题的影响。
现代心理与教育统计学第九章:方差分析

(五)查F分布临界值做出判断 当dfB=2, dfW=9,设定p=0.01, 查表F0.01(2,9)=8.02,检验值是F=48.44>8.02,p<0.01。
F0.01(2,9)=8.02
(六)陈列方差分析表
变异来变源异来平源方和平方自和由度自由度均方 均方 F F p 组间 组间258.67258.672 2 129.34129.3448.4448.44*0*.01 组内 组内 24 24 9 9 2.67 2.67
组内变异区组变异msr误差变异mse由此总变异的构成由原来的两个部分演变为三个部分总变异组间或处理变异区组变异误差变异组间设计下自变量各水平下被试随机区分而在单因素组内把每个水平下被试进行了等级划分形成了组内效应区组效应
第九章 方差分析
第一节 方差分析基本原理及步骤 第二节 完全随机设计的方差分析
目 录
第三节 随机区组设计的方差分析
第四节 事后检验
第一节 方差分析基本原理及步骤
➢ 补充: 自变量(前因变量);自变量水平 因变量(后果变量) 组间(被试间)实验设计(自:男,女。因:红色反应时) 组内(被试内)实验设计(自:红,绿。因:男红绿反应时) 混合实验设计(自:男,女;红,绿。因:男女红绿反应时) 实验组、对照组
SB S n X2 nX k2(2470 444 0 6 4 0)4 (5 3 2 2 4 0 8)2
79 6240 20 5 .68 7 12
SW S X 2 n X 2 8 1 76 9 22 4
(二)自由度的分解 总自由度为总容量减去1。本例有12个数据,所以:
思考: 1.如果想要分析A总体和B总体平均数的差异,可以用什么方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节方差分析原理一、方差分析基本思想方差分析(analysis of variance,或缩写ANOVA)又称变异数分析,是一种应用非常广泛的统计方法。
其主要功能是检验两个或多个样本平均数的差异是否有统计学意义,用以推断它们的总体均值是否相同。
它是真正用来进行上述“多组比较”问题的正确方法,从这个意义上说,它可看成是t检验等“两组比较法”的推广。
理解方差分析的原理,主要在于其基本思想,而不在于数学推导。
以单因素完全随机化实验设计为例(这是最简单的多组实验设计)介绍方差分析的原理。
注意下面列出的该种设计的数学模式,假设有k 个处理,每个处理下有n 个被试,一共有nk 个被试。
K个处理下的数据构成比较中的k个组或k个样本。
不失一般地,其对应的图示如下:根据测量学中的真分数理论,观测值等于真值和误差之和;据此,对照上面的数据可得到下面的数学模型:其中:X ij指第j 个处理下的第i 个被试的实验数据;μ指总体均值;在图中样本数据中,即红色线表示的总平均;μj指第j 个处理的均值;τj称为第j 个处理的效应;通常,τj=μj–μ,也即各组均值偏离总平均的离差;εij为随机误差(idd表示误差独立同分布);在该模型中,误差就是各组中数据偏离其组均值的离差。
因为根据单因素完全随机化设计的特点,同组中的被试,其各方面条件都相同,接受的处理也相同,其观测值间的差异只能归结为随机误差。
首先对检验的零假设进行变换:下面我们就需要构造一个统计量使得它在Ho"下无未知量且有精确的分布,以进行假设检验。
由于τ2j是每个处理的平均数与总平均之差,所以我们考虑从数据的离均差的平方入手来构造统计量:对每个观测数据:即:任意一个数据与总平均数的离差= 该数与所在组平均数的离差+ 所在组的平均数与总平均数的离差。
我们针对第j 组中每个数据的上述分解式的平方求和得:再对所有组求和得:显然,上式左端的表达式就是将所有k个样本数据混在一起时所得总方差的分子部分,称总平方和,记为SSt(sum of square, total);右端第一式是在各组内计算得到的各组方差的分子部分,由于它度量的实际上是所有数据与其所在组均值的离差平方和,故称之为组内平方和,记为SSw(within group),根据上述的模型,它的含义也就是误差平方和;右端第二式度量的是各组的效应平方和,称组间平方和(之所以有n倍,是因为每组中的效应被重复累加了n次),记为SSb(between group)。
上式简记为:SSt = SSb + SSw。
此公式是和上述单因素完全随机化设计的数学模型相对应的。
接下来的问题实际上是利用F检验进行方差比检验,即比较组间变异(方差或均方)和组内变异的相对大小。
因此,分别将上述平方和比各自的自由度得到组间方差(记为MSb)和组内方差(记为MSw或MSe)。
方差分析假定各处理方差相等,则各处理样本的方差S21、S22,…,S2m都是处理总体方差σ2的无偏估计量。
各处理方差合成后估计精度更高(下式)。
同时,MSb也是σ2的无偏估计量。
则有:直观地看,要检验的就是F值是否显著地大于1,若大于1,说明组间变异中尚存在随机误差之外的显著变异;否则说明组间变异和随机误差差不多,也即接受无差异零假设。
从上面的推导过程看到,方差分析实际上是将实验数据的总变异分解成若干个不同来源的分量(对于单因素完全随机化实验设计来说是分解成组间差异所引起的变异和组内误差所引起的变异),即将总的离均差平方和分解成几个不同来源的平方和,然后比较我们研究的那些因素所引起的变异与误差变异的显著性。
其核心一是根据具体实验设计确定变异源分解模型;二是构造方差比进行F检验。
二、方差分析的基本条件进行方差分析时有一定的条件限制,数据必须满足以下几个基本假定:总体正态性。
要求样本必须来自正态分布总体,而总体是否服从正态分布可以采用卡方检验中的拟合性检验进行判断(参见第八章有关内容)。
不过在心理与教育研究领域中,大多数变量是可以假定其总体服从正态分布的,因此一般在进行方差分析时并不需要去检验总体分布的正态性;而且研究表明数据正态性对于方差分析结果的影响不是太大。
方差齐性。
在前面的推导过程中,将MSw 作为总体组内方差的估计值,而计算MSw 时相当于将各处理(组)方差合成,这种合成正如T 检验一节所讲一样,显然要求一个前提就是各组的方差无显著的差异。
方差齐性检验有许多方法,如教材介绍的哈特莱(Hartley)法、Levene氏方差齐性检验等。
第二节两类单因数方差分析作为方差分析的基础,首先要了解实验设计的有关知识。
方差分析法的复杂之处在于不同的实验设计,其方差分析过程可能是不同的。
如上所述,不同的实验设计,方差分析过程的首要区别是因变量总变异的分解方式不同,所关心的效应种类不同;而在构造方差比计算F 值时总是以被检验因素或效应的均方(如上面的组间均方)作分子,以误差均方作分母(单侧检验)。
所有形式的方差分析都是如此。
有几个可能的效应,就应当进行几次F检验,每次检验的F统计量中的误差均方可能不尽相同。
一、实验设计基本概念1、自变量、因变量、无关变量、随机误差自变量(independent variable)是研究者可以系统地改变或操纵的变量。
自变量可以是被试自身的条件,如年龄、智力,也可以是外在环境的刺激,如学习材料、光线的强度、教学方法、错觉实验中的夹角,还可以是用来预测其它行为的行为——高中的学业成绩来预测大学的成绩。
在方差分析中也称自变量为因素或因子(factor),通常方差分析只能处理名义型的质量因子,如性别、教学方法等;若自变量为等距或等比类型的数量因子,如光线的强度、夹角等,通常可以在具体实验中将其人为地只取几个代表值,转化成质量因子。
而对于完全连续型的数量因子则必须借助于协方差分析(analysis of covariance,ANCOVA)。
因变量(dependent variable)是实验中加以精确测量以便决定自变量效应的变量,即由自变量引起的实验体的变化。
比如成绩、遗忘量、错觉量,反应时等。
无关变量(irrelevant variable)是自变量以外的其它可能引起因变量变化的变量。
随机误差(random error)在这里定义成测量或实验所得的分数与真分数之间的差异。
如以同一智力测验对同一个体测量数次或对同一个体施以不同智力测验,所测结果不尽相同,在理论上该个体的真智力只有一个分数,而测得的却有数个分数,测得分数与真分数之间的差异,即为随机误差。
上述四个概念之间的关系可以表示为:因变量=F(自变量,无关变量)+随机误差。
这可看成是真分数理论的推广。
2、因素的水平和实验处理因素的水平(level)指每一个特定取值,在实验中也就是各实验组。
注意:因素的水平与一个实验中因素的个数之间的区别。
不能把夹角的三个水平当成实验中的三个因素。
实验处理(treatment)指实验中一个特定的、独特的实验条件,它一般是各个因素的所有水平的交叉组合。
一个处理就代表一个总体,每个处理下收集的数据就是该总体的一个样本。
下例是研究夹角与错觉量之间关系的实验,实验中考虑三个因素:夹角,性别,光线的强弱,一共有3×2×2=12个处理。
在实验中若只有一个因素,则水平也就是处理。
3、实验设计的分类可以简单地以自变量的多少分:单因素、二因素和多因素;也可以按照实验控制无关变量的多少分:①完全随机化实验设计通过随机分配被试给各个实验处理(每个处理下的被试数最好相等,至少有2名),以期实现各个处理下的被试在统计上无差异,它不能分解出无关变量对因变量的影响,只是在理论上使所有无关变量对各处理的影响相等。
完全随机化实验设计中的“完全”指的是将被试分配给所有处理,“随机”指的是将所有被试随机分配。
②随机化完全区组设计将被试按某一无关变量的不同水平分成若干个组,这种组就叫做区组,区组是相对于实验组而言的,各组内各被试在该无关变量上的大小相同。
如要班主任不同对学生数学成绩的影响实验中,被试以前的数学成绩是一个无关变量,它会影响到实验的最终结果,因此我们可以把学生以前的数学成绩作为标准对学生进行分组。
假如以前的数学成绩用四级评分来表示,则可以将被试分成四个组(最好各个组内的人数相等),然后再将每个组的被试按完全随机化实验设计那样随机地分配给各个处理。
随机化完全区组设计中的“随机”指的每个区组内的被试随机地分配各个处理,“完全”指的是在每一个区组中的被试要分配给所有的处理,若没能分配给所有的处理,则称为不完全区组设计。
随机化完全区组设计通常要求无关变量与实验中的因素无交互作用、互不影响。
实际上一般的区组设计方差分析也无法分解出其与因素的交互作用。
③拉丁方设计区组设计的推广,可以控制两个无关变量的的实验设计,被试在分给实验处理前要按照两个无关变量重新分组。
此外还可按照被试接受处理的多少来分:①被试间实验设计(between subject design)指每个被试只接受一个处理,即只在一个实验条件下做实验。
前面所举的的例子都是被试间设计。
注意,完全随机化设计必然是被试间设计,而教材上所举的区组设计的例子多半为被试内设计的特殊情况,实际上,区组设计就其本质特点而言不是被试内设计,而是强调在完全随机化设计基础上,按照另一个无关变量对原先的被试重新进行排序分组。
在原先的处理组中,所有被试是不加区分的,现在则要按无关变量分组。
因此它并不能像被试内设计一样节省被试。
②被试内实验设计(within subject design)是一种控制误差非常严格的实验设计,指每个被试接受所有的处理,即相当于以单个被试为区组,可以排除许多与个体差异有关的无关变量的影响,这样实验组之间的差异除了被试在接受各处理时产生的随机波动外,就只能归因于处理的不同了。
被试内设计中也存在随机化,即对每个被试接受处理的顺序进行随机化。
这种实验设计可最大限度地控制个体差异的影响,这是其相对于被试间设计的优点。
但这种设计要求处理对被试没有长期影响,如学习和疲劳效应。
被试内设计还有一个好处就是能最大限度节省被试(处理下重复或数据个数相同的情况下)。
③混合设计(mixed design)在多因素设计中,可以安排某些因素作为被试间变量,另一些因素作为被试内变量,这就是混合设计。
下表的设计中,每个被试接受了每种夹角下的实验,但是1-20号被试只接受强光线下的实验,21-40号被试只接受弱光线下的实验,他们都没有接受所有光线条件下的实验。
那些每个被试接受了其下所有处理的因素就是被试内因素(夹角),每个被试只接受其下一种水平的因素即被试间因素(光线强度)。
混合设计可以兼顾上述两种设计的优缺点,在使用的被试数量上也介于上面两种设计之间。