北大附中2021届高三10月阶段性检测答案
2021年高三上学期10月阶段性检测语文试卷纯word版含解析

2021年高三上学期10月阶段性检测语文试卷纯word版含解析请点击修改第I卷的文字说明一、选择题(题型注释)1.下列加点字的读音完全正确的一组是A.笞.刑(chī) 粗糙.(cāo) 虫豸.(zhì)铁镐.(hāo)B.蜷.缩(quán) 缄.默(jiān) 黝.黑(yǒu)跛.脚(bǒ)C.恫吓..(dònɡ hè)忐忑..(tǎn tè)濒.临(pīn)搭讪.(shàn)D.推搡.(sǎnɡ)引擎.(qínɡ)犄.角(jǐ)喘.气(chuǎn)【答案】B【解析】试题分析:此类题主要考查多音字、形声字、形似字、生僻字的字音和字形,多音字要依照“据义定音,音随义转”的特点,区分一般词语与专用词语的读音、词性辨别读音等。
答题时,要采用比较排除法,A.“铁镐”的“镐”,应读ɡǎo;C.“濒临”的“濒”应读bīn;D.“犄角”的“犄”应读jī。
所以选B。
考点:识记现代汉语普通话常用字的字音。
能力层级为识记A。
2.下列各组词语中没有错别字的一组是A.菲薄宣哗孝悌兴高彩烈 B.潦倒诅咒嫉恨遮天敝日C.缜密赡养暮碣鬼使神差 D.槁木石栈抽搐油然而生【答案】D【解析】试题分析:用比较排除法。
可以先排除固定词语、常用词语,然后,结合着词语意思来辨别词语搭配是否正确。
A.宣——喧,彩——采。
B.敝——蔽。
C.暮——墓。
所以选D。
考点:识记并正确书写现代常用规范汉字。
能力层级为识记A。
3.下列句子标点符号使用正确的一句是A.火车站售票处有一个特殊、鲜明的标志,很好找。
记者走进售票处,马上有工作人员迎上来,问有什么事情需要帮助?B.新鲜大米,手感滑爽,米粒光洁,透明度好,腹白(米粒上呈乳白色的部分)很小,做出的米饭清香可口。
C.从最简单的一句话中,我可以联想到一长串的人物的画廊,联想到一系列的山川,树木,村舍,田野,池塘,湖泊。
D.文字是无声的,却能够生动地刻画有声的音乐。
北京市北师大附中2021-2022年高三10月阶段测试数学试题含详解

北京市北师大附中2021-2022年高三10月阶段测试数学试题含详解姓名:__________ 班级:__________考号:__________一、选择题(共11题)1、设集合A ={ x |1≤ x ≤3} ,B ={ x |2< x <4} ,则A ∪ B = ()A .{ x |2< x ≤3}B .{ x |2≤ x ≤3}C .{ x |1≤ x <4}D .{ x |1< x <4}2、复数在复平面内对应的点所在的象限为()A .第一象限B .第二象限C .第三象限D .第四象限3、下列函数中,在区间( 0 ,+ )上单调递增的是A .B .y =C .D .4、函数的图像在点处的切线方程为()A .B .C .D .5、已知,则A .B .C .D .6、设f ( x ) 为奇函数,且当x ≥0 时,f ( x )= ,则当x <0 时,f ( x )=A .B .C .D .7、记S n 为等比数列 { a n } 的前n 项和.若a 5 –a 3 =12 ,a 6 –a 4 =24 ,则= ()A . 2 n –1B .2–2 1–nC .2–2 n –1D . 2 1–n –18、等比数列的公比为q ,前n 项和为,设甲:,乙:是递增数列,则()A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件9、基本再生数R 0 与世代间隔T 是新冠肺炎的流行病学基本参数 . 基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间. 在新冠肺炎疫情初始阶段,可以用指数模型:描述累计感染病例数I ( t ) 随时间t ( 单位: 天) 的变化规律,指数增长率r 与R 0 ,T 近似满足R 0 =1+ rT . 有学者基于已有数据估计出R 0 =3.28 ,T =6. 据此,在新冠肺炎疫情初始阶段,累计感染病例数增加 1 倍需要的时间约为(ln2≈0.69) ()A . 1.2 天B . 1.8 天C . 2.5 天D . 3.5 天10、已知,若存在,使,则称函数与互为“ 度零点函数” .若与互为“1 度零点函数” ,则实数的取值范围为A .B .C .D .11、已知只有 50 项的数列满足下列三个条件:① ;②;③ . 对所有满足上述条件的数列共有个不同的值,则A .10B .11C . 6D .7二、填空题(共4题)1、复数的共轭复数等于 ________ .2、已知,函数若,则___________.3、若则的最小值是 ________ .4、写出一个同时具有下列性质①②③ 的函数_______ .① ;② 当时,;③ 是奇函数.三、解答题(共6题)1、已知函数( 为常数 ) 的图像与轴交于点,曲线在点处的切线斜率为.(1) 求的值及函数的极值; (2) 证明:当时,.2、已知数列的前项和为,,从条件① 、条件②和条件③中选择两个作为已知,并完成解答.( 1 )求数列的通项公式;( 2 )设等比数列满足,,求数列的前项和.条件① :;条件② :;条件③ :.3、如图,在正方体中,E 为的中点.(Ⅰ )求证:平面;(Ⅱ )求直线与平面所成角的正弦值.4、已知椭圆过点,且的离心率为.( 1 )求椭圆的方程;( 2 )过点的直线交椭圆于、两点,求的取值范围.5、已知函数( 其中为常数且) 在处取得极值 .( I )当时,求的单调区间;( II )若在上的最大值为,求的值 .6、在无穷数列中,,对于任意,都有,. 设,记使得成立的的最大值为.( 1 )设数列为 1 , 3 , 5 ,7 ,,写出,,的值;( 2 )若为等差数列,求出所有可能的数列;( 3 )设,,求的值 . (用表示)============参考答案============一、选择题1、 C【分析】根据集合并集概念求解 .【详解】故选: C【点睛】本题考查集合并集,考查基本分析求解能力,属基础题 .2、 A【分析】利用复数的除法可化简,从而可求对应的点的位置 .【详解】,所以该复数对应的点为,该点在第一象限,故选: A.3、 A【分析】由题意结合函数的解析式考查函数的单调性即可 .函数,在区间上单调递减,函数在区间上单调递增,故选A .【点睛】本题考查简单的指数函数、对数函数、幂函数的单调性,注重对重要知识、基础知识的考查,蕴含数形结合思想,属于容易题 .4、 B【分析】求得函数的导数,计算出和的值,可得出所求切线的点斜式方程,化简即可 .【详解】,,,,因此,所求切线的方程为,即.故选: B.【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题5、 B【分析】运用中间量比较,运用中间量比较【详解】则.故选 B .本题考查指数和对数大小的比较,渗透了直观想象和数学运算素养.采取中间变量法,利用转化与化归思想解题.6、 D【分析】先把x <0 ,转化为- x> 0, 代入可得,结合奇偶性可得.【详解】是奇函数,时,.当时,,,得.故选 D .【点睛】本题考查分段函数的奇偶性和解析式,渗透了数学抽象和数学运算素养.采取代换法,利用转化与化归的思想解题.7、 B【分析】根据等比数列的通项公式,可以得到方程组,解方程组求出首项和公比,最后利用等比数列的通项公式和前项和公式进行求解即可 .【详解】设等比数列的公比为,由可得:,所以,因此.故选: B.【点睛】本题考查了等比数列的通项公式的基本量计算,考查了等比数列前项和公式的应用,考查了数学运算能力 .8、 B【分析】当时,通过举反例说明甲不是乙的充分条件;当是递增数列时,必有成立即可说明成立,则甲是乙的必要条件,即可选出答案.【详解】由题,当数列为时,满足,但是不是递增数列,所以甲不是乙的充分条件.若是递增数列,则必有成立,若不成立,则会出现一正一负的情况,是矛盾的,则成立,所以甲是乙的必要条件.故选: B .【点睛】在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程.9、 B【分析】根据题意可得,设在新冠肺炎疫情初始阶段,累计感染病例数增加 1 倍需要的时间为天,根据,解得即可得结果 .【详解】因为,,,所以,所以,设在新冠肺炎疫情初始阶段,累计感染病例数增加 1 倍需要的时间为天,则,所以,所以,所以天 .故选: B.【点睛】本题考查了指数型函数模型的应用,考查了指数式化对数式,属于基础题 .10、 B【分析】首先根据题意,求得,利用条件得到,即,转化为函数在区间上存在零点,进一步得,令,利用导数研究函数的值域,从而求得结果 .【详解】由题意可知,且在上单调递减,所以函数只有一个零点.即,得.函数在区间上存在零点,由,得.令,,所以在区间上单调递增,在区间上单调递减,,所以只需即有零点,故选 B.【点睛】要学会分析题中隐含的条件和信息,如本题先观察出的零点及单调性是解题的关键,进一步转化为函数在区间上存在零点,再进行参变量分离,应用导数解决 .11、 C【详解】设中有项取值,由条件② 知,取值的项数为,取值的项数为,再由条件③ 得,解得,又若为偶数,则为偶数,因为,所以必为奇数,故,它们对应个不同的值,共有个不同的值,故选 C.【方法点睛】本题主要考查数列求和以及数学的转化与划归思想,属于难题 . 转化与划归思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决知识点较多以及知识跨度较大的问题发挥着奇特功效,大大提高了解题能力与速度. 运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点. 以便将问题转化为我们所熟悉的知识领域,进而顺利解答,希望同学们能够熟练掌握并应用于解题当中. 本题中,将的不同值的个数,转化为中的个数问题是解题的关键 .二、填空题1、【分析】根据复数乘法运算求得,进而可求得.【详解】因为,所以.故答案为:.2、 2【分析】由题意结合函数的解析式得到关于的方程,解方程可得的值 . 【详解】,故,故答案为: 2.3、 6【分析】根据基本不等式可求得结果 .【详解】因为,则,所以,当且仅当时,的最小值是 6.故答案为: 6.4、(答案不唯一,均满足)【分析】根据幂函数的性质可得所求的.【详解】取,则,满足① ,,时有,满足② ,的定义域为,又,故是奇函数,满足③.故答案为:(答案不唯一,均满足)三、解答题1、 (1) ;当时,取得极小值,且极小值为,无极大值; (2) 祥见解析.【详解】试题分析: (1) 利用导数的几何意义求得 a ,再利用导数法求得函数的极值;(2) 构造函数g (x )=e x -x 2 ,利用导数求得函数的最小值,即可得出结论.试题解析: (1) 由得.又,得. 所以,.令,得. 当时,,单调递减;当时,,单调递增.所以当时,取得极小值,且极小值为,无极大值.(2) 证明:令则.由 (1) 得,,故在上单调递增,又,所以当时,,即考点:1.利用导数求函数的极值;2.利用导数证明不等式.2、( 1 );( 2 )【分析】( 1 )若选择①②作为已知条件,根据等差数列的定义,可得公差d ,代入公式即可求得答案;若选择②③ 作为已知条件,根据等差数列的定义,可得公差,根据,即可求得,代入公式即可求得答案;( 2 )根据题干条件,结合( 1 )可求得,的值,代入公式,即可求导、q ,进而可得,根据分组求和法,结合等差、等比的求和公式,即可得答案 .【详解】解: ( 不能选择①③作为已知条件)若选择①② 作为已知条件.因为,,所以数列是以为首项,公差的等差数列 .所以.若选择②③ 作为已知条件.因为,所以数列是以为首项,公差为的等差数列 .因为,所以.所以,解得.所以.( 2 )设等比数列的公比为,结合( 1 )可得,,所以,所以.所以等比数列的通项公式为.所以所以.3、(Ⅰ )证明见解析;(Ⅱ).【分析】(Ⅰ )证明出四边形为平行四边形,可得出,然后利用线面平行的判定定理可证得结论;(Ⅱ )以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法可计算出直线与平面所成角的正弦值 . 【详解】(Ⅰ )如下图所示:在正方体中,且,且,且,所以,四边形为平行四边形,则,平面,平面,平面;(Ⅱ )以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,设正方体的棱长为,则、、、,,,设平面的法向量为,由,得,令,则,,则..因此,直线与平面所成角的正弦值为.【点睛】本题考查线面平行的证明,同时也考查了利用空间向量法计算直线与平面所成角的正弦值,考查计算能力,属于基础题 .4、( 1 );( 2 ).【分析】( 1 )根据已知条件可得出关于、、的方程组,解出、的值,进而可求得椭圆的方程;( 2 )对直线分两种情况讨论,直线与轴重合时,直接求出的值,在直线不与轴重合,设直线的方程为,设点、,将直线的方程与椭圆的方程联立,列出韦达定理,利用弦长公式可得出关于的代数式,综合可得出的取值范围.【详解】( 1 )由题意得,解得.所以椭圆的方程为;( 2 )分以下两种情况讨论:① 若直线与轴重合,则;② 若直线不与轴重合,设直线的方程为,设点、,联立,消去可得,则恒成立,由韦达定理可得,,由弦长公式可得,,则,所以,.综上所述,的取值范围是.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:( 1 )设直线方程,设交点坐标为、;( 2 )联立直线与圆锥曲线的方程,得到关于(或)的一元二次方程,必要时计算;( 3 )列出韦达定理;( 4 )将所求问题或题中的关系转化为、的形式;( 5 )代入韦达定理求解.5、( I )的单调递增区间为, 单调递减区间为;( II )或.【分析】( I )依题意结合可求得,从而可得,结合定义域由可解得增区间,由可解得减区间;(II) 对分类讨论得出的极值,将极值同端点处的函数值进行比较得到最大值,然后根据条件建立关于的方程求解可得结果 .【详解】因为所以,因为函数在处取得极值,则.( I )当时,,,随的变化情况如下表:0 0极大值极小值所以的单调递增区间为, ;单调递减区间为.(II) 因为,令得,因为在处取得极值,所以.当时,在上单调递增,在上单调递减,所以在区间上的最大值为,令,解得;当,,当时,在上单调递增,上单调递减,上单调递增,所以最大值 1 可能在或处取得,而,所以,解得;当时 , 在区间上单调递增,上单调递减,上单调递增,所以最大值 1 可能在或处取得,而,所以,解得,与矛盾;当时,在区间上单调递增,在单调递减,所以最大值 1 可能在处取得,而,矛盾 .综上所述,或.6、( 1 ),,;( 2 );( 3 ).【详解】试题分析:( 1 )根据使得成立的的最大值为,,则,,则,,则,这样就写出,,的值;( 2 )若为等差数列,先判断,再证明,即可求出所有可能的数列;( 3 )确定,,依此类推,发现规律,得出,从而求出的值.试题解析:( 1 ),,.( 2 )由题意,得,结合条件,得.又因为使得成立的的最大值为,使得成立的的最大值为,所以,.设,则.假设,即,则当时,;当时,.所以,.因为为等差数列,所以公差,所以,其中.这与矛盾,所以.又因为,所以,由为等差数列,得,其中.因为使得成立的的最大值为,所以,由,得.( 3 )设,因为,所以,且,所以数列中等于 1 的项有个,即个;设,则,且,所以数列中等于 2 的项有个,即个;以此类推,数列中等于的项有个 . 所以.即.。
2021年高三10月第一次阶段性测试物理试题含答案

2021年高三10月第一次阶段性测试物理试题含答案注意事项:1.答卷前,考生务必用钢笔或签字笔将自己的姓名、考号填涂在答题卡上。
2.选择题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案;不能答在试卷上,否则答案无效3.非选择题必须用钢笔或签字笔作答,答案必须写在另发的答题卷各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效。
4.考生必须保持答题卡和答题卷的整洁,考试结束后,将答题卡和答题卷一并收回。
第Ⅰ卷选择题(48分)一、选择题(共12小题,满分4分。
在每小题给出的四个选项中,前7个小题只有一个选项正确;8~12为多项选择题,全部选对的得4分,选不全的得2分,有选错或不答的不得分。
)1、伽利略创造的把实验、假设和逻辑推理相结合的科学方法,有力地促进了人类科学认识的发展。
利用如图所示的装置做如下实验:小球从左侧斜面上的点由静止释放后沿斜面向下运动,并沿右侧斜面上升。
斜面上先后铺垫三种粗糙程度逐渐降低的材料时,小球沿右侧斜面上升到的最高位置依次为1、2、3。
根据三次实验结果的对比,可以得到的最直接的结论是( )A.如果斜面光滑,小球将上升到与O点等高的位置B.如果小球不受力,它将一直保持匀速运动或静止状态C.如果小球受到力的作用,它的运动状态将发生改变D.小球受到的力一定时,质量越大,它的加速度越小2、如图所示,在一固定在水平桌面上的倾角为的斜面顶端固定一轻弹簧,弹簧的另一端固定一滑块,滑块与斜面之间的动摩擦因数为,滑块本身的质量为,滑块处于静止状态。
(认为最大静摩擦力等于滑动摩擦力)则关于滑块受到的外力说法正确的是()A、滑块一定受到4个外力的作用B、如果>tan,滑块一定受到弹簧弹力的作用C、如果<tan,滑块一定受到弹簧弹力的作用D、如果<tan,剪断弹簧的瞬间,滑块仍处于静止状态3、一物块静止在粗糙的水平桌面上。
2021年高三10月第一次阶段性检测英语试题含答案

注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)第一部分英语知识运用(共两节)第一节语法和词汇知识(共25小题)从A、B、C、D四个选项中,选出可以填入空白处的最佳选项1.It is acknowledged that _______ shortest distance between persons is______ sincere smile.A. a; /B. a ; theC. the ; /D. the;a2. His first novel _________ good reviews since it came out last month.A. receivesB. is receivingC. has receivedD.will receive3.Nancy, ________ for about half a year to apply for a job as an airline hostess, finally took aposition at a shopping center.A. struggledB. having struggledC. strugglingD. to struggle4.----Do you allow smoking in the office?------________ smoking here will be fined.A. WhoeverB. AnyoneC. WhoD. Anyone who5.------Diana has decided to marry Steve.------- _________ her parents’ strong objections?A. Due toB. Thanks toC. BeyondD. Despite6. ------- I don't know makes her different from others.-------Confidence, I think.A. how is it thatB. how it is thatC. what is it thatD. what it is that7. out more about university courses,write to this address.A.To find B.Found C.Find D.Finding 8.After the flooding, people were suffering in that area, urgently needed clean water, medicineand shelter to survive.A.which B.who C.where D.what9. Don’t try to persuade your boss; he won’t have the ________ of employing me----a fresh student.A. intentionB. attentionC. senseD.attraction10.一Hi.Li Hua.Do you still remember the first time we met?一Sure.You dinner with your friends in a restaurant.A.have B.had C.were having D.have had11.________ is expected, according to the online survey, that housing prices can’t go up any more.A. AsB. WhichC. WhatD. It12.Most of the students feel it really hard to Tsinghua University's admission.A.admit B.succeed C.accept D.Obtain13. It _______ be the postman at the door. It’s only six o’clock.A. mustn’tB. can’tC. won’tD. needn’t14. -----Someone wants you on the phone.------________ nobody knows I am here.A. AlthoughB. AndC. ButD. So15. -----So you gave her your phone?------- ____________. She said she would return it to me when she could afford her own.A. My pleasureB. Not exactlyC. No doubtD. All right16. It is his first job interview, so there is no room for mistakes in the first _________.A. instructionB. expressionC. impressionD. description17.Try not to begin making any ment about the idea until you have understood it ______.A. stronglyB. entirelyC. extremelyD. freely18. The reason ___he didn’t e was ____he was injured.A. that, becauseB. why, thatC. why, becauseD. that, that19, After getting lost in a flood, he _______ by the army 3 days later.A. rescuedB. has rescuedC. was rescuedD. had been rescued20.There is not much money left, but _____ we must manage to buy the new house.A. somehowB. somewhatC. howeverD. anyway21.On his birthday, he received a nice present from his sister _______a note was attached, saying”Ilove you so much”.A.to whichB. in whichC. thatD. where22.—Let’s go and have a good drink tonight.—_______. Have you got the first prize in the petition ?A. What for?B. Thanks a lot.C. Yes, I’d like to.D. Why not?23. Little ______ when 1 took the trip where it would lead me.A. have I knownB. had I knownC. do 1 knowD.did I know24.The air quality in the city, _______ is shown in the report, has improved over the past months.A. thatB. itC. asD.what25. Put the medicine ______ the children can’t reach it.A. in whichB. at whichC. to whichD. where第二节完形填空(共20小题)阅读下面短文,掌握其大意,然后从26—45各题所给的A、B、C、D四个选项中,选出最佳选项。
北京市清华大学附属中学2021年高三10月月考物理试题缺答案

一、本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,有的小题只有一个选项是正确的,有的小题有多个选项是正确的.全部选对的得3分,选不全的得2分,有选错或不答的得0分.把你认为正确答案填涂在答题纸上.1.如图所示,质量为m 的物体沿倾角为θ的斜面加速下滑,关于物体在下滑过程中所受的支持力N 和滑动摩擦力f ,下列说法中正确的是( )A .sin N mg θ=B .cos N mg θ=C .sin f mg θ=D .cos f mg θ=2.跳伞运动员正以5m /s 的速度竖直匀速降落,在离地10m 高处掉了一粒金属扣子.不计空气阻力对扣子的影响,取210m /s g =,则跳伞运动员比扣子晚着陆的时间为( ) A .2sB .2sC .1sD .(22)s -3.如图所示,长为L 的细绳一端固定,另一端系一质量为m 的小球.给小球一个合适的初速度,小球便可在水平面内做匀速圆周运动,这样就构成了一个圆锥摆,设细绳与竖直方向的夹角为θ.下列说法中正确的是( )A .小球受重力、绳的拉力和向心力作用B .小球受的重力和绳的拉力的合力为一恒力C.θ越大,小球运动的速度越大D.θ越大,小球运动的周期越大4.质量为2kg的物体在x y-平面上做曲线运动,从某时刻开始计时,在x方向的速度图象和y方向的位移图象分别如图甲和乙所示,在0~2s内,下列说法正确的是()A.质点的初速度为5m/sB.质点所受的合力为3NC.质点初速度的方向与合力方向垂直D.2s末质点速度大小为6m/s5.太阳系外有一名为HD209458b的小行星,它的一年只有3.5个地球日.这颗行星靠恒星很近绕其运转,因此它的大气层不断被恒星风吹走.据科学家估计,这颗行星每秒就丢失至少10000吨物质,最终这颗缩小行星将只剩下一个死核.假设该行星是以其球心为中心均匀减小的,且其绕恒星做匀速圆周运动.则下列说法正确的是()A.该行星绕恒星运动的线速度大小不变B .该行星绕恒星运动周期变大C .该行星绕恒星运行的加速度大小会不断减小D .该行星绕恒星运行角速度会不断变大6.同步卫星离地心距离为r ,运行速度为1v ,加速度为1a ,地球赤道上的物体随地球自转的向心加速度为2a ,第一宇宙速度为2v ,地球半径为R ,则下列比值正确的是( )A .12a r a R=B .212a R a r ⎛⎫= ⎪⎝⎭C .12v r v R= D .1212v R v r ⎛⎫= ⎪⎝⎭7.如图所示,质量为M 、长度为L 的木板静止在光滑的水平面上,质量为m 的小物体(可视为质点)放在木板上最左端,现用一水平恒力F 作用在小物体上,使物体从静止开始做匀加速直线运动.已知物体和木板之间的摩擦力为f F ,当物体滑到木板的最右端时,木板运动的距离为x ,则在此过程中( )A .物体到达木板最右端时具有的动能为()()f F F L x -+B .物体到达木板最右端时,木板具有的动能为f F xC .物体克服摩擦力所做的功等于摩擦生的热D .摩擦力对物体做负功,对木板做正功,二者代数和为零8.如图所示,在竖直平面内有一半径为R 的圆弧轨道,半径OA 水平、OB 竖直,一个质量为m 的小球自A 的正上方P 点由静止开始自由下落,小球沿轨道到达最高点B 时恰好对轨道没有压力.已知2AP R =,重力加速度为g ,则小球从P 到B 的运动过程中( )A.重力做功2mgR B.机械能减少mgRC.合外力做功mgR D.克服摩擦力做功1mgR29.如图,表面光滑的固定斜面顶端安装一定滑轮,小物块A、B用轻绳连接并跨过滑轮(不计滑轮的质量和摩擦).初始时刻,A、B处于同一高度并恰好静止状态.剪断轻绳后A下落、B沿斜面下滑,则从剪断轻绳到两物块着地,两物块()A.速率的变化量不同B.机械能的变化量不同C.重力势能的变化量相同D.重力做功的平均功率相同10.如图所示,物体A叠放在物体B上,B置于光滑水平面上.A,B质量分别为6.0kg和2.0kg,A、B 之间的动摩擦因数为0.2.在物体A上施加水平方向的拉力F,开始时10NF ,此后逐渐增大,在增大到45N的过程中,以下判断正确的是()A.两物体间始终没有相对运动B.两物体间从受力开始就有相对运动C.当拉力12NF<时,两物体均保持静止状态D.两物体开始没有相对运动,当18NF>时,开始相对滑动二、本题共2小题,共15分.11.(1)如图甲表示用打点计时器记录小车运动情况的装置,开始时小车在水平玻璃板上匀速运动,后来在薄布面上做匀减速运动,所打出的纸带如图乙所示(附有刻度尺),纸带上相邻两点对应的时间间隔为0.02s.从纸带上记录的点迹情况可知,A、E两点迹之间的距离为__________cm,小车在玻璃板上匀速运动的速度大小为__________m/s,小车在布面上运动的加速度大小为__________2m/s(2)如图是小球做平抛运动的频闪照片,图中的小黑点代表小球不同时刻所在的位置.图中每个小方格的边长都是l.已知闪光频率是f,那么由此实验数据得到的重力加速度g是__________,小球的初速度是__________.(用题目中的字母量表示)12.某物理小组对轻弹簧的弹性势能进行探究,实验装置如图(a)所示:轻弹簧放置在光滑水平桌面上,弹簧左端固定,右端与一物块接触而不连接,纸带穿过打点计时器并与物块连接.向左推物块使弹簧压缩一段距离,由静止释放物块,通过测量和计算,可求得弹簧被压缩后的弹性势能.(1)实验中涉及下列操作步骤:①把纸带向左拉直②松手释放物块③接通打点计时器电源④向左推物块使弹簧压缩,并测量弹簧压缩量上述步骤正确的操作顺序是__________(填入代表步骤的序号).(2)图(b)中M和L纸带是分别把弹簧压缩到不同位置后所得到的实际打点结果.打点计时器所用交流电的频率为50Hz.由M纸带所给的数据,可求出在该纸带对应的实验中物块脱离弹簧时的速度为__________m/s.比轻两纸带可知,__________(填“M”或“L”)纸带对应的实验中弹簧被压缩后的弹性势能大.(保留3位有效数字)三、本题包括6小题,共55分.解答应写出必要的文字说明、方程式和重要的演算步骤.只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位.13.(8分)一个物体静止地放在台式弹簧秤上,试证明物体对弹簧秤的压力等于物体所受的重力(证明时在图上标出所涉及的力)14.(8分)如图所示,用一个平行于斜面向上的恒图将质量10.0kgm=的箱子从斜坡底端由静止推上斜坡,斜坡与水平面的夹角θ=37︒,推力的大小100F N=,斜坡长度 4.8ms=,木箱底面与斜坡间的动摩擦因数μ=0.20.重力加速度g取210m/s且已知sin370.60︒=,cos370.80︒=.求:(1)木箱沿斜坡向上滑行的加速度的大小.(2)木箱滑到斜坡顶端时速度的大小.15.(8分)2008年9月25日21点10分,我国继“神舟”五号、六号载人飞船后又成功地发射了“神舟”七号载人飞船.飞船绕地飞行五圈后成功变轨到距地面一定高度的近似圆形轨道.航天员翟志刚于27日16点35分开启舱门,开始进行令人振奋的太空舱外活动.若地球表面的重力加速度为g,地球半径为R,飞航运行的圆轨道距地面的高度为h,不计地球自转的影响,求:(1)飞船绕地球运行加速度的大小.(2)飞船绕地球运行的周期.16.(9分)如图所示,用内壁光滑的薄壁细圆管变成的由半圆形APB(圆半径比细管的内径大得多)和直线BC组成的轨道固定在水平桌面上,已知APB部分的半径 1.0mR=,BC段长 1.5mL=.弹射装置将一个质量为1kg的小球(可视为质点)以05m/sv=的水平初速度从A点弹入轨道,小球从C点离开轨道随即水平抛出,桌子的高度 1.2m h =,不计空气阻力,g 取210m /s . 求:(1)小球在半圆轨道上运动时的角速度ω、向心加速度a 的大小及小球对圆管在水平方向上的作用力的大小.(2)小球从A 点运动到C 点的时间t . (3)小球将要落到地面上D 点时的速度大小.17.(10分)如图所示,弹簧的一端固定,另一端连接一个物块,弹簧质量不计.物块(可视为质点)的质量为m ,在水平桌面上沿x 轴运动,与桌面间的动摩擦因数为μ.以弹簧原长时物块的位置为坐标原点O ,当弹簧的伸长量为x 时,物块所受弹簧弹力大小为F kx =,k 为常量.(1)请画出F 随x 变化的示意图;并根据F x -图像求物块沿x 轴从O 点运动到位置x 的过程中弹力所做的功.(2)物块由1x 向右运动到3x ,然后由3x 返回到2x ,在这个过程中, a .求弹力所做的功,并据此求弹性势能的变化量;b .求滑动摩擦力所做的功;并与弹力做功比较,说明为什么不存在与摩擦力对应的“摩擦力势能”的概念.18.(12分)如图所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直轨道相切,半径0.5mR=,物块A以06m/sv=的速度滑入圆轨道,滑过最高点Q,再沿圆轨道滑出后,与直轨道上P处静止的物块B碰撞,碰后粘在一起运动,P点左侧轨道光滑,右侧轨道呈粗糙段、光滑段交替排列,每段长度都为0.1mL=,物块与各粗糙段间的动摩擦因数都为μ=0.1,A、B的质量均为1kgm=(重力加速度g以210m/s;A、B视为质点,碰撞时间极短).(1)求A滑过Q点时的速度大小v和受到的弹力大小F.(2)碰后AB最终停止在第k个粗糙段上,求k的数值.(3)碰后AB滑至第n个(n k<)光滑段上的速度nv与n的关系式.。
2021年高三10月阶段性检测英语试题含解析

高三英语试题本试卷分第Ⅰ卷和第Ⅱ卷两部分,共12页。
满分150分。
考试用时120分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上。
2. 第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
2021年高三10月阶段性检测英语试题含解析第一节单项填空(共15小题;每小题1分,满分15分)从A、B、C、D四个选项中,选出一个可以填入空白处的最佳选项,并在答题卡上将该项涂黑。
1. As a simple and convenient way to get latest fashions online, online shopping also has major problem—you can’t see whether theyfit or not.A. the; theB.不填; theC. the; aD. 不填; 不填2.——Mr. Harry, we want to hear what you think about the reform being carried out in our school.——OK, I to that.A.am ingB. have eC. cameD. e3. is surprising to us is that Tom can speak English fluently as though he were a native speaker.A. WhatB. ThatC. WhichD. As4. ——Why do you hang that photograph above the fireplace?—— visitors of the memorial days of Long March, Sir.A.RemindingB. To remindC. RemindedD. Reminds5. All the soldiers were placed exactly the local government wanted them for the control of the eback of the flood.A. whileB. whenC. whereD. Though【答案】C【解析】试题分析:考查地点状语从句。
北京市海淀区清华大学附属中学2021届高三数学上学期10月月考试题(含解析).doc

北京市海淀区清华大学附属中学2021届高三数学上学期10月月考试题(含解析)一、选择题 1.已知集合,B ={|(1)(3)0}x x x --<,则A∩B=( )A. {|1}x x >B. {|23}x x <<C. {|13}x x <<D. {|2x x >或1}x <【答案】B 【解析】试题分析:{|(1)(3)0}{|13}B x x x x x x =--<=<< 又{}2A x x =所以{|23}A B x x ⋂=<< 故答案选B考点:集合间的运算.2.若角θ的终边过点()3,4P -,则()tan θπ+=( ) A.34B. 34-C.43D. 43-【答案】D 【解析】分析:利用任意角三角函数的定义,诱导公式,求得要求的式子的值 详解:角θ的终边过点()34P -,, 则()4tan 3y tan x θπθ+===- 故选D点睛:本题主要考查了任意角的三角函数的定义,属于基础题,结合诱导公式运用定义即可求出结果。
3.已知函数,log ab y x y x ==的图像如图所示,则A. 1b a >>B. 1b a >>C. 1a b >>D.1a b >>【答案】A 【解析】由图象,得log b y x =在(0,)+∞上单调递增,即1b >,ay x =在[0,)+∞上单调递增,且增加得越来越慢,即01a <<,则1b a >>.故选A.【点睛】本题考查对数函数、幂函数的图象和性质.解决本题的难点是利用幂函数的图象判定幂指数a 与1的大小,若0a >时,幂函数a y x =在[0,)+∞上单调递增,要与常见函数2yx 、y x =、12y x =的图象对照确定.4.已知函数()f x 的定义域为R ,则“()00f =”是“()f x 是奇函数”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】B 【解析】试题分析:()2f x x =满足()00f =,但不是奇函数,因此充分性不成立;若()f x 是奇函数,又定义域为R ,因此()()()0000f f f =-⇒=,必要性成立,因此选B. 考点:充要关系【方法点睛】判断充分条件和必要条件的方法 (1)命题判断法:设“若p ,则q”为原命题,那么:①原命题为真,逆命题为假时,p 是q 的充分不必要条件; ②原命题为假,逆命题为真时,p 是q 的必要不充分条件;③原命题与逆命题都为真时,p 是q 的充要条件;④原命题与逆命题都为假时,p 是q 的既不充分也不必要条件. (2)集合判断法:从集合的观点看,建立命题p ,q 相应的集合:p :A ={x|p(x)成立},q :B ={x|q(x)成立},那么:①若A ⊆B ,则p 是q 的充分条件;若A ≠⊂B 时,则p 是q 的充分不必要条件; ②若B ⊆A ,则p 是q 的必要条件;若B ≠⊂A 时,则p 是q 的必要不充分条件; ③若A ⊆B 且B ⊆A ,即A =B 时,则p 是q 的充要条件. (3)等价转化法:p 是q 的什么条件等价于綈q 是綈p 的什么条件. 5.已知3cos ,(,0)42παα=∈-,则sin 2α的值为( )A. 38B. 38-D. 【答案】D 【解析】试题分析:由题意sin α===,所以sin 22sin cos ααα=32(4=⨯⨯=D . 考点:同角间的三角函数关系,二倍角公式.6.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯 A. 1盏 B. 3盏 C. 5盏 D. 9盏【答案】B 【解析】【详解】设塔顶的a 1盏灯, 由题意{a n }是公比为2的等比数列,∴S 7=()711212a --=381,解得a 1=3. 故选:B .7.某校象棋社团组织中国象棋比赛,采用单循环赛制,即要求每个参赛选手必须且只须和其他选手各比赛一场,胜者得2分,负者得0分,平局两人各得1分.若冠军获得者得分比其他人都多,且获胜场次比其他人都少,则本次比赛的参赛人数至少为 A. 4 B. 5 C. 6D. 7【答案】C 【解析】分析:对于四个选项中给出的参赛人数分别进行分析,看是否满足条件,然后可得结论. 详解:对于A ,若参赛人数最少为4人,则当冠军3次平局时,得3分,其他人至少1胜1平局时,最低得3分,所以A 不正确.对于B ,若参赛人数最少为5人,当冠军1负3平局时,得3分,其他人至少1胜1平局,最低得3分,所以B 不正确.对于C ,若若参赛人数最少为6人,当冠军2负3平局时,得3分,其他人至少1胜1平局,最低得3分,此时不成立;当冠军1胜4平局时,得6分,其他人至少2胜1平局,最低得5分,此时成立.综上C 正确.对于D ,由于7大于6,故人数不是最少.所以D 不正确. 故选C .点睛:本题考查推理问题,考查学生的分析问题和应用所学知识解决问题的能力.解题时要根据所给出的条件进行判断、分析,看是否得到不合题意的结果.8.已知定义在R 上的的数()()20xa x f x ln x a x ⎧+≤⎪=⎨+>⎪⎩,,若方程()1=2f x 有两个不相等的实数根,则a 的取值范围是( ) A. 1122a -≤≤ B. 102a ≤<C. 01a ≤<D.102a -<≤ 【答案】A 【解析】【详解】当12 a=-时,11222xx≤⎧⎪⎨-=⎪⎩或11ln()22xx>⎧⎪⎨-=⎪⎩解得1210,2x e=+,即有两个不相等的实数根,所以去掉B,C,D,选A.二、填空题9.已知函数()y f x=的导函数有且仅有两个零点,其图像如图所示,则函数()y f x=在x=_____处取得极值.【答案】-1【解析】【分析】利用导函数的图象,通过导函数的零点,以及函数返回判断函数的极值点即可.【详解】由图象,得当1x<-时,()0f x'<,当1x>-且2x≠时,()0f x'>,()20f'=,即函数()f x在(),1-∞-上单调递减,在()1,-+∞上单调递增,即函数()f x 在1x=-处取得极小值.【点睛】本题考查函数的导数以及导函数的图象的应用,函数的极值的判断,是基础题.10.32-,123,2log5三个数中最大数的是.【答案】2log5【解析】【详解】31218-=<,12331=>,22log5log423>>>,所以2log5最大.11.在ABC△中,13cos,7314A a b==,则B=______________.【答案】π3或2π3【解析】因为13cos14A=,所以π6A<<且33sin A=,又因为73a b=,所以7sin3sinA B=,即3373sin B⨯=,解得3sin B=,因为0πB<<,所以π3B=或2π3B=.12.去年某地的月平均气温()y C︒与月份x(月)近似地满足函数πsin()6y a b xϕ=++.(,a b为常数,π2ϕ<<).其中三个月份的月平均气温如表所示,则该地2月份的月平均气温约为______________,Cϕ︒=______________.【答案】 (1). 5- (2).π6【解析】由题意,得当51182x+==时,πsin(8)16ϕ⨯+=±,又因为π2ϕ<<,所以π4π11π236ϕ<+<,即4π3π32ϕ+=,π6ϕ=,即ππsin()66y a b x=++,则5ππsin()13668ππsin()3166a ba b⎧++=⎪⎪⎨⎪++=⎪⎩,即1331aa b=⎧⎨-=⎩,即1315ab=⎧⎨=-⎩,当2x=时,2ππ1318sin()566y=-+=-.13.在等腰梯形ABCD中,已知AB DC,2,1,60,AB BC ABC==∠=点E和点F分别在线段BC和CD上,且21,,36BE BC DF DC==则AE AF⋅的值为.【答案】2918【解析】在等腰梯形ABCD中,由AB DC,2,1,60,AB BC ABC==∠=得12AD BC ⋅=,1AB AD ⋅=,12DC AB =,所以()()AE AF AB BE AD DF ⋅=+⋅+ 22121111129131231218331818AB BC AD AB AB AD BC AD AB BC AB ⎛⎫⎛⎫=+⋅+=⋅+⋅++⋅=++-=⎪ ⎪⎝⎭⎝⎭.考点:平面向量的数量积. 【此处有视频,请去附件查看】14.如图,线段AB =8,点C 在线段AB 上,且AC =2,P 为线段CB 上一动点,点A 绕点C 旋转后与点B 绕点P 旋转后重合于点D .设CP =x ,CPD 的面积为()f x .则()f x 的定义域为 ;()f x '的零点是 .【答案】(2,4)(2分),3(3分) 【解析】 试题分析: 由题意知,,,的三边关系如图,三角形的周长是一个定值,故其面积可用海伦公式表示出来 即令故答案为;考点:函数的实际应用. 三、解答题15.已知函数()cos()(0,0,0)2f x A x A πωϕωϕ=+>><<的图象过点(0,12),最小正周期为23π,且最小值为-1. (1)求函数()f x 的解析式.(2)若[,]6x m π∈,()f x 的值域是[1,-,求m 的取值范围. 【答案】(1)()cos(3)3f x x π=+;(2)25[,]918m ππ∈ 【解析】试题分析:(1)根据余弦函数的性质求出最大值A ,再利用周期公式求出参数ω,最后根据三角函数值求出ϕ的值即可.(2)由题意求出33x π+的取值范围,然后再根据余弦函数的性质求解即可.试题解析:(1)由函数的最小值为-1,可得A=1,因为最小正周期为23π,所以ω=3.可得()cos(3)f x x ϕ=+,又因为函数的图象过点(0,12),所以1cos 2ϕ=,而02πϕ<<,所以3πϕ=,故()cos(3)3f x x π=+.(2)由[,]6x m π∈,可知533633x m πππ≤+≤+,因为5()cos 66f ππ==,且cos π=-1,7cos6π=,由余弦曲线的性质的,7336m πππ≤+≤,得25918m ππ≤≤,即25[,]918m ππ∈. 考点:(1)余弦函数的性质和图象;(2)余弦函数性质的应用. 16.数列{}n a 的前n 项和记为n S ,若数列n S n ⎧⎫⎨⎬⎩⎭是首项为9,公差为1-的等差数列. (1)求数列{}n a 的通项公式n a ;(2)若n n b a =,且数列{}n b 的前n 项和记为n T ,求415T T +的值.【答案】(1)211n a n =-+;(2)149. 【解析】 【分析】(1)运用等差数列的通项公式可得n S ,再由数列的递推式,可得所求通项公式; (2)求得|||112|n n b a n ==-,讨论当15n 时,6n 时结合等差数列的求和公式,可得所求和.【详解】解:(1)数列n S n ⎧⎫⎨⎬⎩⎭是首项为9,公差为1-的等差数列, ∴9(1)(1)10nS n n n=+-⨯-=-,即210n S n n =-+,① 2n ∴时,21(1)10(1)n S n n -=--+-,②①-②可得1211n n n a S S n -=-=-+, 又当1n =时,119a S ==,满足上式, 211n a n ∴=-+;(2)由题意,|||112|n n b a n ==-,∴当15n 时,212(9112)102n n n nT a a a n n +-=++⋯+==-+;6n 时,2(5)(1211)2510502n n n T n n -+-=+=-+.41524125149T T ∴+=+=.【点睛】本题考查等差数列的通项公式和求和公式的运用,考查分类讨论思想和转化思想,考查运算能力,属于基础题.17.已知ABC △的内角,,A B C 所对的边分别为,,a b c ,()8sin 17A C +=,且角B 为锐角. (1)求cos B 的值;(2)若6a c +=,ABC △的面积为2,求边长b . 【答案】(1)1517;(2)2. 【解析】 【分析】(1)由三角函数的诱导公式进行转化,结合同角三角函数的基本关系式进行转化求解即可. (2)结合三角形的面积公式求出ac 的值,利用余弦定理进行转化求解即可. 【详解】解:(1)8sin()17A C +=, ()()8sin sin sin 17B AC A C π∴=-+=+=⎡⎤⎣⎦, 角B 为锐角,cos 0B ∴>,即15cos 17B =.(2)ABC ∆的面积为2,118sin 22217S ac B ac ∴==⨯=,则172ac =, 6a c +=,2222cos b a c ac B ∴=+-215171715()2236223617154172217a c ac ac=+--=-⨯-⨯⨯=--=, 则2b =.【点睛】本题主要考查解三角形的应用,结合同角关系式,三角形的面积公式以及余弦定理是解决本题的关键. 18.已知函数1()xax f x e-=. (Ⅰ)当1a =时,求函数()f x 的单调区间;(Ⅱ)当0a <时,求函数()f x 在区间[0,1]上的最小值.【答案】(Ⅰ)(,2)-∞递增,在(2,)+∞递减;(Ⅱ)10a -≤<时,min ()1,1f x a =-<-时,min 11()aa f x e+=.【解析】试题分析:(Ⅰ)代值,求导,利用导函数的符号变化确定函数的单调性即可;(Ⅱ)求导,通过讨论a 的范围研究导函数的符号和函数的单调性,进而确定函数的最值.试题解析:(Ⅰ)当1a =时,()()12,,,x xx x f x x R f x e e '--+=∈∴= 令()0,f x '>解得:2,x < 令()0,f x '<解得:2,x >()f x ∴在(),2-∞递增,在()2,+∞递减;(Ⅱ)由()1xax f x e -=得: ()[]1,0,1xax a f x x e-+-∈'=, 令()0,0,f x a ='<解得111,x a=+< ①110a+≤时,即10a -≤<时,()0f x '≥对[]0,1x ∈恒成立, ()f x ∴[]0,1递增,()()min 01f x f ==-;②当1011<+<时,即1a <-时,()(),,x f x f x '在[]0,1上的情况如下:()1min 111;aa f x f a e +⎛⎫∴=+= ⎪⎝⎭综上,10a -≤<时,()min1,1f x a =-<-时,()1min 1aa f x e+=.【点睛】本题考查利用导数研究函数的单调性与最值.解决本题的难点是第二步,利用分类讨论求函数的最值,分类讨论思想的高中数学重要数学思想之一,学生对“分类讨论的标准、为什么讨论”搞不清,如本题中要讨论导函数的零点和所给区间的关系.19.已知函数()39f x x x =-,函数()23g x x a =+.(1)若曲线()y f x =与曲线()y g x =在它们的交点处有公共切线,求a 的值; (2)若存在实数b 使不等式()()f x g x <的解集为(),b -∞,求实数a 的取值范围. 【答案】(1) 5或﹣27;(2)(](),275,-∞-+∞.【解析】 【分析】(1)设出切点坐标,利用切点处导函数值等于切线斜率且切点为两个函数交点,列出方程组,解出切点坐标和a 的值.(2)构造函数()h x ,把不等式()()f x g x <转化为()y h x =的图象在直线y a =的下方的部分对应点的横坐标(,)x b ∈-∞,利用导数分析出函数()h x 的单调区间和极值,画出函数图象,数形结合得到符合题意的a 的取值范围. 【详解】解:(1)2()39f x x '=-,()6g x x '=,设()f x 与()g x 的交点坐标为0(x ,0)y ,则3200020093396x x x a x x ⎧-=+⎨-=⎩,解得:015x a =-⎧⎨=⎩或0327x a =⎧⎨=-⎩,a ∴的值为5或27-;(2)令32()39h x x x x =--,则()y h x =的图象在直线y a =的下方的部分对应点的横坐标(,)x b ∈-∞,2()3693(1)(3)h x x x x x '=--=+-,∴令()0h x '=,得:1x =-或3, 列表:()h x +-+()h x '增 极大值 减极小值 增()h x ∴的极大值为(1)5h -=,极小值为h (3)27=-,又当x →+∞时,()h x →+∞,当x →-∞时,()h x →-∞,如图所示:∴当5a >或27a -时,满足题意, ∴实数a 的取值范围为: (](),275,-∞-+∞.【点睛】本题考查了利用导数研究过曲线上某点处的切线方程,考查了利用导数画出函数的大致图象,做题时注意数形结合,是中档题.20.设满足以下两个条件的有穷数列12,,,n a a a …为()2,3,4,n n =…阶“期待数列”:①1230n a a a a ++++=…;②1231n a a a a ++++=…. (1)分别写出一个单调递增的3阶和4阶“期待数列”;(2)若某2013阶“期待数列”是等差数列,求该数列的通项公式; (3)记n 阶“期待数列”的前k 项和为()1,2,3,,k S k n =…,试证:12k S ≤. 【答案】(1)数列12-,0,12为三阶期待数列,数列38-,18-,18,38为四阶期待数列;(2)()1007,201310061007n n a n N n *-+=∈≤⨯;(3)证明见解析.【解析】 【分析】(1)数列12-,0,12为三阶期待数列,数列38-,18-,18,38为四阶期待数列.(2)设该2013阶“期待数列”的公差为d ,由于1220130a a a ++⋯+=,可得10070a =,1008a d =,对d 分类讨论,利用等差数列的通项公式即可得出.(3)当k n =时,显然1||02n S =成立;当k n <时,根据条件①得:1212()k k k k n S a a a a a a ++=++⋯+=-++⋯+,即1212||||||k k k k n S a a a a a a ++=++⋯+=++⋯+,再利用绝对值不等式的性质即可得出. 【详解】解:(1)数列12-,0,12为三阶期待数列, 数列38-,18-,18,38为四阶期待数列. (2)设该2013阶“期待数列”的公差为d , 1220130a a a ++⋯+=,∴120132013()02a a +=,120130a a ∴+=,即10070a =, 1008a d ∴=,当0d =时,与期待数列的条件①②矛盾,当0d >时,据期待数列的条件①②可得10081009201312a a a ++⋯+=, 100610051100622d d ⨯∴+=,即110061007d =⨯, *10071007(1007)(10061007n n a a n d n N -∴=+-=∈⨯,2013)n ,当0d <时,同理可得100710061007n n a -+=⨯,*(n N ∈,2013)n .(3)当k n =时,显然1||02n S =成立; 当k n <时,根据条件①得:1212()k k k k n S a a a a a a ++=++⋯+=-++⋯+, 即1212||||||k k k k n S a a a a a a ++=++⋯+=++⋯+, 12121212||||||||||||||||1k k k k n k k n S a a a a a a a a a a a +++∴=++⋯++++⋯+++⋯+++⋯+=,1||(12k S k ∴=,2,⋯,)n .【点睛】本题考查了等差数列的通项公式及其性质、绝对值不等式的性质、新定义“期待数列”,推理能力与计算能力,属于中档题.。
2021年高三10月份阶段性检测 物理 含答案

2021年高三10月份阶段性检测物理含答案本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至4页,第Ⅱ卷5至8页.满分100分,答题时间90分钟.答卷前,考生务必将自己的姓名、考号、考试科目填涂在试卷、答题卡规定的地方.第Ⅰ卷(选择题,共40分)注意事项:每小题选出答案后,用2B铅笔把答题卡上对应的答案标号涂黑.如需改动,用橡皮擦干净以后,再选涂其它答案标号.一、选择题:本大题包括8个小题,每小题5分,共40分.在每小题给出的四个选项中,至少有一个选项是正确的,全选对得5分,对而不全得3分,有选错或不选均得0分.1. 关于物理学发展,下列表述正确的有A. 伽利略根据斜面实验的结果合理外推得出自由落体运动的位移与下落时间的平方成正比B. 伽利略科学思想方法的核心是把实验和逻辑推理和谐地结合起来,从而有力地推进了人类科学认识的发展C. 笛卡儿提出了三条运动定律D. 笛卡儿明确指出:如果运动中的物体没有受到力的作用,它将继续以同一速度沿同一直线运动2. 如图所示,物体、叠放在物体上,置于水平地面上,水平力作用于,使、、一起匀速运动,各接触面间摩擦力的情况是A. 对有向左的摩擦力B. 对有向左的摩擦力C. 物体受到三个摩擦力作用D. 对地面有向右的摩擦力3. 甲车以加速度由静止开始作匀加速直线运动,乙车落后在同一地点由静止出发,以加速度作加速直线运动,两车速度方向一致. 在乙车追上甲车之前,两车距离的最大值是A. 18mB. 24mC. 22mD. 28m4. 如图所示,甲、乙两车均在光滑的水平面上,质量都是,人的质量都是,甲车上人用力推车,乙车上的人用等大的力拉绳子(绳与轮的质量和摩擦均不计);人与车始终保持相对静止.下列说法正确的是A. 甲车的加速度大小为B. 甲车的加速度大小为0C. 乙车的加速度大小为D. 乙车的加速度大小为05. 如右图,水平轨道上有一楔形物体,其斜面上有一小物块,与平行于斜面的细绳的一端相连,细绳的另一端固定在斜面上.与之间光滑,和以共同速度在水平直轨道的光滑段向左滑行. 当它们刚运行至轨道的粗糙段时,下列说法中正确的是A. 绳的张力不变B. 绳的张力增加C. 对的正压力增加D. 地面对的支持力增加6. 从地面以大小为的初速度竖直向上抛出一个皮球,经过时间皮球落回地面,落地时皮球速度的大小为. 已知皮球在运动过程中受到空气阻力的大小与速度的大小成正比,重力加速度大小为. 下面给出时间的四个表达式中只有一个是合理的,你可能不会求解,但是你可以通过一定的物理分析,对下列表达式的合理性作出判断. 根据你的判断,的合理表达式最可能是A. B. C. D.7. 如图所示,时,质量为的物体从光滑斜面上的点由静止开始下滑,经过点后进入水平面(经过点前后速度大小不变),最后停在点. 每隔物体的瞬时速度记录在下表中,重力加速度,则下列说法中正确的是0 2 4 60 8 12 8A. 的时刻物体恰好经过点B. 的时刻物体恰好停在点C. 物体运动过程中的最大速度为D. 、间的距离小于、间的距离8. 在光滑水平面上,、两小球沿水平面相向运动. 当小球间距小于或等于时,受到大小相等、方向相反的相互排斥恒力作用,小球间距大于时,相互间的排斥力为零,小球在相互作用区间运动时始终未接触,两小球运动时速度随时间的变化关系图象如图所示,由图可知A. 球质量大于球质量B. 在时刻两小球间距最小C. 在时间内两小球间距逐渐减小D. 在时间内球所受排斥力方向始终与运动方面相反高三物理试题第Ⅱ卷(笔答题,共60分)注意事项:1. 第Ⅱ卷5至8页。