谐波标准及变频器谐波干扰的解决方法

合集下载

变频器谐波问题干扰范围及处理方法

变频器谐波问题干扰范围及处理方法

变频器常见谐波问题以及解决方法变频器常见谐波问题以及解决方法在现代化港口、矿井、运输港的建设中,变频软启动渐渐替代机械软启动,如常规液力耦合器,CST液力软启动,成为市场主流,其主要原因为可控性高,精度强。

变频器在使用过程中也会相应的出现自己的问题,重点介绍下在现场安装中变频器谐波问题以及处理办法。

就矿井使用的变频器而言,非下运皮带大都使用二象限的,因不需要对电网进行电能反馈,下运皮带在运行以后对电网进行电能反馈,既逆向输送电力,而非使用电力,四象限变频器就是除了正反转外还能控制,实现能量反馈回电网的变频器。

2象限指的就是普通的控制速度的变频器。

内部除了控制方式不同外,硬件方面主要就是4个象限变频器整流和逆变电路都使用可双向导通的半导体元件,一般是IGBT。

而2象限的整流部分一般是晶闸管或二极管。

而就谐波问题而言,问题重点出现在四象限变频器,因产生的奇数次谐波较强,且干扰问题严重,频器正常工作中,由于变频器高次谐波的影响引发控制电路发生串联谐振,造成系统电源故障,就功率等级而言,75KW以上四象限变频器因考虑进行谐波治理,而二象限变频功率在100KW以下可以进行常规处理即可。

在变频器使用过程中,经常出现误指示、乱码等情况;变频器停止工作时系统完全恢复正常。

很明显这是由于变频器高次谐波分量对电源的干扰造成的,通常,对此最为行之有效的办法就是对控制电路的供电电源加装电源滤波器。

在加装市售的通用电源滤波器后,系统恢复了正常,但是随之又有新的问题出现了,控制电路中的熔断器频繁熔断。

停电后对电路进行检查,经现场详细观察发现,在系统逐渐升速过程中,变频器运行输出在某个频段之间时频繁发生短路故障。

而且,将变频器的负载(电动机)断开后,该故障现象仍频繁出现,在去掉电源滤波器后该故障消失。

因此,首先对该滤波器进行了检查,拆开后发现滤波器采用的是常见的π型滤波。

检查发现电源滤波器本身没有任何故障,进一步分析变频器的工作原理可知,在交-直-交型变频器中,电网通过三相整流桥给变频器供电,供电电流利用傅立叶级数可以分解为包含基波和6K±1次谐波(K=1,2,3…)分量等一系列谐波分量,谐波含量随进线电抗和和直流滤波电抗的电感量增加而减少。

变频器产生的干扰及解决方案

变频器产生的干扰及解决方案

变频器产生的干扰及解决方案一、引言变频器是一种将电源频率转换为可变频率交流电的电子设备,广泛应用于工业生产中的机电驱动系统。

然而,变频器在工作过程中会产生一定的电磁干扰,对其他电子设备和通信系统造成不利影响。

本文将探讨变频器产生的干扰原因、干扰的影响以及解决这些干扰问题的方案。

二、变频器产生的干扰原因1. 高频噪声:变频器工作时,其内部电路会产生高频噪声,这些噪声通过电源线、信号线和地线传播,对周围设备产生干扰。

2. 谐波电流:变频器输出的交流电不是纯正弦波,而是包含谐波成份的波形。

这些谐波电流会通过电源线进入电力系统,引起电网电压畸变,对其他设备产生干扰。

3. 电磁辐射:变频器内部电路中的高频电流和高频信号会产生电磁辐射,通过空气传播,对周围电子设备和通信系统产生干扰。

三、变频器干扰的影响1. 电子设备故障:变频器产生的干扰可能导致其他电子设备的故障或者异常工作,降低设备的可靠性和寿命。

2. 通信系统干扰:变频器的干扰信号可能与通信系统的信号频率相近,导致通信系统的信号质量下降,甚至无法正常通信。

3. 电力系统质量下降:变频器输出的谐波电流会引起电力系统的电压畸变,影响电力系统的稳定性和质量。

四、解决变频器干扰的方案1. 滤波器的应用:在变频器的输入端和输出端安装滤波器,可以有效地抑制变频器产生的高频噪声和谐波电流。

输入端滤波器主要用于抑制电源线上的高频噪声,输出端滤波器主要用于抑制谐波电流。

2. 屏蔽措施的采用:对变频器及其相关线缆进行屏蔽,可以减少电磁辐射对周围设备的干扰。

屏蔽可采用金属外壳、金属屏蔽罩、金属导线等方式实现。

3. 接地措施的改进:合理的接地设计可以减少变频器产生的干扰。

应确保变频器和其他设备的共同接地点,减少接地回路的阻抗,提高接地效果。

4. 优化电源系统:为变频器提供稳定的电源,减少电源线上的电磁噪声,可以降低变频器产生的干扰。

可以采用电源滤波器、稳压器等设备来改善电源质量。

变频器产生的干扰及解决方案

变频器产生的干扰及解决方案

变频器产生的干扰及解决方案变频器是一种用于调节电动机转速和电压的设备,它通过改变电动机的供电频率来实现调速。

然而,变频器在工作过程中会产生一些干扰,这些干扰可能对其他电子设备和电网产生负面影响。

因此,需要采取一些解决方案来减少这些干扰。

1.电磁干扰:变频器在调节电动机的供电频率时会产生较高的电磁噪声,这些噪声会通过电源线、信号线和控制线传播到其他设备中,对电子设备的正常工作产生干扰。

2.谐波污染:变频器工作时会产生较高频率的谐波信号,这些谐波信号会通过电网传播,并污染电力系统。

谐波信号会导致电网电压失真、电流波形畸变,进而影响其他设备的运行。

3.继电器的抖动:变频器在工作过程中控制电机的起停,会通过继电器来实现。

由于变频器工作频率较高,继电器容易出现抖动现象,导致电机频繁启动和停止,对其他设备产生干扰。

为了解决变频器产生的干扰问题,可以采取以下几种解决方案:1.滤波器的使用:安装滤波器可以有效地减少变频器产生的电磁干扰。

滤波器可以对电磁噪声和谐波信号进行滤波处理,降低其对其他设备的干扰。

2.接地和屏蔽措施:通过合理的接地和屏蔽措施可以有效减少电磁干扰的传播。

变频器、电动机和其他设备的外壳应该进行良好的接地,同时使用屏蔽线缆来阻止电磁噪声的传播。

3.调整变频器的工作频率:调整变频器的工作频率可以减少变频器产生的谐波信号。

选择合适的工作频率,使变频器工作在较低的谐波频率范围内,减少对电力系统的谐波污染。

4.选择优质的变频器产品:选择经过认证的优质变频器产品可以有效减少干扰。

优质的变频器产品在设计和制造过程中会考虑到干扰问题,并采取相应的措施进行抑制。

5.合理布置设备:合理布置变频器和其他设备,保持一定的距离,降低干扰的传播。

变频器和其他设备之间应保持足够的间隔,避免信号相互干扰。

综上所述,变频器产生的干扰对其他设备和电网的影响是不可忽视的。

为了解决这些干扰问题,需要采取一系列的措施,包括使用滤波器、接地和屏蔽措施、调整工作频率、选择优质产品以及合理布置设备等。

变频器谐波干扰及治理措施

变频器谐波干扰及治理措施

变频器谐波干扰及治理措施变频器谐波是指由于正弦电压加压于非线性负载变频器,基波电流发生畸变而产生的谐波。

对于一台变频器来讲,它的输入端和输出端都会产生高次谐波,输入端的谐波还会通过输入电源线对公用电网产生影响。

变频器本身输入侧是一个非线性整流电路,对电源的波形将有影响,变频器输出侧电压、电流、非正弦或非完全正弦波含有丰富的谐波。

一般来讲,变频器对容量大的电力系统影响不是十分明显,但是对于系统容量小的系统,谐波产生的干扰就不可忽略,它对公用电网是一种污染,客观的存在对公用电网和其它系统的危害大致有:(1)变频器谐波使公用电网的元件产生了附加的谐波损耗,降低了发电、输电及用电设备的使用率,大量的三次谐波流过中线时会使线路过热甚至发生火灾。

(2)变频器谐波影响各种电气元件的正常工作。

谐波对电机的影响除引起附加损耗外,还会产生机械振动、噪音和过电流,使电容器、电缆等设备过热,绝缘老化、寿命缩短以至损坏。

(3)变频器谐波会引起公用电网局部的并联谐振和串联谐振,从而使谐波放大,这就使上述的危害大大的增加,甚至引起严重事故。

(4)变频器谐波会对临近的通讯系统产生干扰,导致通讯质量降低,甚至信息的丢失,使通讯系统无法正常工作。

治理变频器谐波问题,抑制辐射干扰和供电系统干扰,可采取屏蔽、隔离、接地等技术手段。

1、安装适当的电抗器在变频器输入侧与输出侧串接合适的电抗器,吸收谐波和增大电源或负载的阻抗,到达抑制谐波的目的,以减少传输过程中的电磁辐射。

通过抑制谐波电流,将功率因数由原来的(0.5-0.6)提高至(0.75-0.85);2、电源隔离或安装隔离变压器将变频系统的供电电源与其他设备的供电电源相互独立,或在变频器和其他用电设备的输入侧安装隔离变压器,切断谐波电流;3、防止干扰辐射电动机和变频器之间电缆应穿钢管敷设或用铠装电缆,并与其他弱电信号在不同的电缆沟分别敷设,防止辐射干扰;4、变频器正确的接地正确的接地既可以使系统有效地抑制外来干扰,又能降低设备本身对外界的干扰。

【推荐下载】抑制或削弱谐波及变频器电磁干扰的方法

【推荐下载】抑制或削弱谐波及变频器电磁干扰的方法

张小只智能机械工业网张小只机械知识库抑制或削弱谐波及变频器电磁干扰的方法1 抑制或削弱谐波影响的方法 (1)为什么提高载波频率可抑制或削弱谐波? 变频器的载波频率是可调的,一般2耀16kHz,当谐波较大时,尽可能提高载波频率,尤其是国产变频器。

一般出厂值载波频率都设置在较低值,目的是为了减少IGBT的功耗。

例载波频率从2kHz提高到16 kHz 时,即增加8 倍,功耗约增加2耀2.5倍,而发热量增加4耀6.25倍,当载波频率提高后,输出电流波形正弦性能变好,毛刺减少,波形光滑,对减少谐波有利,所以适当提高载波频率,对抑制或减少谐波有利。

(2)如何提高变频器输出频率来减少谐波? 输出频率提高对减少谐波影响有利,只要使用许可,尽可能提高输出频率,具体参考见表1. 随输出频率提高,谐波的绝对值增加,但相对50 Hz的相对值是减小的。

(3)加输入交流电抗器能否削弱变频器输入端的谐波? 交流电抗器串接于三相输入电路中的滤波效果不是很好,用后能将cos渍提高到0.75耀0.85。

1)当电压为380 V,变压器容量在500 kV-A以上,或大于变频器容量的10倍时,配电变压器容量及变频器容量与选用交流电抗器的关系如图1 所示。

2)电源输出电压三相不平衡率大于3豫。

3)当配电变压器接有功率因数补偿电容时,或有晶闸管(SCR)整流装置时,对6 脉冲整流器,电抗器LAC 安装与否的比较,如图2 所示。

LAC 电抗值的大小与各次谐波电流的关系如图3 所示。

从图3可见LAC对抑制5耀19次谐波效果很显著,一般选用时使电抗器上的电压降约在额定电压的3%为宜。

当然也可串接于变频器的输出电路中,它的作用主要是抑制变频器的发射干扰和感应干扰,抑制电动机的电压波动效应,其配置方式为额。

变频器产生的谐波危害及解决方法[优秀范文五篇]

变频器产生的谐波危害及解决方法[优秀范文五篇]

变频器产生的谐波危害及解决方法[优秀范文五篇]第一篇:变频器产生的谐波危害及解决方法变频器产生的谐波危害及解决措施变频器是工业调速传动领域中应用较为广泛的设备,由于变频器逆变电路的开关特性,对其供电电源形成了一个典型的非线性负载。

变频器在现场通常与其它设备同时运行,例如计算机和传感器,这些设备常常安装得很近,这样可能会造成相互影响。

因此,以变频器为代表的电力电子装置是公用电网中最主要的谐波源之一,电力电子装置所产生的谐波污染已成为阻碍电力电子技术自身发展的重大障碍。

相关的定义1.1 什么是谐波谐波产生的根本原因是由于非线性负载所致。

当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,从而产生谐波。

谐波频率是基波频率的整倍数,根据法国数学家傅立叶(M.Fourier)分析原理证明,任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量。

谐波是正弦波,每个谐波都具有不同的频率,幅度与相角。

谐波可以I区分为偶次与奇次性,第3、5、7次编号的为奇次谐波,而2、1 4,6、8等为偶次谐波,如基波为50Hz 时,2次谐波为lOOHz,3次谐波则是150Hz。

一般地讲,奇次谐波引起的危害比偶次谐波更多更大。

在平衡的三相系统中,由于对称关系,偶次谐波已经被消除了,只有奇次谐波存在。

对于三相整流负载,出现的谐波电流是6n±1次谐波,例如5、7,11、13、17、19等,变频器主要产生5、7次谐波。

谐波定义示意图如图1所示。

1.2 谐波治理的有关标准变频器谐波治理应注意下面几个标准: 抗干扰标准:EN50082-1、-2,EN61800-3;辐射标准:EN5008l-1、-2,EN61800-3。

特别是IECl0003、IECl800-3(EN61800-3)、IEC555(EN60555)和IEEE519-1992。

普通的抗干扰标准EN50081和EN50082以及针对变频器的标准EN61800(1ECl800-3)定义了设备在不同的环境中运行时的辐射及抗干扰的水平。

变频器的谐波干扰与抑制办法

变频器的谐波干扰与抑制办法变频器中要进行大功率二极管整流、大功率晶体管逆变,结果是在输入输出回路产生电流高次谐波,干扰供电系统、负载及其他邻近电气设备。

在实际使用过程中,经常遇到变频器谐波干扰问题,下面简单介绍谐波产生的机理、传播途径及有效抑制干扰的方法。

一、变频器谐波产生机理变频器的主电路一般为交-直-交组成,外部输入380V/50Hz的工频电源经三相桥路不可控整流成直流电压信号,经滤波电容滤波及大功率晶体管开关元件逆变为频率可变的交流信号。

在整流回路中,输入电流的波形为不规则的矩形波,波形按傅立叶级数分解为基波和各次谐波,其中的高次谐波将干扰输入供电系统。

在逆变输出回路中,输出电流信号是受PWM载波信号调制的脉冲波形,对于GTR大功率逆变元件,其PWM的载波频率为2~3kHz,而IGBT大功率逆变元件的PWM最高载频可达15kHz。

同样,输出回路电流信号也可分解为只含正弦波的基波和其他各次谐波,而高次谐波电流对负载直接干扰。

另外高次谐波电流还通过电缆向空间辐射,干扰邻近电气设备。

二、抑制谐波干扰常用的方法谐波的传播途径是传导和辐射,解决传导干扰主要是在电路中把传导的高频电流滤掉或者隔离;解决辐射干扰就是对辐射源或被干扰的线路进行屏蔽。

具体常用方法:(1)变频系统的供电电源与其他设备的供电电源相互独立,或在变频器和其他用电设备的输入侧安装隔离变压器,切断谐波电流。

(2)在变频器输入侧与输出侧串接合适的电抗器,或安装谐波滤波器,滤波器的组成必须是LC型,吸收谐波和增大电源或负载的阻抗,达到抑制谐波的目的。

(3)电动机和变频器之间电缆应穿钢管敷设或用铠装电缆,并与其他弱电信号在不同的电缆沟分别敷设,避免辐射干扰。

(4)信号线采用屏蔽线,且布线时与变频器主回路控制线错开一定距离(至少20cm以上),切断辐射干扰。

(5)变频器使用专用接地线,且用粗短线接地,邻近其他电器设备的地线必须与变频器配线分开,使用短线。

浅析变频器谐波干扰及抗干扰措施

浅析变频器谐波干扰及抗干扰措施摘要:变频调速在现代机械传动控制中应用日益广泛,而变频器输入输出侧高次谐波所产生的电磁干扰对控制电路及周围电气设备的危害很大,有时甚至使控制系统无法正常工作。

文章从应用的角度出发,根据实际使用的经验,阐述变频器高次谐波的产生原因及其抑制的方法,可为变频器的实际应用提供参考。

关键词:变频器;谐波干扰;抑制;硬件;软件近年来,随着新型电力电子器件及高性能微电子技术应用和自动控制技术的迅速发展,交流传动与控制技术成为目前发展最为迅速的技术之一。

变频器是应用交流变频技术和微电子技术,通过改变电动机的电源频率方式来控制电动机的电力控制设备。

变频器以其优异的调速和起制动性能,节能、可靠、高效的特性应用到了工业控制的各个领域中。

但是由于变频器中存在着非线性元器件,在使用中会产生大量谐波,从而干扰控制电路及周围电气设备正常运行。

因此,如何提高变频器的抗干扰能力,保证变频器稳定运行,是变频器研制和应用过程需要注意的问题。

1 变频器的谐波干扰源电磁干扰是指任何在传导或电磁场伴随着电压、电流的作用而产生会降低某个装置、设备或系统的性能,或可能对生物或物质产生不良影响之电磁现象。

变频器的电磁干扰主要有两个方面:①外界对变频器的干扰。

外界谐波以变频器供电电源为主要途径干扰变频器,电网中存在大量谐波源,各种设备产生的负荷都有可能造成电压、电流的波形畸变,从而干扰其它设备,甚至是产生危害。

②变频器对外界的干扰。

变频器为交-直-交主电路,对电网来说其整流桥为非线性负载,工作过程中输入不规则矩形波电流,其中的高次谐波会干扰输入供电系统。

逆变电路中,输出的电流信号处于开关模式且高速切换时会产生大量耦合性噪声,这会成为电磁干扰源。

因此,有较多成分的高次谐波存在于变频器输入、输出电流。

除了构成电源无功损耗的较低次谐波外,频率很高的谐波成分也大有存在,它们传播出去的能量会产生干扰。

2 变频器谐波干扰的危害变频器是采用SPWM信号以高速通断直流电压来控制输出电压波形。

变频器的谐波及常用解决方法

变频器的谐波及常用解决方法摘要:随着变频器等电力电子装置的广泛使用,系统的电磁干扰(EMI)日益严重,相应的抗干扰设计技术(即电磁兼容EMC)已经变得越来越重要。

本文从谐波的概念入手,结合变频器内部相关知识,分析谐波的产生及其危害,并在此基础上结合本人多年工作实践提出抑制谐波的几种常用方法。

关键词:变频器;谐波;抑制;干扰由于变频器逆变电路的开关特性,对于其供电电源形成了一个典型的非线性负载,变频器输出侧电压、电流、非正弦或非完全正弦波含有丰富的谐波。

由于变频器中要进行大功率二极管整流、大功率晶体管逆变,结果是在输入输出回路产生电流高次谐波,干扰供电系统、负载及其它邻近电气设备。

1 谐波的含义谐波产生的根本原因是由于非线性负载所致,当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,从而产生谐波。

谐波频率是基波频率的整数倍。

2 变频器谐波产生机理变频器的主电路一般为交-直-交组成,外部输入380V/50Hz的工频电源经三相桥式不可控整流成直流电压信号,经滤波电容滤波及大功率晶体管开关元件逆变为频率可变的交流信号。

输入侧产生谐波机理:在整流回路中,输出电压,电流都将产生因其非线性引起的谐波。

以三相桥式整流回路为例,交流电网电压为正弦波,交流输入电流的波形为矩形波,对于此方波,按傅立叶级数可分解为基波和各次谐波,通常含有6x+1(x=l,2,3….)次谐波。

其中的高次谐波将干扰输入供电系统,单个基波和几个高次谐波组合在一起称作畸波。

输出侧产生谐波机理:在逆变输出回路中,输出电压和电流均有谐波。

对于PWM控制的变频器,只要是电压型变频器,不管是何种PWM控制,其输出电压波形为矩形波。

其中谐波频率的高低是与变频器调制频率有关,调制频率低(如1~2KHz),人耳听得见高次谐波频率产生的电磁噪声(尖叫声)。

若调制频率高(如IGBT变频器可达20KHz),人耳听不见,但高频信号是客观存在。

从电压方波及电流正弦锯齿波,用傅立叶级数不难分析出各次谐波的含量。

谐波标准及变频器谐波干扰的解决方法

谐波标准及变频器谐波干扰的解决方法谐波标准及变频器谐波干扰的解决方法谐波标准及变频器谐波干扰的解决方法一、前言采用变频器驱动的电动机系统因其节能效果明显、调节方便、维护简单、网络化等优点而被越来越多的应用。

但是,由于变频器特殊的工作方式带来的干扰越来越不容忽视。

变频器干扰主要有:一是变频器中普遍使用了晶闸管或者整流二极管等非线性整流器件,其产生的谐波对电网将产生传导干扰,引起电网电压畸变(电压畸变率用THDv表示,变频器产生谐波引起的THDv在10~40%左右),影响电网的供电质量;二是变频器的输出部分一般采用的是IGBT等开关器件,在输出能量的同时将在输出线上产生较强的电磁辐射干扰,影响周边电器的正常工作。

二、谐波和电磁辐射对电网及其它系统的危害1.谐波使电网中的电器元件产生了附加的谐波损耗,降低了输变电及用电设备的效率。

2.谐波可以通过电网传导到其它的用电器,影响了许多电气设备的正常运行,比如谐波会使变压器产生机械振动,使其局部过热,绝缘老化,寿命缩短,以至于损坏;还有传导来的谐波会干扰电器设备内部软件或硬件的正常运转。

3.谐波会引起电网中局部的串联或并联谐振,从而使谐波放大。

4.谐波或电磁辐射干扰会导致继电器保护装置的误动作,使电气仪表计量不准确,甚至无法正常工作。

5.电磁辐射干扰使经过变频器输出导线附近的控制信号、检测信号等弱电信号受到干扰,严重时使系统无法得到正确的检测信号,或使控制系统紊乱。

一般来讲,变频器对电网容量大的系统影响不十分明显,这也就是谐波不被大多数用户重视的原因。

但对系统容量小的系统,谐波产生的干扰就不能忽视。

三、有关谐波的国际及国家标准现行的有关标准主要有:国际标准IEC61000-2-2,IEC61000-2-4,欧洲标准EN61000-3-2,EN61000-3-12,国际电工学会的建议标准IEEE519-1992,中国国家标准GB/T14549-93《电能质量共用电网谐波》。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

谐波标准及变频器谐波干扰的解决方法
谐波标准及变频器谐波干扰的解决方法
一、前言
采用变频器驱动的电动机系统因其节能效果明显、调节方便、维护简单、网络化等优点而被越来越多的应用。

但是,由于变频器特殊的工作方式带来的干扰越来越不容忽视。

变频器干扰主要有:一是变频器中普遍使用了晶闸管或者整流二极管等非线性整流器件,其产生的谐波对电网将产生传导干扰,引起电网电压畸变(电压畸变率用THDv表示,变频器产生谐波引起的THDv在10~40%左右),影响电网的供电质量;二是变频器的输出部分一般采用的是IGBT等开关器件,在输出能量的同时将在输出线上产生较强的电磁辐射干扰,影响周边电器的正常工作。

二、谐波和电磁辐射对电网及其它系统的危害
1.谐波使电网中的电器元件产生了附加的谐波损耗,降低了输变电及用电设备的效率。

2.谐波可以通过电网传导到其它的用电器,影响了许多电气设备的正常运行,比如谐波会使变压器产生机械振动,使其局部过热,绝缘老化,寿命缩短,以至于损坏;还有传导来的谐波会干扰电器设备内部软件或硬件的正常运转。

3.谐波会引起电网中局部的串联或并联谐振,从而使谐波放大。

4.谐波或电磁辐射干扰会导致继电器保护装置的误动作,使电气仪表计量不准确,甚至无法正常工作。

5.电磁辐射干扰使经过变频器输出导线附近的控制信号、检测信号等弱电信号受到干扰,严重时使系统无法得到正确的检测信号,或使控制系统紊乱。

一般来讲,变频器对电网容量大的系统影响不十分明显,这也就是谐波不被大多数用户重视的原因。

但对系统容量小的系统,谐波产生的干扰就不能忽视。

三、有关谐波的国际及国家标准
现行的有关标准主要有:国际标准IEC61000-2-2,IEC61000-2-4,欧洲标准EN61000-3-2,
EN61000-3-12,国际电工学会的建议标准IEEE519-1992,中国国家标准GB/T14549-93《电能质量共用电网谐波》。

下面分别做简要介绍:
1.国际标准
IEC61000-2-2标准适用于公用电网,IEC61000-2-4标准适用于厂级电网,这两个标准规定了不给电网造成损害所允许的谐波程度,它们规定了最大允许的电压畸变率THDv.
IEC61000-2-2标准规定了电网公共接入点处的各次谐波电压含有的THDv约为8%.
IEC61000-2-4标准分三级。

第一类对谐波敏感场合(如计算机、实验室等)THDv为5%;第二类针对电网公共接入点和一部分厂内接入点THDv为8%;第三类主要针对厂内接入点THDv为10%.
以上两个标准还规定了电器设备所允许产生谐波电流的幅值,前者主要针对16A以下,后者主要针对16A到64A.
IEEE519-1992标准是个建议标准,目标是将单次THDv限制在3%以下,总THDv限制在5%以下。

2.国内标准
GB/T14549-93中规定,公用电网谐波电压(相电压)限值为380V(220V)电网电压总THDv为5%,各次谐波电压含有率奇次为4%,偶次为2%.
由以上标准看来,一般单次电压畸变率在3~6%,总电压畸变率在5~8%的范围内是可以接受的。

四、减少变频器谐波对其它设备影响的方法
1.增加交流/直流电抗器
采用交流/直流电抗器后,进线电流的THDv大约降低30%~50%,是不加电抗器谐波电流的一半左右。

2.多相脉冲整流
在条件具备,或者要求产生的谐波限制在比较小的情况下,可以采用多相整流的方法。

12相脉冲整流THDv大约为10%~15%,18相脉冲整流的THDv约为3%~8%,满足EN61000-3-12和IEEE519-1992严格标准的要求。

缺点是需要专用变压器和整流器,不利于设备改造,价格较高。

3.无源滤波器
采用无源滤波器后,满载时进线中的THDv可降至5%~10%,满足EN61000-3-12和IEEE519-1992的要求,技术成熟,价格适中。

适用于所有负载下的THDv<30%的情况。

缺点是轻载时功率因数会降低。

4.输出电抗器
也可以采用在变频器到电动机之间增加交流电抗器的方法,主要目的是减少变频器的输出在能量传输过程中,线路产生的电磁辐射。

该电抗器必须安装在距离变频器最近的地方,尽量缩短与变频器的引线距离。

如果使用铠装电缆作为变频器与电动机的连线时,可不使用这方法,但要做到电缆的铠在变频器和电动机端可靠接地,而且接地的铠要原样不动接地,不能扭成绳或辨,不能用其它导线延长,变频器侧要接在变频器的地线端子上,再将变频器接地。

减少或削弱变频器谐波及电磁辐射对设备干扰的方法
上面介绍的方法是减少变频器工作时对外设备的影响,但并不是消除了变频器的对外干扰,如果想进一步提高其它设备对变频器谐波和电磁辐射的免疫能力,尤其是在变频器(品牌不同,产生的干扰程度可
能不一样)干扰较严重的场合中常用的方法通常有以下几种:
1.使用隔离变压器
使用隔离变压器主要是应对来自于电源的传导干扰。

使用具有隔离层的隔离变压器,可以将绝大部分的传导干扰阻隔在隔离变压器之前。

同时还可以兼有电源电压变换的作用。

隔离变压器常用于控制系统中的仪表、PLC,以及其它低压小功率用电设备的抗传导干扰。

2.使用滤波模块或组件
目前市场中有很多专门用于抗传导干扰的滤波器模块或组件,这些滤波器具有较强的抗干扰能力,同时还具有防止用电器本身的干扰传导给电源,有些还兼有尖峰电压吸收功能,对各类用电设备有很多好处。

常用的为双孔磁芯滤波器的结构。

还有单孔磁芯的滤波器,其滤波能力较双孔的弱些,但成本较低。

3.选用具有开关电源的仪表等低压设备
一般开关电源的抗电源传导干扰的能力都比较强,因为在开关电源的内部也都采用了有关的滤波器。

因此在选用控制系统的电源设备,或者选用控制用电器的时候,尽量采用具有开关电源类型的。

4.作好信号线的抗干扰
信号线承担着检测信号和控制信号的传输任务,毋庸置疑,信号传输的质量直接影响到整个控制系统的准确性、稳定性和可靠性,因此做好信号线的抗干扰是十分必要的。

对于信号线上的干扰主要是来自空间的电磁辐射,有常态干扰和共模干扰两种。

(1)常态干扰的抑制
常态干扰是指叠加在测量信号线上的干扰信号,这种干扰大多是频率较高的交变信号,其来源一般是耦合干扰。

抑制常态干扰的方法有:
1)在输入回路接RC滤波器或双T滤波器。

2)尽量采用双积分式A/D转换器,由于这种积分器工作的特点,具有一定的消除高频干扰的作用。

3)将电压信号转换成电流信号再传输的方式,对于常态的干扰有非常强的抑制作用。

(2)共模干扰的抑制
共模干扰是指信号线上共有的干扰信号,一般是由于被测信号的接地端与控制系统的接地端存在一定的电位差所制,这种干扰在两条信号线上的周期、幅值基本相等,所以采用上面的方法无法消除或抑制。

对共模干扰的抑制方法如下:
1)采用双差分输入的差动放大器,这种放大器具有很高的共模抑制比。

2)把输入线绞合,绞合的双绞线能降低共模干扰,由于改变了导线电磁感应e的方向,从而使其感应互相抵消。

3)采用光电隔离的方法,可以消除共模干扰。

4)使用屏蔽线时,屏蔽层只一端接地。

因为若两端接地,由于接地电位差在屏蔽层内会流过电流而产生干扰,因此只要一端接地即可防止干扰。

无论是为了抑制常态干扰还是抑制共模干扰,都还应该做到以下几点:
(1)输入线路要尽量短。

(2)配线时避免和动力线接近,信号线与动力线分开配线,把信号线放在有屏蔽的金属管内,或者动力线和信号线分开距离要在40cm以上。

(3)为了避免信号失真,对于较长距离传输的信号要注意阻抗匹配。

5.在使用以单片机、PLC、计算机等为核心的控制系统中,编制软件的时候,可以适当增加对检测信号和输出控制部分的软件滤波,以增强系统自身的抗干扰能力。

总结
干扰的分布参数是很复杂的,因此在抗干扰时,应当采用适当的措施,既要考虑效果,又要考虑价格因素,还要因现场情况而定。

采用的措施只要能解决问题即可,往往过多的抗干扰措施有可能会产生额外的干扰,具体情况具体解决。

相关文档
最新文档