立体图形涂色问题
探索图形—正方体涂色问题知识讲解

摆一个棱长是3厘米的大正方体,可以怎么摆?要 多少块棱长1厘米的小正方体?如何计算?
3厘米
3厘米
3×3×3=27(块)
3厘米
再大一点的正方体你会摆吗?
一共要多少块棱长1厘米的小正方体?如何计算? 4×4×4=64(块)
一共要多少块棱长1厘米的小正方体? 5×5×5=125(块)
8
27
64 125 n 3
8
8
8
8
8
0
12
24 36 (n-2) ×12
0
6
24
54 (n-2)2)3
通过这节课的学习,你有什么收获吗?
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
摆一个棱长是10厘米的大正方体, 要多少块棱长1厘米的小正方体?
10×10×10=1000(块)
摆一个棱长是n厘米的大正方体, 要多少块棱长1厘米的小正方体?
n× n× n= n 3 (块)
在下面的大正方体表面涂上颜色,再拆开,请你 思考:
1、三面涂色的小正方体有多少块? 2、两面涂色的小正方体有多少块? 3、一面涂色的小正方体有多少块? 4、没有涂色的小正方体有多少块?
把棱长3厘米的大正方体表面也涂上颜色,再 拆开,这些小正方体的6个面的涂色情况会是 怎样的呢?
三面涂色的小正方体
如果拼成的大正方体的棱长是n厘米,三面涂色 的小正方体有 8 块?
两面涂色的小正方体
如果拼成的大正方体的棱长是n厘米,两面涂色 的小正方体有 (n-2) ×12 块?
一面涂色的小正方体 如果拼成的大正方体的棱长是n厘米,两面涂色 的小正方体有 (n-2)2 ×6 块?
探索图形——正方体表面涂色问题

5
5-2=3
3x3x3=3³
n
n-2
n³
通过这节课的探究,你能说 说你用什么方法学会了本节课的 知识?
应用规律 有一个棱长12厘米的正方体,它的六个面都涂
有红色,把它切成棱长1厘米的小正方体。
(1)3面涂红色的小正方体的个数有几个?
(2)2面涂红色的小正方体的个数有几个?
(3)1面涂红色的小正方体的个数有几个? (4)没有涂红色的小正方体的个数有几个?
3 面中间
4 面中间
5 面中间 n 面中间
大正方体一个面上有几 1面涂色的个数(列式) 个1面涂色的小正方体
1 4 9
分小组讨论:
1、如果把每条棱6等分、10等分、20等分,中间部分的一面涂色 的个数我们难道一个一个去数吗?可以计算吗? 2、讨论时,请同学们仔细观察1、4、9数字的特征,以及这些数字 与图中1面涂色部分(红色部分)的之间的关系。
遇到这样复杂的问题,我们可以化多 为少,从数量最少的开始研究。
探索规律1 能三面涂色的小正方体有多少个?
棱等分的 份数
2 3 4 5
三面涂色的位置
顶点处 顶点处 顶点处 顶点处
三面涂色的个数
8 8 8 8
探索规律1
棱等分的 份数
2 3 4 5
n
三面涂色的位置
顶点处 顶点处 顶点处 顶点处 顶点处
三面涂色的个数
8 8 8 8
8
在顶点位置的正方体露出 3 个面,三面涂色的个数与顶点数相 同,无论是哪一种情况,三面涂色的个数都是8个 。
探索规律2 2面涂色的小正方体有多少个?
探索规律2 2面涂色的小正方体有多少个?
棱等分 的份数
3
2面涂色 的位置
小学奥数题目-六年级-计数类-立方体染色

通常,在一个大的立方体表面进行染色,染色之后再进行切割,将大立方体切割成许多小的立方体,这样得到的小立方体中,染色的情况会有许多种,一面染色、两面染色、三面染色……本讲主要讲解解决这类问题的一些方法。
包括染色一面,两面,三面等小立方体个数的计算公式。
例1、将下图中棱长为10厘米正方体表面涂上红色,如果沿着虚线切成8个正方体,这些小正方体中没有被涂上红色的所有表面的面积和是多少平方厘米?1. 1.长宽高分别为3,4,5的长方体,将其表面涂上红色,然后将其切成60个边长为1的小立方体,这些小立方体中没有被涂上红色的所有表面的面积和是多少?2. 2.长宽高分别为6,8,12的长方体,将其表面涂上红色,然后沿着与边长分别为6和8的侧面平行的面切3次,沿着与边长分别为8和12的侧面平行的面切2次,沿着与边长分别为6和12的侧面平行的面切3次,将其分成若干个小长方体,这些小长方体中没有被涂成红色的所有表面的面积是多少?3. 3.将棱长为8厘米正方体表面涂上红色,如果把它切成64个边长为2厘米的小立方体,这些小正方体中没有被涂上红色的所有表面的面积和是多少平方厘米?例2、有30个边长为1分米的正方体,在地面上摆成右图的形式,然后把露出的表面涂成红色,被涂成红色的表面积是多少平方分米?1. 1.如下图,由44个边长为1厘米的小正方体组成的如图所示的形式,现在把露出的表面涂成红色,被涂成红色的表面积是多少平方厘米?2. 2.有55个边长为1分米的正方体,在地面上摆成右图的形式,然后把露出的表面涂成红色,被涂成红色的表面积是多少平方分米?3. 3.如下图,由35个边长为2厘米的小正方体堆成的形状,然后把露出的表面涂成红色,被涂成红色的表面积是多少平方厘米?视频描述例3、一个长方体木块,长5分米,宽3分米,高4分米,在它六个面上都漆满油漆,然后锯成棱长都是1分米的正方体木块。
问锯成的木块中三面涂有油漆有多少块?两面涂有油漆的有多少块?1. 1.一个长方体木块,长10分米,宽6分米,高8分米,在它六个面上都漆满油漆,然后锯成棱长都是2分米的正方体木块。
第五讲 立体图形染色问题

第五讲立体图形染色问题
姓名成绩
【例1】一个正方体棱长7cm,表面涂成红色,切成棱长1cm的小正方体,三面涂红色的、两面涂红色的、1面涂红色的各有多少个?没有涂成红色的有多少个?
【例2】一个长方体长9cm,宽4cm,高8 cm,表面涂成红色,切成棱长1cm的小正方体,三面涂红色的、两面涂红色的、1面涂红色的各有多少个?没有涂成红色的有多少个?
〖练习1〗一个正方体,表面涂成红色,切成棱长1cm的小正方体,期中一面涂色的有216个小正方体,这个正方体的体积是多少?
〖练习2〗一个长方体,六个面均涂有红色,沿着长边等距离切5刀,沿着宽边等距离切4刀,沿着高边等距离切n次后,要使各面上均没有红色的小方块为24块,则n的取值是________。
综合试题
1、某学生语文和数学平均分为90分,语文和英语的平均分为94分,英语和数学平均分为91分。
这位学生语文考()分,数学考()分。
2、甲仓库有大米95.8吨,乙仓库有大米54.5吨。
要从甲仓库中运()吨到乙仓库后,乙仓库中的大米吨数是甲仓库中的2倍。
3、有一组数据如下图排列:
一二三四五
1 2 3 4 5
9 8 7 6
10 11 12 13
17 16 15 14
······如此规律,1991排在第()列。
4、一个长方体,如果长减少2厘米,宽、高不变,它的体积减少48立方厘米,如果宽增加3厘米,长、高都不变,它的体积增加99立方厘米,如果高增加4厘米,长、宽都不变,它的体积增加352立方厘米,求原长方体的表面积是多少平方厘米?。
五年级:美妙数学之“正方体涂色问题”(0807五)

五年级:美妙数学之“正方体涂色问题”(0807五)
我们人教版五年级下册学过了探索图形,你还记得吗?
探索图形中的其中一类就是正方体涂色问题,把小正方体拼成大正方体,这样的大正方体的规格可以简单地表示成2×2×2,3×3×3……n×n×n,问,三面涂色,两面涂色,一面涂色的和没有涂色的小正方体各有几个?
大家回忆一下这样的问题我们一般怎样解决呢?
算三面涂色的小正方体的个数方法是这样的:三面涂色的小正方体都是大正方体的顶点所在的小正方体,大正方体一共有8个顶点也就是三面涂色的小正方体有8个;两面涂色的小正方体分布在大正方体的棱处,但要去掉头尾,所以两面涂色小正方体个数为(n-2)×12;一面涂色小正方体分布在大正方体的面上,但是要去掉面上一圈,也就是(n-2)×(n-2)×6;没有涂色的小正方体分布在内心,也就是要剥去大正方体华丽的外表,所以没有涂色的小正方体个数是(n-2)×(n-2)×(n-2)。
同学们想起来了吗?那我的问题来了,正方体是这样那长方体呢?敬请期待下一期的分享。
小学数学人教版五年级下册《探索图形 正方体的涂色问题》课件

位置 ——
顶点 棱上 面上 藏里面
块数
125块 8块 36块 54块 27块
3面涂色 2面涂色
位 置 顶点见 靠棱站
3等分 8块
12块
4等分 8块
24块
5等分 8块
36块
1面涂色
面上现 6块 24块 54块
没有色彩
藏里面 1块 8块 27块
……
都是8块
每条棱上的 块数×12
每个面上的 可以用减法
2面涂色
1面涂色
没有色彩
块数
27块
8块 12块 6块 1块
位置
—
顶点 棱上 面上 藏里面
每条棱4等分 位置
块数
小正方体共有 6—4—块 3面涂色的 8 块 顶点
2面涂色的 24块 棱上
1面涂色的 24块 面上 没涂色的 8 块 藏里面
每条棱5等分 小正方体共有
3面涂色的 2面涂色的 1面涂色的 没涂色的
块数×6
算
谢谢大家
数学人教版 五年级下
正方体的 涂色问题
表一
每 条棱 3 等分 小正方体共有 3面涂色的
面2 涂色的 面1 涂色的 没有涂色的
块数
27 块 8块 12 块 6块 1块
每一类小正方体应当放在 大正方体的什么位置?
每条棱 3 等分 小正方体 共有 3面涂色
2面涂色
1面涂色
没有色彩
块数
27块
8块 12块 6块 1块
位置 —
顶点
每条棱 3 等分 小正方体 共有 3面涂色
2面涂色
1面涂色
没有色彩
块数
27块
8块 12块 6块 1块
位置
—
小学奥数-长方体正方体染色问题、三视图-知识点+例题+练习-(分类全面)精选全文完整版

可编辑修改精选长方体正方体染色问题、沉浸问题、三视图全文完整版教学内容教学目标掌握长方体正方体染色问题、沉浸问题、三视图重点染色问题、沉浸问题、三视图难点染色问题、沉浸问题、三视图教学过程一、染色问题一个棱长1分米的正方体木块,表面涂满了红色,把它切成棱长1厘米的小正方体。
在这些小正方体中:(1)三个面涂有红色的有多少个?(2)两个面涂有红色的有多少个?(3)一个面涂有红色的有多少个?(4)六个面都没有涂色的有多少个?下面我们结合图示,分别来看看这几个问题。
(1)三个面涂有红色的小正方体在大正方体的顶点处,正方体有8个顶点,所以三个面涂有红色的有8个。
(2)两个面涂有红色的小正方体在大正方体的棱上,每条棱上有8个,正方体有12条棱,所以两个面涂有红色的有8×12=96个。
(3)一个面涂有红色的小正方体在大正方体的面上,每个面上有8×8=64个,正方体有6个面,所以一个面涂有红色的有8×8×6=384个。
(4)六个面都没有涂色的在大正方体的中间,有两种算法:算法1: 1000-8-96-384=512(个);算法2: 8×8×8=512(个)。
公式:(1)正方体有8个顶点、12条棱、6个面假设把棱n等分(n≥3),那么:N的三次方个小立方体组成的立方体的表面图涂上颜色,则未被涂色的小立方体有(n-2)3个.一面被涂色的小立方体为(n-2)2*6个.两面被涂色的小立方体有(n-2)*12个.三面被涂色的有8个.(2)长方体, 有a*b*c个立方体组成的长方体表面涂上颜色.则未被涂色的小立方体有(a-2)*(b-2)*(c-2)个一面被涂色的小立方体有(a-2)* (b-2)*2+(b-2)* (c-2)*2+(c-2)* (a-2)*2两面被涂色的小立方体有(a-2)*4+(b-2)*4+(c-2)*4三面被涂色的有8个【例 1】下图是333⨯⨯正方体,如果将其表面涂成红色,那么其中一面、两面、三面被涂成红色的小正方体及未被涂色的小正方体各有多少块?0面:1; 1面:6;两面:2;三面:8【巩固】下图是456⨯⨯长方体,如果将其表面涂成红色,那么其中一面、两面、三面被涂成红色的小正方体及未被涂色的小正方体各有多少块?看如右下图,那么他最少用了_____块木块。
《探索图形——正方体表面的涂色问题》课件

当n =10时,3面涂色的小正方体有_8___个, 2面涂色的小正方体有_9_6__个, 1面涂色的小正方体有3__8_4_个,
各面无涂色的小正方体有5__1_2_个。
总结回顾 回顾今天的探究和发现的过程,说
说你有什么方法上的收获?
● 化繁为简的方法。
从简单的情况入手找规律,用规律解决复杂的问题。
人教版小学数学五年级下册
正方体涂色问题
知识回顾
1cm
1cm 1cm
6 个面 8 个顶点 12 条棱
引入问题
1cm 1cm 1cm
如果用棱长1cm的小正方体拼成一个棱长 10厘米的大正方体,需要多少块?
探索规律
如果给这个大正方体的表面涂上红色
小组合作
研究问题一:
同类涂色的小正方体分别在大正方体的什么位置?
●分类计数的方法。
两面涂色的小正方体块数=每条棱上两面涂色的块数X12
(棱上块数-2) 两 面 涂 色
我发现:
一面涂色的小正方体块数=每个面一面涂色块数 X6
一 面 涂 色
没
有
13
23
33
涂
色
Hale Waihona Puke 我发现:没有涂色的小正方体=(每条棱上小正方体块数-2)³
当棱上块数为n时: 没有涂色的新正方体
的棱上块数为 (n-2)
(n-2) (n-2)
(n-2)
棱上块数为n
小正方体表面涂色的规律
n
8
12(n-2) 6(n-2)2 ( n-2)3
应用规律: 给用棱长1cm的小正方体的拼成棱长10cm的大
正方体表面涂上红色,三面涂色、两面涂色、一 面涂色、没有涂色的小正方体各有多少个?