真核生物RNA聚合酶
真核RNA聚合酶及其启动子

表位标签法
• 表位标签法(epitope tagging):利用遗 传学方法将一小段氨基酸残基(表位标签) 融合到目的蛋白上,由此可使目的蛋白通 过抗体识别表位标签而进行免疫沉淀并纯 化蛋白
• 沉淀与纯化的蛋白质(或蛋白复合体)可 通过SDS-PAGE进行分离分析
10-10
酵母RNA pol II的亚基
WT转录起始位点
箭头长度表示缺失片段长度
SV40早期启动子缺失突变效应
10-17
近端启动子元件
• GC框(GC box):具有GGGCGG序列的近端启动子元件,存在于许 多哺乳动物结构基因的启动子中,通常位于TATA box上游,无方向依 赖性,但有位置依赖性。转录因子Sp1结合GC box后可增强转录效率。
• CCAAT框(CCAAT box)具有CCAAT序列的近端启动子元件,存在 于 许 多 RNA pol II 识 别 的 真 核 生 物 启 动 子 中 。 转 录 因 子 CTF 结 合 CCAAT框后可增强转录效率。
10-18
I类启动子
不同物种的I类启动子只有2个保守元件: • 核心元件:在转录起始位点附近(-45~+20),为转录所必须;上游启
10-20
10.3 增强子和沉默子
• 增强子(enhancer):与一个或多个激活因子结合而促进一个或多个 基因转录的DNA元件。增强子一般位于其调控基因的上游,但也可以 在下游
SV40病毒早期基因调控区结构
• 沉默子(silencer):可以在远距离降低基因转录水平的DNA元件 • 增强子和沉默子经常是组织特异性的,都可以在数千碱基之外对基因
• 酵母RNA pol II的Rpb1、Rpb2和Rpb3为核心亚基 • Rpb1亚基存在2种形式(IIAO、IIAA),分别执行转录起始与起始
rna聚合酶组成

rna聚合酶组成RNA聚合酶是一类重要的酶,它在细胞中起着关键的作用。
RNA聚合酶是一种酶类蛋白质,由多个亚基组成。
不同类型的RNA聚合酶在组成和功能上有所不同。
在真核生物中,有三种主要类型的RNA聚合酶:RNA聚合酶Ⅰ、Ⅱ和Ⅲ。
它们分别负责转录不同类型的RNA分子。
RNA聚合酶Ⅰ主要负责转录核糖体RNA(rRNA),这些rRNA是构成细胞核糖体的重要组成部分。
RNA聚合酶Ⅰ由多个亚基组成,其中最重要的亚基是RPA1、RPA2和RPA3。
这些亚基共同形成了一个复杂的结构,使得RNA聚合酶Ⅰ能够识别并结合到rDNA (rRNA基因组)上,并开始转录过程。
RNA聚合酶Ⅱ是真核生物中最复杂和最重要的一类RNA聚合酶。
它负责转录mRNA(信使RNA),这些mRNA将DNA中的遗传信息转化为蛋白质。
与其他两种类型的RNA聚合酶相比,RNA聚合酶Ⅱ由更多的亚基组成。
其中最重要的亚基是RPB1、RPB2、RPB3和RPB11。
这些亚基共同形成了一个大型的酶复合物,能够识别和结合到DNA上,并开始转录过程。
RNA聚合酶Ⅲ主要负责转录tRNA(转运RNA)和一些其他小型非编码RNA。
它由多个亚基组成,其中最重要的亚基是RPC1、RPC2和RPC3。
这些亚基共同形成了一个复杂的结构,使得RNA聚合酶Ⅲ能够识别并结合到特定的DNA序列上,并开始转录过程。
总之,RNA聚合酶是由多个亚基组成的复杂蛋白质酶。
不同类型的RNA聚合酶在组成和功能上有所不同,但它们都起着关键的作用,参与了细胞中的转录过程。
对于理解细胞功能和遗传信息传递机制来说,对RNA聚合酶组成和功能的研究至关重要。
真核生物基因表达调控的多种方式

真核生物基因表达调控的多种方式真核生物基因表达包括转录、翻译和蛋白修饰等复杂过程,其中涉及多种调控方式。
以下是真核生物基因表达的各种表达调控方式的简述:1. 转录前调控转录前调控是指在 DNA 复制后被转录成 RNA 的过程中,通过调控 RNA 聚合酶 (RNA polymerase) 的亲和力、移动速度和活性等方式来控制基因的表达。
其中一些调控因子可以与启动子区域中的特定序列结合,从而抑制或增强 RNA 聚合酶的活性。
此外,一些转录因子还可以与 RNA 聚合酶结合,促进 RNA 聚合酶的移动,从而加快转录速率。
2. 转录调控转录调控是指通过调控 RNA 聚合酶结合到特定基因的启动子上,来控制基因的表达。
转录调控可以通过调节转录因子的数量、亲和力和活性等方式来实现。
一些转录因子可以与启动子区域中的特定序列结合,从而抑制或增强 RNA 聚合酶的活性。
此外,一些转录因子还可以与 RNA 聚合酶结合,促进 RNA 聚合酶的活性,从而加快转录速率。
3. 转录后调控转录后调控是指在基因被转录后,通过调控 RNA 剪接、RNA 编辑、RNA 降解等方式来控制基因的表达。
这些调控方式可以影响 RNA 的稳定性、可用性和转录本的多样性。
例如,一些调控因子可以与 RNA 剪接因子结合,从而改变 RNA 剪接的速率和方向。
一些 RNA 编辑酶可以编辑 RNA,改变基因表达。
此外,RNA 降解酶可以降解 RNA,从而抑制基因的表达。
4. 翻译调控翻译调控是指通过调控 mRNA 的稳定性、可用性和翻译速率等方式来控制基因的表达。
例如,一些调控因子可以与 RNA 聚合酶结合,从而抑制或增强 RNA 聚合酶的活性。
此外,一些翻译调控因子可以与 mRNA 结合,从而改变 mRNA 的稳定性和翻译速率。
5. 蛋白修饰调控蛋白修饰调控是指通过调控蛋白质的修饰方式来控制蛋白质的活性、稳定性和可用性等方式来控制基因的表达。
例如,一些修饰因子可以与蛋白质结合,从而改变蛋白质的修饰方式。
DNA聚合酶、RNA聚合酶等分子生物学6种酶

DNA聚合酶、RNA聚合酶等分子生物学6种酶1 DNA聚合酶DNA polymeraseDNA聚合酶:主要是连接DNA片段与单个脱氧核苷酸之间的磷酸二酯键,在DNA 复制中起做用。
DNA聚合酶只能将单个核苷酸加到已有的核酸片段的3′末端的羟基上,形成磷酸二酯键;而DNA连接酶是在两个DNA片段之间形成磷酸二酯键,不是在单个核苷酸与DNA片段之间形成磷酸二酯键。
DNA聚合酶是以一条DNA链为模板,将单个核苷酸通过磷酸二酯键形成一条与模板链互补的DNA链;而DNA连接酶是将DNA 双链上的两个缺口同时连接起来。
因此DNA连接酶不需要模板。
DNA聚合酶(DNA polymerase)是细胞复制DNA的重要作用酶。
DNA聚合酶, 以DNA为复制模板,从将DNA由5'端点开始复制到3'端的酶。
DNA聚合酶的主要活性是催化DNA的合成(在具备模板、引物、dNTP等的情况下)及其相辅的活性。
真核细胞有5种DNA聚合酶,分别为DNA聚合酶α(定位于胞核,参与复制引发,不具5'-3'外切酶活性),β(定位于核内,参与修复,不具5'-3'外切酶活性),γ(定位于线粒体,参与线粒体复制,不具5'-3',有3'-5'外切活性),δ(定位核,参与复制,具有3'-5',不具5'-3'外切活性),ε(定位于核,参与损伤修复,具有3'-5',不具5'-3'外切活性)。
原核细胞:在大肠杆菌中,到目前为止已发现有5种DNA聚合酶,分别为DNA聚合酶Ⅰ、Ⅱ、Ⅲ、Ⅳ和Ⅴ,都与DNA链的延长有关。
DNA聚合酶I是单链多肽,可催化单链或双链DNA 的延长,于1956年发现;DNA聚合酶II则与低分子脱氧核苷酸链的延长有关;DNA聚合酶III在细胞中存在的数目不多,是促进DNA链延长的主要酶。
DNA聚合酶Ⅳ和Ⅴ直到1999年才被发现。
生物化学试题 RNA的生物合成

第十三章RNA的生物合成..三。
典型试题分析(一)A型题1. 识别转录起点的是(1992年生化考题)A. 6因子B,核心酶C.ρ因子D. RNA聚合酶的α亚基E,RNA聚合酶的β亚基[答案] A2. 对于RNA聚合酶的叙述,不正确的是A. 核心酶和6因子构成B.核心酶由a2ββ’组成C. 全酶与核心酶的差别在于β亚单位的存在D. 全酶包括6因子E,6因子仅与转录起动有关[答案] C3.RNA的剪接作用(1999年生化试题)A.仅在真核发生B.仅在原核发生 C. 真核原核均可发生D.仅在rRNA发生E,以上都不是(答案) A4.以下关于转录终止子结构及转录终止的叙述,正确的是(2000年生化试题)A.由终止因子RF参与完成终止B.DNA链上的终止信号含GC富集区和AA富集区C.终止信号含GC富集区和AT富集区D. 终止信号需ρ因子辅助识别E.以上描述均不正确(答案) C四、测试题(一)A型题1.以下对tRNA合成的描述,错误的是A.RNA聚合酶Ⅲ参与tRNA前体的生成B.tRNA前体在酶作用下切除5’和3’末端处多余的核苷酸C. tRNA前体中含有内含子D,tRNA3’末端需加上ACC-OHE.tRNA前体还需要进行化学修饰加工2.以下对rRNA的转录加工的描述错误的是A.染色体DNA中rRNA基因是多拷贝的B,真核生物的5SrRNA自成独立的体系,不进行修饰和剪切C. 真核生物45SrRNA前体中包括16S,5.8S及28SrRNAD,原核生物30SrRNA前体中含有16S,23S及5SrRNAE,真核生物45SrRNA前体经一次剪切成为41SrRNA中间前体3.酶RNA是在研究哪种RNA的前体中首次发现的A.hnRNA B.tRNA前体 C. SnRNA D.ScRNA E.rRNA前体4.生物体系下列信息传递方式中尚无证据的是A.DNA→RNA B.RNA→蛋白质C.蛋白质→RNA D.RNA→DNA E.以上都不是5。
[常识]真核生物三种rna聚合酶的特色
![[常识]真核生物三种rna聚合酶的特色](https://img.taocdn.com/s3/m/47ff95c2b8f3f90f76c66137ee06eff9aff84947.png)
1.简述真核生物三种RNA聚合酶的特点?下边是详细的RNA聚合酶Ⅰ的转录产物是45SrRNA,经剪接修饰后生成除5SrRNA 外的各种rRNA。
rRNA与蛋白质组成的核糖体是蛋白质合成的场所。
RNA聚合酶Ⅱ在核内转录生成hnRNA,经剪接加工后生成的mRNA被运送到胞质中作为蛋白质合成的模板。
RNA聚合酶Ⅲ的转录产物是tRNA,5SrRNA,snRNA,其中snRNA参与RNA的剪接。
24.简述乳糖操纵子的调控原理?答:答:(1)乳糖操纵子的组成:大肠杆菌乳糖操纵子含Z、Y、A三个结构基因,分别编码半乳糖苷酶、透酶和半乳糖苷乙酰转移酶,此外还有一个操纵序列O,一个启动子P和一个调节基因I.(2)阻遏蛋白的负性调节:没有乳糖存在时,I基因编码的阻遏蛋白结合于操纵序列O处,乳糖操纵子处于阻遏状态,不能合成分解乳糖的三种酶;有乳糖存在时,乳糖作为诱导物诱导阻遏蛋白变构,不能结合于操纵序列,乳糖操纵子被诱导开放合成分解乳糖的三种酶。
所以,乳糖操纵子的这种调控机制为可诱导的负调控。
(3)CAP的正调节:在启动子上游有CAP结合位点,当大肠杆菌从以葡糖糖为碳源的环境转变为以乳糖为碳源的环境时,cAMP浓度升高,与CAP结合,使CAP发生变构,CAP结合于乳糖操纵子启动序列附近的CAP结合位点,激活RNA聚合酶活性,促进结构基因转录,调节蛋白结合于操纵子后促进结构基因的转录,对乳糖操纵子实行正调控,加速合成分解乳糖的三种酶。
(4)协调调节:乳糖操纵子中的I基因编码的阻遏蛋白的负调控与CAP的正调控两种机制,互相协调、互相制约。
25.简述DNA聚合酶和DNA连接酶在DNA复制中的作用?答:DNA聚合酶(DNA polymerase)是细胞复制DNA的重要作用酶。
DNA聚合酶 , 以DNA为复制模板,从将DNA由5'端点开始复制到3'端的酶。
DNA聚合酶的主要活性是催化DNA的合成(在具备模板、引物、dNTP等的情况下)及其相辅的活性。
RNA聚合酶Ⅱ转录生成hnRNA和mRNA,是真核生物中最活跃的RNA聚

RNA聚合酶Ⅱ转录生成hnRNA和mRNA,是真核生物中最活跃的RNA聚合酶。
RNA聚合酶Ⅲ转录的产物都是小分子量的RNA,tRNA的,5SrRNA的和snRNA。
RNA聚合酶Ⅰ转录产物是45SrRNA,生成除5SrRNA外的各种rRNA。
下面小结真核生物的RNA聚合酶,见表。
(三)启动子及终止信号1 启动子启动子或启动部位是指在转录开始进行时,RNA聚合酶与模板DNA分子结合的特定部位。
这特定部位在转录作用的调节中是有作用的。
每一个基因均有自己特有的启动子。
(1)原核生物的启动子。
原核生物的启动子大约有55个碱基对长,其中包含有转录的起始点和两个区——结合部位及识别部位。
起始点是DNA模板链上开始进行转录作用的位点,标以+1,转录是从起始点开始向模板键的5′末端方向即编码链3′末端方向进行。
在DNA模板上,从起始点开始顺转录方向的区域称为下游;从起始点逆转录方向的区域称为上游。
结合部位是指在DNA分子上与RNA聚合酶核心酶紧密结合的序列。
结合部位的长度大约是7个碱基对,其中心位于起始点上游的-10bp处。
因此将此部位称为-10区。
多种启动子的-10区具有高度的保守性和一致性;它们有一个共有序列或共同序列,为5′TA TAAT-3′。
又称为Pribnow盒。
由于在Pribnow 盒中碱基组成全是A-T配对,缺少G-C配对;而前者的亲和力只相当于后者的十分之一,所以Tm值较低。
因此此区域的DNA双链容易解开,利于RNA聚合酶的进入而促使转录作用的起始。
在DNA分子上还有一段识别部位,是RNA聚合酶的σ因子识别DNA分子的部位。
识别部位约有6个碱基对,其中心位于上游-35bp处。
所以称为-35区,其共有序列5′-TTGACA-3′。
其示意图见图。
(2)真核生物的启动子。
一个真核基因按功能可分为两部分,即调节区和结构基因。
结构基因的DNA序列指导RNA转录;如果该DNA序列转录产物为mRNA,则最终翻译为蛋白质。
真核生物与原核生物转录与复制的区别

不同点真核生物和原核生物复制的不同点:1.真核生物DNA的合成只是在细胞周期的S期进行,而原核生物则在整个细胞生长过程中都可进行DNA合成2.原核生物DNA复制是单起点的,而真核生物染色体的复制为多起点的。
真核生物中前导链的合成并不像原核生物那样是连续的,而是以半连续的方式,由一个复制起点控制一个复制子的合成,最后由连接酶将其连接成一条完整的新链。
3.真核生物DNA的合成所需的RNA引物及后随链上合成的冈崎片段的长度比原核生物要短。
4.原核生物中有DNA聚合酶Ⅰ、Ⅱ、Ⅲ三种聚合酶,并有DNA聚合酶Ⅲ同时控制两条链的合成。
真核生物中有α、β、γ、ε、δ五种聚合酶。
聚合酶α、δ是DNA合成的主要酶,分别控制不连续的后随链以及前导链的生成。
聚合酶β可能与DNA修复有关,聚合酶γ则是线粒体中发现的唯一一种DNA聚合酶.5.染色体端粒的复制不同。
原核生物的染色体大多数为环状,而真核生物染色体为线状。
末端有特殊DNA序列组成的结构成为端粒。
真核生物和原核生物转录的不同点:1.真核生物的转录在细胞核内进行,原核生物则在拟核区进行。
2.真核生物mRNA分子一般只编码一个基因,原核生物的一个mRNA分子通常含多个基因。
3.真核生物有三种不同的RNA聚合酶催化RNA合成,而在原核生物中只有一种RNA聚合酶催化所有RNA 的合成。
4.真核生物的RNA聚合酶不能独立转录RNA,三种聚合酶都必须在蛋白质转录因子的协助下才能进行RNA的转录,其RNA聚合酶对转录启动子的识别也比原核生物要复杂得多。
原核生物的RNA聚合酶可以直接起始转录合成RNA。
真核生物和原核生物翻译的不同点:氨基酸的活化:原核起始氨基酸是甲酰甲硫氨酸,真核是从生成甲硫氨酰-tRNAi开始的。
翻译的起始:原核的起始tRNA是tRNA fMet,30s小亚基首先与mRNA模板相结合,再与tRNA fMet结合,最后与50s大亚基结合。
真核中起始tRNA是tRNA Met,40s小亚基首先与tRNA Met相结合,再与模板mRNA结合,最后与60s大亚基结合生成起始复合物。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CTCCGAGTCGNNNNNNTGGGCCGCCGG startpoint
上游控制元件(UCE)
核心启动子(core element)
-170
-110
-40
+20
人类RNA Pol I的启动子
(三)RNA Pol I的辅助因子(UBF1 & SL1)
1、上游结合因子(UBF1) (1)可以与UCE结合 (2)可与核心元件的一段序列结合 (3)两个UBF1通过蛋白-蛋白相互作用而相互结
(B’’, TBP, BRF)
TF III B
TF III A TF III C
Pol III
四、RNA 聚合酶 II 基因的转录
(一)RNA聚合酶 II 的启动子 1、组成:
核心启动子(core promoter): TATA盒(Hogness box): - 25 ~ -35bp
上游启动子(upstream promoter element,UPE) CAAT盒 :-70 ~ -80区 GC盒:-80 ~ -110区
TAFIs
Pol I
三、RNA 聚合酶III 基因的转录
(一)tRNA基因的转录 1、启动子----基因内启动子
(1)启动子的两个保守序列: A框(5’-TGGCNNAGTGG-3’); B框(5’-GGTTCGANNCC-3’)
(2)A框和B框编码的序列: A框----D-loop; B框---- T C-loop
-100
-80
-60
GC
CAAT
GCCACACCC GGCCAATC
-40
-20
TA子(core promoter): (1)TATA盒(Hogness box):
a、位置: - 25 ~ -35bp b、序列特征:富含AT,
5’-TATA(A/T)A(A/T)-3’. c、功能:决定RNApol II的定位与转录精确起始
合,导致在两个结合位点间的DNA形成一个环状 结构。
UBF1
UBF1
2、选择因子1(SL1) (1)组成:4个亚基
a、TBP (TATA-binding protein): 是保证RNA pol 准确结合到起始位点的一个 关键因子
b、其他的三个亚基TAF:(TBP 相关因子) 为RNApol I转录所需的亚基称为TAFI
(2)功能:是使RNA 聚合酶正确的定位在起始位 点。
RNA 聚合酶 I 基因转录起始
CTCCGAGTCGNNNNNNTGGGCCGCCGG startpoint
上游控制元件(UCE)
核心启动子(core element)
-170
-110
-40
+1
+20
UBF1
UBF1
TBP
SL1
TAFIs
TBP
真核生物基因的转录
一、真核生物基因转录概述
(一)真核生物的转录和原核生物转录的不同点: 1、原核细胞只有一种RNA聚合酶,而真核细胞 有三种聚合酶; 2、启动子的结构特点不同,真核基因有三种不 同的启动子和有关的元件; 3、真核基因的转录有很多蛋白质因子的介入。
(二)真核生物RNA聚合酶(三种)
附:真核基因在转录时RNA聚合酶需要多种 转录因子的协助
TBP
TAFIs
Pol I
(四)转录因子
1、通用因子(General factor) (1)是所有启动子起始RNA合成所必须 (2)与RNA 聚合酶在起始位点周围形成复合体,
并决定起始的位置。
TBP
TAFIs
Pol I
TF III B (B’’, TBP, BRF)
基因内启动子
二、RNA 聚合酶 I 基因的转录
(一)rRNA基因(Ribosomal RNA Genes ) 多拷贝基因
(二)RNA聚合酶Ⅰ启动子
1、核心启动子(core promoter)或核心元件: 位于-45 ~ +20,负责转录的起始。
2、上游控制元件(upstream control element ): 位于-180 ~ -107,可增加转录起始的效率。
类型
转录产物
对鹅膏蕈碱的反应
Ⅰ rRNA:18s,5.8s,28s
不敏感
Ⅱ hnRNA
高度敏感
Ⅲ tRNA,5srRNA,snRNA 不同物种敏感性不同
(三)真核生物RNA 聚合酶(RNA Pol II)
▪ 由8~14个亚基组成,分子质量为500KDa
250KDa ▪ 与模板结合;与转录起始、延伸有关 130KDa ▪ 与DNA、底物和新生的RNA结合 40KDa 40KDa ▪ 负责酶的装配
2、tRNA基因转录因子
(1)TFⅢC:识别boxB (2)TFⅢB:与A框上游50kb上游序列结合
a、组成: TBP、BRF、B” b、功能:是RNA聚合酶Ⅲ真正的起始因子
3、tRNA基因转录的起始
boxA
boxB
TF III C
TF III B
Pol III
(二)5S rRNA 基因的转录
Pol III
2、上游因子(Upstream factor)
(1)识别并与启动子上游元件结合 (2)与上游元件结合可增加转录起始的效率
上游元件
Startpoint
UBF1
(五)启动子
RNA 聚合酶Ⅰ的启动子:位于转录起点上游 RNA 聚合酶Ⅱ的启动子:位于转录起点上游 RNA 聚合酶III的启动子:位于转录起点下游
1、 5S rRNA 基因: 特点:串连排列,形成基因簇 (是唯一单独被转录的rRNA亚基)
2、启动子: C框 ;A框
3、转录因子:
(1) TFIIIA :结合位点为C box 。 (2) TFIIIC (3) TFIIIB: TBP + BRF + B//
4、5s rRNA 基因转录的起始
boxA boxC
CAAT盒 :-70 ~ -80区( -70区) GC盒:-80 ~ -110区(-90区) (2)功能: 控制转录起始的频率
(基本不参与起始位点的精确定位) (3)功能特点:正反方向排列均能发挥作用
(4)上游元件的多样性
SV40 early
(2)起始子(initiator,Inr) 与转录起始位点重叠的短的较保守序列
附:缺少TATA 盒启动子 (1)无TATA盒,只有一个起始子 (2)既无TATA框,也无起始子,这种基因通常
转录速率很低,起始点不固定。
3、上游启动子(upstream promoter element,UPE) (1)位置: