换热器理论与分析-4解析
最全面的板式换热器知识(原理、结构、设计、选型、安装、维修)

最全面的板式换热器知识(原理、结构、设计、选型、安装、维修)板式换热器是由一系列具有一定波纹形状的金属片叠装而成的一种新型高效换热器。
各种板片之间形成薄矩形通道,通过板片进行热量交换。
板式换热器是液—液、液—汽进行热交换的理想设备。
它具有换热效率高、热损失小、结构紧凑轻巧、占地面积小、安装清洗方便、应用广泛、使用寿命长等特点。
本课件由暖通南社独立完成整合编辑,欢迎转载,但请注明出处。
板式换热器基本结构及运行原理板式换热器的型式主要有框架式(可拆卸式)和钎焊式两大类,板片形式主要有人字形波纹板、水平平直波纹板和瘤形板片三种。
钎焊换热器结构板式换热器主要结构⒈板式换热器板片和板式换热器密封垫片⒉固定压紧板⒊活动压紧板⒋夹紧螺栓⒌上导杆⒍下导杆⒎后立柱由一组板片叠放成具有通道型式的板片包。
两端分别配置带有接管的端底板。
整机由真空钎焊而成。
相邻的通道分别流动两种介质。
相邻通道之间的板片压制成波纹。
型式,以强化两种介质的热交换。
在制冷用钎焊式板式换热器中,水流道总是比制冷剂流道多一个。
图示为单边流,有些换热器做成对角流,即:Q1和Q3容纳一种介质,而Q2和Q4容纳另一种介质。
板式换热器所有备件都是螺杆和螺栓结构,便于现场拆卸和修复。
运行原理板式换热器是由带一定波纹形状的金属板片叠装而成的新型高效换热器,构造包括垫片、压紧板(活动端板、固定端板)和框架(上、下导杆,前支柱)组成,板片之间由密封垫片进行密封并导流,分隔出冷/热两个流体通道,冷/热换热介质分别在各自通道流过,与相隔的板片进行热量交换,以达到用户所需温度。
每块板片四角都有开孔,组装成板束后形成流体的分配管和汇集管,冷/热介质热量交换后,从各自的汇集管回流后循环利用。
换热原理:间壁式传热。
单流程结构:只有2块板片不传热-头尾板。
双流程结构:每一个流程有3块板片不传热。
板片和流道通常有二种波纹的板片(L 小角度和H 大角度),这样就有三种不同的流道(L,M 和H),如下所示:L:小角度由相邻小夹角的板片组成的通道。
热质交换原理与设备习题答案第版

热质交换原理与设备习题答案第版Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#第一章绪论1、答:分为三类。
动量传递:流场中的速度分布不均匀(或速度梯度的存在);热量传递:温度梯度的存在(或温度分布不均匀);质量传递:物体的浓度分布不均匀(或浓度梯度的存在)。
2、解:热质交换设备按照工作原理分为:间壁式,直接接触式,蓄热式和热管式等类型。
●间壁式又称表面式,在此类换热器中,热、冷介质在各自的流道中连续流动完成热量传递任务,彼此不接触,不掺混。
●直接接触式又称混合式,在此类换热器中,两种流体直接接触并且相互掺混,传递热量和质量后,在理论上变成同温同压的混合介质流出,传热传质效率高。
●蓄热式又称回热式或再生式换热器,它借助由固体构件(填充物)组成的蓄热体传递热量,此类换热器,热、冷流体依时间先后交替流过蓄热体组成的流道,热流体先对其加热,使蓄热体壁温升高,把热量储存于固体蓄热体中,随即冷流体流过,吸收蓄热体通道壁放出的热量。
●热管换热器是以热管为换热元件的换热器,由若干热管组成的换热管束通过中隔板置于壳体中,中隔板与热管加热段,冷却段及相应的壳体内穷腔分别形成热、冷流体通道,热、冷流体在通道内横掠管束连续流动实现传热。
3、解:顺流式又称并流式,其内冷、热两种流体平行地向着同方向流动,即冷、热两种流体由同一端进入换热器。
●逆流式,两种流体也是平行流体,但它们的流动方向相反,即冷、热两种流体逆向流动,由相对得到两端进入换热器,向着相反的方向流动,并由相对的两端离开换热器。
● 叉流式又称错流式,两种流体的流动方向互相垂直交叉。
● 混流式又称错流式,两种流体的流体过程中既有顺流部分,又有逆流部分。
● 顺流和逆流分析比较:在进出口温度相同的条件下,逆流的平均温差最大,顺流的平均温差最小,顺流时,冷流体的出口温度总是低于热流体的出口温度,而逆流时冷流体的出口温度却可能超过热流体的出口温度,以此来看,热质交换器应当尽量布置成逆流,而尽可能避免布置成顺流,但逆流也有一定的缺点,即冷流体和热流体的最高温度发生在换热器的同一端,使得此处的壁温较高,为了降低这里的壁温,有时有意改为顺流。
(影响换热器总传热系数的原因

1L: 1、结构;2、介质;3、运行参数2L: 传热系数的大小与冷热流体的性质、换热的操作条件(如流速、温度等)、传热面的结垢状况以及换热器的结构和尺寸等许多因素有关。
对流传热十分复杂,垢层热阻又难以确定,因此传热系数的计算值与实际值往往相差较大。
在设计换热器时,最好有实测值或生产中积累的经验数据作为参考。
3L: 换热器的总传热系数主要与换热管两侧的膜传热系数和换热管的热阻有关,因而换热器的总传热系数与下列参数有关:1.换热管、壳程流体的物性数据(粘度、表面张力、密度等);2.换热管、壳程流体的流速有关;3.换热管的热阻有关。
4L: 在传热基本方程式Q=KAΔtm中,传热量Q是生产任务所规定的,温度差Δtm之值由冷、热流体进、出换热器的始、终温度决定,也是由工艺要求给出的条件,则传热面积A之值与总传热系数K值密切相关,因此,如何合理地确定K值,是设计换热器中的一个重要问题。
目前,总传热系数K值有三个来源:一是选取经验值,即目前生产设备中所用的经过实践证实并总结出来的生产实践数据;二是实验测定K值;三是计算。
在传热计算中,如何合理地确定K值,是设计换热器中的一个重要问题。
而在设计中往往参照在工艺条件相仿、类似设备上所得较为成熟的生产数据作为设计依据。
工业生产用列管式换热器中总传热系数值的大致范围见表4-10列管式换热器中K值大致范围热流体冷流体总传热系数,KW/m2·K水水850~1700轻油水340~910重油水60~280气体水17~280水蒸汽冷凝水1420~4250水蒸汽冷凝气体30~300低沸点烃类蒸汽冷凝(常压)水455~1140高沸点烃类蒸汽冷凝(减压)水60~170水蒸汽冷凝水沸腾2000~4250水蒸汽冷凝轻油沸腾455~1020水蒸汽冷凝重油沸腾140~425总传热系数的计算前述确定K值的方法虽然简单,但往往会因具体条件不完全符合所设计的情况,而影响到设计的可靠性。
所以,还必须对传热过程进行理论上的分析,以了解各种因素对传热过程的影响,从而建立起计算总传热系数K的定量式。
5mm管径内螺纹铜管换热器分析

Ф5与Ф7换热器比较分析背景:近年来,由于国际铜价节节攀升且居高不下,如果降低空调器铜用量各大厂家也是八仙过海,比如铝制换热器,ACC管,小管径铜管替代原有较大管径的铜管等。
随着环保节能的考虑,家用空调用冷媒逐渐由R22过渡到R410A,整机中R410A运行压力要比R22高出60%,因此系统性能受冷媒压力损失的影响较小,更适合于采用小管径铜管换热器。
空调换热器采用小管径铜管后,管内换热和压降特性会随之改变,根据换热器试验研究表明:在冷媒质量流量相同情况下,Ф5铜管管内制冷剂的摩擦压降比Ф7的大20-40%。
因此在实际应用Ф5铜管时,需要针对Ф5铜管的换热和压降特性,对换热器型式进行优化调整,如翅片或流路,同时制冷剂充注量可以减少了10-20%,需要对系统的其他部件,如膨胀阀的开度进行调整,以求系统的性能接近甚至优于原有系统性能。
一、行业Ф5翅片方面的应用情况:1)日本应用情况小结:◆换热器越来越细管径化,Φ5换热器在室内机上有4家公司使用。
2家是跟其他管径的组合构成的圆弧换热器。
大金使用的更细的φ4。
◆φ5以下的細管各公司几乎都是用在能力2.2~7.1kW的室内机上。
这是因为室内机箱体从小到大共都是通用的,φ5可以使用在家用空调上限7.1kW。
◆作为日本冷暖变频室外机,各企业的设计中没有使用φ5换热器,一般是Φ7或φ7.94。
因为用φ5的话分流回路数多分流太复杂。
φ7换热器在4.0kW机上都要分4路,φ5的就太复杂了。
◆室内机的φ5换热器几种管径(φ5和φ6.35等)组合,可以简化分流并提高性能。
2)韩国应用情况3)国内应用情况Ф5管技术在2005年以后引入国内,在2007年国内相应的产品设计和生产工艺已经成熟。
经向冲床及模具厂家调研,近3年以来美的、格力在Ф5换热器设备方面投入较大,Ф5换热器的产能各达到100万件/月的大批量生产规模。
◆美的2009年以前陆续购入5条Ф5换热器生产线,2009~2010年进口了10条日本日高公司Ф5换热器生产线,已经在今年旺季实现规模效益。
《热质交换原理与设备》习题答案分析

第5章吸附和吸收处理空气的原理与方法1.解:物理吸附是被吸附的流体分子与固体表面分子间的作用力为分子间吸引力,它是一种可逆过程,物理吸附是无选择的,只要条件适宜,任何气体都可以吸附在任何固体上。
吸附热与冷凝热相似。
适应的温度为低温。
吸附过程进行的急快参与吸附的各相间的平衡瞬时即可达到。
化学吸附是固体表面与吸附物间的化学键力起作用的结果。
吸附力较物理吸附大,并且放出的热也比较大,化学吸附一般是不可逆的,反应速率较慢,升高温度可以大大增加速率,对于这类吸附的脱附也不易进行,有选择性吸附层在高温下稳定。
人们还发现,同一种物质,在低温时,它在吸附剂上进行物理吸附,随着温度升到一定程度,就开始发生化学变化转为化学吸附,有时两种吸附会同时发生。
2、硅胶是传统的吸附除湿剂,比表面积大,表面性质优异,在较宽的相对湿度范围内对水蒸汽有较好的吸附特性,硅胶对水蒸汽的吸附热接近水蒸汽的汽化潜热,较低的吸附热使吸附剂和水蒸汽分子的结合较弱。
缺点是如果暴露在水滴中会很快裂解成粉末。
失去除湿性能。
与硅胶相比,活性铝吸湿能力稍差,但更耐用且成本降低一半。
沸石具有非常一致的微孔尺寸,因而可以根据分子大小有选择的吸收或排除分子,故而称作“分子筛沸石”。
3、目前比较常用的吸附剂主要是活性炭,人造沸石,分子筛等。
活性炭的制备比较容易,主要用来处理常见有机物。
目前吸附能力强的有活性炭纤维,其吸附容量大吸附或脱附速度快,再生容易,而且不易粉化,不会造成粉尘二次污染,对于无机气体如2SO 2X、H S 、NO 等有也很强的吸附能力,吸附完全,特别适用`于吸附去除6931010/g m --、 量级的有机物,所以在室内空气净化方面有着广阔的应用前景。
4、有效导热系数通常只与多孔介质的一个特性尺度----孔隙率有关。
第6章 间壁式热质交换设备的热工计算1、解:间壁式 换热器从构造上可分为:管壳式、胶片管式、板式、板翘式、螺旋板式等。
提高其换热系数措施:⑴在空气侧加装各种形式的肋片,即增加空气与换热面的接触面积。
热管换热器设计计算及设计说明

1967年至1968年,美国应用于工业的热管日渐广泛,应用范围涉及到空调、电子器件、核电机的冷却等方面。并初次出现了柔性热管和平板式的异形热管。
1962年特雷费森向美国通用电气公司提出报告,倡议在宇宙飞船上采用一种类似Gaugler的传热设备。但因这种倡议并未经过实验证明,亦未能付诸实施。
1963年Los-Alamos科学实验室的Grover在他的专利中正式提出热管的命名,该装置基本上与Gaugler的专利相类似。他采用一根不锈钢管作壳体,钠为工作介质,并发表了管内装有丝网吸液芯的热管实验结果,进行了有限的理论分析,同时提出了以银和锂作为热管的工作介质的观点。
1964年Grover等人首次公开了他们的试验结果。此后英国原子能实验室开始了类似的以钠和其它物质作为工作介质的热管研究工作。工作的兴趣主要是热管在核热离子二极管转换器方面的应用。与此同时,在意大利的欧洲原子能联合核研究中心也开展了积极的热管研究工作。但兴趣仍然集中在热离子转换器方面,热管的工作温度达到1600~1800℃。
当蒸发段里的液体一旦因吸收了汽化潜热并蒸发时,蒸汽就开始通过热管的蒸汽腔向冷却段流动。此流动是由蒸汽腔两端的小压差引起的。蒸发段内蒸汽的温度比冷却段内的饱和温度稍高一些,从而形成了两端的温度差。蒸发段与冷却段之间这个温差常常可作为热管工作成功与否的一个判据。如果此温差小于0.5℃或1℃,则热管常常被称为在“热管工况”下工作,即等温工作。
当蒸汽凝结时,液体就浸透冷却段内的吸液芯毛细孔,弯月面具有很大的曲率半径,可以认为是无穷大。在热管内只要有过量的工质,就一定集中在冷凝表面上,因而实际上冷凝段的汽—液分界面是一个平面,蒸汽凝结释放出的潜热通过吸液芯、液体层和管壁把热量传给管外冷源。如果有过量液体存在,则从分界面到管壁外面的温降将比蒸发段内相应的温降大,因而,冷却段内的热阻在热管设计中是应当考虑的重要热阻之一。
换热器教学大纲
换热器教学大纲换热器教学大纲换热器作为热力学和工程领域中的重要设备,广泛应用于工业生产、能源利用以及环境保护等方面。
为了更好地培养学生对换热器的理论和实践能力,制定一份全面而系统的换热器教学大纲显得尤为重要。
本文将从换热器的基本原理、分类、设计与计算、性能评价等方面来探讨换热器教学大纲的内容。
一、换热器的基本原理在换热器教学大纲中,首先需要介绍换热器的基本原理。
换热器是通过热传导、对流和辐射等方式实现热量的传递,因此学生需要了解换热器的热传导基本原理、对流传热机理以及辐射传热的特点。
此外,还需介绍换热器的传热表达式以及换热器的热阻和热效率等概念。
二、换热器的分类在教学大纲中,换热器的分类也是一个重要的内容。
根据不同的换热方式和结构特点,换热器可以分为管壳式换热器、板式换热器、螺旋板换热器、管束式换热器等多种类型。
每种类型的换热器都有其适用的场合和特点,学生需要了解它们的工作原理、结构特点以及应用范围。
三、换热器的设计与计算换热器的设计与计算是换热器教学大纲中的重要内容之一。
学生需要学习换热器的传热计算方法,包括换热器的传热面积计算、传热系数的估算以及传热过程中的温度场分析等。
此外,还需介绍换热器的流体力学计算方法,包括流体的流速、流量、压降等参数的计算,以及流体在换热器内的流动状态分析。
四、换热器的性能评价在教学大纲中,换热器的性能评价也是一个重要的内容。
学生需要学习如何评价换热器的传热性能和流体力学性能,包括传热系数的确定、热阻的计算、热效率的评估以及压降的分析等。
此外,还需介绍换热器的可靠性评价方法,包括换热器的寿命预测、故障诊断以及维护管理等方面的知识。
五、实践教学与案例分析除了理论知识的学习,实践教学和案例分析也是换热器教学大纲中不可或缺的一部分。
学生需要通过实验室实践和工程实例的分析,来加深对换热器理论知识的理解和应用。
实践教学可以包括换热器的实验研究、性能测试以及故障排除等方面的内容。
4-5-对流传热系数关联式
知识点4-5 对流传热系数关联式【学习指导】1.学习目的通过本知识点的学习,了解影响对流传热系数的因素,掌握因次分析法,并能根据情况选择相应的对流传热系数关联式。
理解流体有无相变化的对流传热系数相差较大的原因。
2.本知识点的重点对流传热系数的影响因素及因次分析法。
3.本知识点的难点因次分析法。
4.应完成的习题4-11 在一逆流套管换热器中,冷、热流体进行热交换。
两流体进、出口温度分别为t1=20℃、t2=85℃;T1=100℃、T2=70℃。
当冷流体流量增加一倍时,试求两流体的出口温度和传热量的变化情况。
假设两种情况下总传热系数不变,换热器热损失可忽略。
4-12 试用因次分析法推导壁面和流体间自然对流传热系数α的准数方程式。
已知α为下列变量的函数:4-13 一定流量的空气在蒸汽加热器中从20℃加热到80℃。
空气在换热器的管内湍流流动。
压强为180kPa的饱和蒸汽在管外冷凝。
现因生产要求空气流量增加20%,而空气的进出口温度不变,试问应采取什么措施才能完成任务,并作出定量计算。
假设管壁和污垢热阻可忽略。
4-14 常压下温度为120℃的甲烷以10m/s的平均速度在列管换热器的管间沿轴向流动,离开换热器时甲烷温度为30℃,换热器外壳内径为190mm,管束由37根ф19×2的钢管组成,试求甲烷对管壁的对流传热系数。
4-15 温度为90℃的甲苯以1500kg/h的流量流过直径为ф57×3.5mm、弯曲半径为0.6m的蛇管换热器而被冷却至30℃,试求甲苯对蛇管的对流传热系数。
4-16 流量为720kg/h的常压饱和蒸汽在直立的列管换热器的列管外冷凝。
换热器的列管直径为ф25×2.5mm,长为2m。
列管外壁面温度为94℃。
试按冷凝要求估算列管的根数(假设列管内侧可满足要求)。
换热器的热损失可以忽略。
4-17 实验测定列管换热器的总传热系数时,水在换热器的列管内作湍流流动,管外为饱和蒸汽冷凝。
换热器壳程换热系数计算__概述说明以及解释
换热器壳程换热系数计算概述说明以及解释1. 引言1.1 概述换热器是一种常用的热交换设备,广泛应用于工业生产、能源系统以及建筑等领域。
它通过在不同流体之间传递热量,实现能源的高效利用和节能减排。
而换热器壳程换热系数是评估换热器性能的重要指标之一。
本篇文章主要围绕“换热器壳程换热系数计算”展开讨论与探究。
通过对壳程换热系数的定义、计算方法和影响因素进行详细阐述,旨在帮助读者更好地理解和应用该关键参数。
1.2 文章结构本文共分为引言、正文、结论和参考文献四个部分。
其中,引言部分进行了概述说明以及对文章结构进行简要介绍;正文部分将详细探讨换热器壳程换热系数的计算方法和相关公式;接着,在正文的基础上,我们进一步分析了影响壳程换热系数的因素,并提供了相应的调整方法;最后,结论部分对全文进行总结,并展望了未来对于换热器壳程换热系数计算的应用前景;最后,我们将列举相关的参考文献,供读者深入学习和了解。
1.3 目的本文旨在介绍和解释换热器壳程换热系数的计算方法和意义,帮助读者更好地理解该参数对于换热器性能评估的重要性。
通过阐述换热器壳程换热系数的定义与意义、计算方法及公式、影响因素和调整方法,读者可以掌握相应的知识和技巧,从而有助于实际工程中的设计与运行优化。
请注意,引言部分仅为文章开头,所提供内容较为简要。
2. 正文换热器壳程换热系数计算是研究换热器中壳程传热性能的重要内容。
在换热器中,壳程换热系数是评价换热性能的关键参数之一,它描述了流体在换热器管束与壳体之间传递过程中的传热效率。
2.1 换热器壳程换热系数的定义与意义换热器壳程换热系数是指单位时间内通过单位面积的传导、对流和辐射三种方式传递到外部空气或流体的总热量与温度差之比。
它反映了充分利用和提高流体与管束界面之间温差,实现有效传导、对流和辐射以及减少传递阻力等方面所起到的作用。
2.2 壳程换热系数的计算方法和公式说明壳程换热系数的计算通常基于经验公式或理论模型。
热交换器原理与设计答案
热交换器原理与设计答案【篇一:过控习题参考答案】控制通道?何谓干扰通道?它们的特性对控制系统质量有什么影响?控制通道——是指操纵变量与被控变量之间的信号联系;干扰通道——是指干扰作用与被控变量之间的信号联系。
控制通道静态放大倍数越大,系统灵敏度越高,余差越小。
但随着静态放大倍数的增大,系统的稳定性变差。
控制通道时间常数越大,经过的容量数越多,系统的工作频率越低,控制越不及时,过渡过程时间越长,系统的质量越低,但也不是越小越好,太小会使系统的稳定性下降,因此应该适当小一些。
控制通道纯滞后的存在不仅使系统控制不及时,使动态偏差增大,而且还还会使系统的稳定性降低。
干扰通道放大倍数越大,系统的余差也越大,即控制质量越差。
干扰通道时间常数越大,阶数越高,或者说干扰进入系统的位置越远离被控变量测量点而靠近控制阀,干扰对被控变量的影响越小,系统的质量则越高。
1.2 如何选择操纵变量?1)考虑工艺的合理性和可实现性;2)控制通道静态放大倍数大于干扰通道静态放大倍数;3)控制通道时间常数应适当小一些为好,但不易过小,一般要求小于干扰通道时间常数。
干扰动通道时间常数越大越好,阶数越高越好。
4)控制通道纯滞后越小越好。
1.5图1-42为一蒸汽加热设备,利用蒸汽将物料加热到所需温度后排出。
试问:? 影响物料出口温度的主要因素有哪些?? 如果要设计一温度控制系统,你认为被控变量与操纵变量应选谁?为什么?? 如果物料在温度过低时会凝结,应如何选择控制阀的开闭形式及控制器的正反作用?答:? 影响物料出口温度的因素主要有蒸汽的流量和温度、搅拌器的搅拌速度、物料的流量和入口温度。
? 被控变量应选择物料的出口温度,操纵变量应选择蒸汽流量。
物料的出口温度是工艺要求的直接质量指标,测试技术成熟、成本低,应当选作被控变量。
可选作操纵变量的因数有两个:蒸汽流量、物料流量。
后者工艺不合理,因而只能选蒸汽流量作为操纵变量。
? 控制阀应选择气关阀,控制器选择正作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P G2i [2(0 1) Pi 2Pi i
f
A A0
m i
]
G2i
2Pi
[(1
2
Kc
)
(1
2
Ke
)
0 i
]
3)翅片管
流动垂直于翅片管,可以将进出口损失并入芯子:
P
G 2i
[2(
0
1)
f
A m ]
Pi 2Pi i
A0 i
3 回热器 1)具有连续柱形通道的基体,与板翅式计算相同。 2)多孔介质材料基体,进出口损失并入摩擦系数中。
换热器理论与分析
第四章 换热器的压降分析
主要压降: 1 换热器芯子(内部)压降 2 进出口,集流管,联箱,接管压降
主要压降是换热器芯子(内部)压降 流道内充分发展层流流动,单位面积的摩擦功率:
E
3(Biblioteka 1)3 fRe3
2 2 Dh
其中,f :范宁摩擦系数 光滑圆管内充分发展湍流:
f 0.046 Re 0.2
,其中
Pa
Pi P0 2
, Tm 是整体
平均温度。G为最小自由流通面积计算的质量流速。
芯子的一侧流体压降:
P G2i [Kc (1 2 ) 2(0 1) f A m (1 2 Ke) 0
Pi 2Pi
i
A0 i
i
北京交通大学
换热器理论与分析
一般,芯子内部摩擦项占总压降的90%以上,对于液体,进出 口损失可以不计;对于气体,低σ 、短 L 高 Re 进出口损失项较 大,Kc、Ke可以查有关曲线。
注意
rh
Dh 4
水力半径
NTU 单侧
0
L rh
St
St h Nu Gcp Re Pr
G W 质量流速
A0
北京交通大学
换热器理论与分析
P G2m f A
Pi
2Pi A0
可以改写为:
V12
2(P1 / 1)
P / P1 1 NTU单侧 m
St f
0
以上公式可以用于迭代计算来确定V1 。 1)首先根据设计要求估算每侧允许的压降及估算NTU单侧; 2)根据已知的e值计算总NTU; 3)利用“不计导热热阻和污垢热阻时 的总NTU数”求得
NTU单侧,最后利用“芯子内流速方程” 迭代来求得芯子 内流速V1。
北京交通大学
换热器理论与分析
第二节 流动突然收缩和膨胀的压力损失系数 流动收缩和膨胀的压力损失系数Kc和Ke Kc和Ke与流道结构形式有关,有时与Re也有关。 Kc和Ke可以查有关曲线。
北京交通大学
北京交通大学
换热器理论与分析 北京交通大学
换热器理论与分析
3)芯子出口压降 P34,流动截面突然扩大引起的压力变化, 流道突扩引起的不可逆损失。
因而 其中
P P12 P23 P34
P12
G 2i
2
(1 2 )
Kc
G 21
2
P23
G 2i
2
f
A m A0 i
G2 (0 i )
P34
G 20
北京交通大学
换热器理论与分析
因而有:
0.046 0.2 W 2.8
E
2 2 A02.8 Dh0.2
W:质量流量 (kg/s) A0 :最小流通截面积 显然摩擦功率强烈依赖于流体密度ρ和粘度 μ ,湍流不明显。
对于低密度流体,E与 2 成反比,泵功率消耗很大。
第一节 换热器的压降 一 压降方程 1 板翅换热器 1)进入流道压降△P1-2 ,流道截面改变的加速,截面突然收缩。 2)芯子内部压降△P2-3 ,内部加热或冷却引起的密度与速度变 化导致的压降。
2 管翅换热器 1)管内 管内压降与板翅换热器通道计算相同 2)整体翅片 在有翅侧芯子总压降中各分量与板翅式一样,而进出口损失
是基于翅片前缘(尾缘)处的流通面积。若流通面积与前缘来
流迎面面积比为 ,前缘处质量流速为 G , 有:G G
北京交通大学
换热器理论与分析
根据 查取Kc、Ke,芯子的总压降为:
2
(1 2 )
Ke
G 20
2
北京交通大学
换热器理论与分析
σ为最小流道截面积与来流迎面面积之比。Kc、Ke为流动收缩
与膨胀压力损失系数。一般 P12 和 P34 很小。
近似有 1 i
4
0 。平均比容 m
1
A
dA
A0
对于液体换热
器,若
C
1
,非顺流布置时
m
i
0
2
,有相变或水冷
时, C 0
,
m
RTm Pa
3)流体垂直流动时,附属压降(克服位能)P m gL
北京交通大学
换热器理论与分析
二 芯子内的流速方程
换热器的传热性能和压降是两个主要参数(因素)。
通常换热器的进出口压降较小,同时流动加速与减速损失可
以抵消,在流速方程中不考虑。
因而有:
P G2m f A
Pi
2Pi A0
换热器一侧流道的传热单元数: