小学数学深度学习系列培训材料

合集下载

小学数学教学中的“深度学习”

小学数学教学中的“深度学习”

小学数学教学中的“深度学习”作者:赵雅清来源:《考试与评价》2017年第10期小学数学的“深度学习”问题,作为教研课题已经研究一年多了,觉得有许多东西值得我们去思考,去改革,才能使我们的教育适应时代发展要求。

深度学习是指在教师引领下,学生围绕具有挑战性的学习主题,全身心积极参与、体验成功、获得发展的有意义的学习过程。

基于这样的理念精神,我们在课堂上进行了深度学习课改项目的初步实践,充分发挥现代教学的优势,从注重创设有效情境,激发学生深度学习的欲望;注重数学知识的形成过程,提供学生深度学习的机会;注重合作交流,培养学生深度学习的能力几方面进行阐述。

一、注重创设有效情境,激发学生深度学习的欲望新的课程改革已经进行很多年,但我们依然还经常看到在我们的小学数学课堂上,很多教师为了顺利完成课前预设,将教学内容做好铺垫,减小坡度,使学生的探究的过程非常顺利。

很多时候,学生的探究和小组交流仅仅流于形式,即便没有真正完成,教师就已经终止了学生的继续探究,剩下的内容由教师按照设计好的方案进行引领,最终达到完成教学任务的目的。

教师没有关注学生的认知起点和原始问题,没能很好地引领学生利用原有的知识和方法进行探究新领域。

因而,在大多数的课堂上,我们很少看到学生独立思考时紧锁的双眉,更少看到学生为捍卫自己想法时的激烈争辩。

也许,我们可以高喊其目的是为了提高课堂教学效率,但这样做的结果却抹掉了学生自主探究的热情,桎梏了学生深度学习能力的养成。

在教学过程中,教师要依据课程标准的总体目标及教学具体内容,巧妙地创设教学情境,合理运用情境,使之更好地服务于教学。

把简单刻板的教与学融化在多姿多彩的真实情境中,可以有效地提高学生的学习积极性,化抽象乏味为兴趣,使学生乐学、会学,主动轻松获取知识。

除了帮助学生不断明确学习目的,使他们从获得知识的重要意义发生兴趣和增强求知欲外,最重要的还是引发学生对知识本身的兴趣。

教学中教师善于提出一些新颖、富有吸引力的问题,会创设一些诱人的学习情境,使学生一开始就对新问题产生浓厚的兴趣。

促进深度学习的小学数学自主学习手册设计

促进深度学习的小学数学自主学习手册设计

促进深度学习的小学数学自主学习手册设计作者:李雪峰宫莉来源:《北京教育·普教版》2021年第10期深度学习是一种基于高阶思维发展的理解性学习,在促进学生健康成长,使其形成完善的学习品格方面具有重要意义。

对小学生而言,自主学习能力的培养是重点也是难点,因此,如何将自主学习和深度学习应用于小学教学是亟待解决的问题。

我们在教学中以实践案例为依据,通过设计“自主学习手册”,引导学生从自主学习走向深度学习。

数学自主学习手册的设计分为三版。

第一版以单元学习为目标,通过梳理某一个单元的知识,让学生学会如何在单元学习前、中、后实现对知识的深度思考。

一是单元预览,展示个人学前基础,提出困惑和问题,通过思维导图体现个人对知识的理解。

二是错题积累,汇总单元学习中的典型错题,分析个人学习中的问题,巩固提高。

三是期末总结,仍以思维导图为主线,完成知识复习,建立联系。

第一版从应用角度看有一定的效果,能够彰显优秀学生思维的深度,但对于大多数学生而言,书写内容过多,课前预习填写部分有难度,学生使用起来比较被动,把单元学习集中在课前预习和课后整理上,不能凸显课堂学习的过程,深度思考体现不足。

针对存在的问题,我们修改完成了手册的第二版。

一是设定了单元目标,对单元整体学习有一个总体指导。

二是单元预习页内容缩减,提示有针对性,并建立评价机制。

整册课本学习内容,以重点单元为突破进行记录。

三是加入课堂学习笔记及课堂评价内容,增强互动性和时效性。

第二版改进后的效果有明显提升,不仅促进了学生的深度思考,也在完成的闭环中使学习评价更具有科学性和完整性。

第二版内容对学生自主完成指导性强,但对学习能力偏弱的学生来说,仍然不能把知识学习和自主完成深度思考建立联系。

因此,我们有了第三版的构想:以手册框架为抓手,倾向于在数学学科的学习轨迹中体现出学生在知识学习中的深度思考。

一是通过单元学前的书本阅读,从数学概念的整理角度,感受数学新旧知识之间的联系。

深度学习的理解与实践模式——以小学数学学科为例

深度学习的理解与实践模式——以小学数学学科为例

深度学习的理解与实践模式——以小学数学学科为例深度学习的理解与实践模式——以小学数学学科为例随着信息时代的到来,人工智能技术的发展日益迅猛。

深度学习作为人工智能的一个重要分支,已经在各个领域中取得了令人瞩目的成果。

小学数学作为学生基础学科的一部分,如何利用深度学习的理解与实践模式,来提高学生的学习效果和兴趣呢?深度学习是一种模拟人脑神经网络的机器学习方法,在数学学科中有着广泛的应用。

首先,深度学习可以通过构建适当的神经网络模型,实现小学数学知识的自动提取和分类。

对于数学问题的解决,传统的机器学习方法需要手动提取特征,而深度学习则可以通过学习样本数据的特征分布,自动学习到更加高效的特征表达。

例如,在小学数学题目中,利用深度学习可以构建一个神经网络模型,通过训练和优化,自动识别和分类题目的类型,为学生提供针对性的解题思路和策略。

同时,深度学习也可以通过构建智能辅助系统,提供个性化的学习支持和反馈。

在小学数学学习中,学生往往面临大量的习题和知识点的积累。

传统的教学方法难以满足不同学生的个性化需求,而深度学习可以通过对学生的学习数据进行分析和挖掘,为每个学生提供具体的学习路径和推荐的习题。

例如,可以构建一个智能的在线学习平台,根据学生的学习历史和表现,智能推荐适合的习题和学习资源,以帮助学生更好地掌握数学知识。

此外,深度学习还可以通过构建虚拟现实等技术,提供更加直观和趣味的数学学习环境。

在小学数学教学中,很多抽象的概念和问题往往难以理解和想象,学生往往容易产生学习阻碍情绪。

而深度学习可以通过虚拟现实等技术,将抽象的数学概念可视化,为学生提供更加直观和趣味的学习环境。

例如,在学习几何概念时,可以利用虚拟现实技术,让学生亲自操作和观察立体图形,深入理解几何知识。

当然,要实现深度学习在小学数学学科中的理解与实践,还需要解决一些问题。

首先,需要有足够的数据支持。

深度学习是基于样本数据的学习方法,因此需要收集大量的数学习题和学生学习数据,以构建强大的模型。

小学数学课堂里的深度学习

小学数学课堂里的深度学习

小学数学课堂里的深度学习所有学科的认知就其构成方式来说,均可包括表面结构与深层结构。

表层结构展示的是科学知识的最表层,即对科学知识自身的描述性含义和解释性含义。

而深层结构则是指蕴藏于科学知识中的思考方法和价值观,它展示的是对科学知识的深刻含义,以及学习者积极的内部学习动机。

小学阶段的深度学习并非简单的理解为教学内容上的深度和难度,而是着眼于学生对已知知识的整体理解上促进学生知识建构和学习方法的迁移,发展学生的技能和策略,让学生在解决问题过程中提高核心素养。

近年来,在教育新课标改革的促进下,"深度学习"的教育思想也得到了普遍的提倡,并强调在课堂上将学习者的思想深度引入到学习的发现过程中去,本文就深度学习在数学教学中的实际应用进行研究。

一、深入钻研教材。

教科书的编写以定性化、规范化的形态把课程的知识固定下来。

教科书仅仅呈现了知识点的表层结果,而弱化了探究的基本步骤,因此老师在备课时就必须进行深入挖掘形成这种表层结论的思维过程,这就需要老师对教材钻的深、研的透,并了解知识点之间的横向联系,关注其纵向衔接。

从教学设计上深入到每节课的教学目标与内容,并明确知识点之间的联系,从而引领学生从认知课堂逐步走向认识探索,并引领学生突破表面的认知符号学习,直接进入知识点内在的逻辑与意义,帮助学生建立探究环境,彻底掌握知识并能活学活用,从而实现深度学习。

二、深入培养问题意识。

深度学习的课程设计重心在于精心设计的问题与学习任务。

初为教师时,最怕"有问题的课堂",怕学生活跃的思维影响教学进度,怕偏离主题无法走向设定的方向。

但是"没有提问"的课堂,很难激起小学生的探索求知欲,学生的学习方式也变得很肤浅、流于形式,思维也很难得到发展。

唯有以问题引领数学课堂,引导他们提问,并激励学生对数学问题展开新思维,从而强化他们对发现问题、解决问题思维的训练,推动他们的思维深度的发展。

小学数学校本培训材料

小学数学校本培训材料

小学数学校本培训材料小学数学是培养学生数学素养的重要阶段,为了提高小学生数学学科知识和解题能力,学校会进行数学本培训。

以下是一份关于小学数学本培训的材料,详细介绍了培训的目的、方法和内容。

一、培训目的:1.提高小学生对数学的兴趣和学习动力;2.增强小学生的数学思维能力和解题能力;3.巩固、拓宽小学生的数学基础知识;4.培养小学生良好的数学学习方法和习惯。

二、培训方法:1.兴趣导入:通过有趣的数学故事、游戏等方式,激发学生对数学的兴趣和好奇心。

2.互动讲解:老师和学生进行互动交流,引导学生思考和探索,提高学生的学习参与度。

3.课堂练习:结合教学内容,布置练习题,帮助学生巩固所学知识和提高解题能力。

4.小组合作:组织学生进行小组合作学习,培养合作意识和团队精神,提高学生的学习效果。

三、培训内容:1.数的认识:培养学生对数字的理解和认识,包括数的读法、数的大小比较、数的顺序等。

2.加减法运算:教授简单的加法和减法运算,包括口算、竖式计算等不同的运算方法。

3.乘除法运算:逐步引入乘法和除法运算,教授算式的写法以及乘法口诀、除法口诀。

4.数学应用题:通过实际生活中的问题,引导学生将所学知识运用到实际情境中进行解决,培养学生的应用能力。

5.几何图形:教授常见的平面图形、立体图形的名称和基本特征,培养学生对几何图形的认识和判断能力。

6.数据分析:引导学生进行数据的分析和统计,培养学生的数据观察和处理能力。

四、培训时间和方式:1.培训时间:每周进行一次数学本培训,每次培训时间约为1小时。

2.培训方式:采用线下教学方式进行培训,在教室内开展课堂教学和练习。

五、培训效果评估:1.小测验:培训结束后,进行小测验,检测学生对培训内容的掌握情况。

2.学习反馈:收集学生对培训的反馈和意见,及时调整和改进培训教学方法。

以上是一份关于小学数学本培训的材料,通过培养学生对数学的兴趣和解题能力,提高他们的数学学科知识水平。

通过培训,希望能够激发学生对数学的热爱,培养他们良好的学习方法和习惯,为他们未来的学习打下坚实的基础。

浅谈小学数学深度学习

浅谈小学数学深度学习

浅谈小学数学深度学习山东省乳山市第一实验小学264500深度学习立足于理解学习基础之上,以培养学生思维能力、反思能力和学以致用能力为目标的一种学习。

深度学习就是推动学生积极、专心和评判性学习,将所学知识运用到生活中。

数学深度学习是一个学生认知结构逐步完善的过程。

这个阶段,学生掌握知识、主动思考和积累生活经验,为了避免深度学习流于形式,帮助学生摆脱被动接受和机械训练,落到实处,从而更好地发展思维、丰富情感、端正态度和建立正确价值观。

一、立足生活,构建情境数学来源于生活,让数学充满生活气息,是激发学生学习主动性的有效途径。

一些数学知识过于抽象,教师单凭语言讲解很难阐述清楚,构建一些学生熟悉场景,有助于发展学生思维,为高效课堂起到锦上添花之效果。

一个良好情境,能激发学生的求知欲,有利于积极探究,形成较强的创新能力,这需要学生熟悉素材,曾经经历。

理解和生活是密切相连的,这种呈现形式对于学生而言具有亲切感,便于学生理解和接受,有利于学生产生浓厚的兴趣,激发学生求知欲,尤为重要的是将所学知识辅助实践,增强学生学以致用的能力。

二、运用拓展,探索新知识现代教育教学研究表明,数学新知识是旧知识的拓展,新知识和旧知识具有内在关联,新知识和旧知识联系越紧密,越容易实现知识拓展。

为此,在课堂教学中,小学数学教师深入研究新知识和旧知识切合点,构建情境,在学生现有知识的基础上,导出更多新知识。

在学习新知识之前,学生已经熟悉了旧知识,新知识和旧知识具有一定联系也有差异,如果教师原封不动地将新知识强加给学生,会给学生记忆带来较大难度,学生思维也得不到提高,为此,在课堂教学中,教师要指导学生勤于思考,动手实践,在旧知识向新知识转化汇总引导学生思考转变目的将那些陌生知识转化为已经掌握的旧知识,再转化过程汇总,得出新知识和旧知识的联系。

在课堂教学中,小学数学教师要指导学生反思新知识和旧知识之间的关联,以特定主题进行拓展,一般而言,新知识和旧知识之间不会毫无关联,新知识和旧知识都有特定联系,这需要小学数学教师深度解释这些联系。

基于深度学习的小学数学教学

基于深度学习的小学数学教学

基于深度学习的小学数学教学1. 引言1.1 背景介绍小学数学教育是学生学习的基础,对于培养学生的逻辑思维能力、数学素养和解决问题的能力起着至关重要的作用。

传统的小学数学教学模式存在着教学资源有限、教学方法单一、教学效果不佳等问题。

随着人工智能技术的发展,深度学习作为其中的一个重要分支已经在多个领域得到了广泛的应用,其中也包括教育领域。

深度学习技术基于大量数据的学习和模式识别,能够帮助教师更好地理解学生的学习情况,个性化地指导学生学习,并提高教学效果。

在小学数学教学中,利用深度学习技术可以更好地针对学生的特点和学习需求进行个性化的教学设计,提高教学的针对性和有效性。

本文将从深度学习在数学教学中的应用、在小学数学教学中的优势、小学数学知识点的深度学习模型设计、实践案例分析以及教学效果评估等方面进行探讨,以期为小学数学教学提供新的思路和方法。

1.2 研究意义小学数学教学一直是教育领域中的重要议题之一。

随着科技的不断发展,深度学习作为人工智能领域中的重要分支,为数学教学提供了新的思路和方法。

在当前教育环境下,传统的教学模式已经无法满足学生的需求,因此有必要研究基于深度学习的小学数学教学。

深度学习在数学教学中的应用可以帮助提高教学效率,让学生更好地理解数学知识,提高他们的学习兴趣和积极性。

通过深度学习技术,可以根据学生的不同特点和学习进度,为他们提供个性化的学习内容和辅助教学,帮助他们更好地掌握数学知识。

研究基于深度学习的小学数学教学具有重要的现实意义和教育价值。

这不仅可以提高小学生的数学学习成绩,还可以培养他们的创新能力和解决问题的能力,为他们未来的学习和发展奠定坚实的基础。

深度学习为小学数学教学带来了新的可能性和挑战,也为教育改革和发展指明了方向。

1.3 研究对象小学生是本研究的主要研究对象,其作为数学学科的学习者和实践者在教学实践中具有重要的地位和作用。

小学生作为学习者,正处于认知发展的关键阶段,他们对数学知识的吸收和理解能力较强,但也存在认知层次较低和学习习惯尚未养成等特点。

小学数学骨干教师专题讲座《思维导图引领深度学习和深度思考》

小学数学骨干教师专题讲座《思维导图引领深度学习和深度思考》

小学数学骨干教师专题讲座《思维导图引领深度学习和深度思考》时间:地点:参加:主讲人:主题:思维导图引领深度学习和深度思考内容:一、前言美国学者Ference Marton和Roger Saljo借鉴了布卢姆认知维度层次划分理论,创造性地提出了深度学习的概念。

按照布卢姆认知领域学习目标分类所对应的“记忆、理解、应用、分析、评价及创造”这六个层次,浅层学习的认知水平只停留在“记忆、理解”这两个层次,处于低阶思维活动;而深度学习的认知水平则对应“应用、分析、评价、创造”这四个较高级的认知层次,处于高阶思维活动。

深度学习主要特点表现在四个方面。

第一,深度学习注重知识学习的批判理解。

第二,深度学习强调学习内容的有机整合。

第三,深度学习着意学习过程的建构反思。

第四,深度学习重视学习的迁移运用和问题解决①。

整合课,是一种“能力提升、拓展式学习”的课堂学习方式。

借助练习、复习、讲评等有效方式,将单元课、学时课形成的知识、思想、方法进行综合性和实践训练,培养学生的“知识应用、技能形成、认知拓展、巩固深化、能力提升”等与学习力与创造力相关的核心素养。

思维导图,运用图文并重的技巧,把各级主题的关系用相互隶属与相关的层级图表现出来,它简单却又很有效,是一种实用性的思维工具②。

整合课中,借助思维导图能有效地推进学生的深度学习,促进学生的深度思考。

二、点线成网,促进知识整合深度学习,强调整合,建构联系。

经过一段时间的学习,学生对数学知识有了初步的了解,但还是比较零散;同时,由于众多的知识堆积在一起,有些概念容易混淆。

整合课中,教师可以用思维导图引导学生对知识进行辨析整理,连点成线,结线成面,形成知识网络。

在学习完《比的认识》这一单元后,布置了前置作业,让学生利用思维导图整理本单元的知识,并制作小报。

大部分学生能够将《比的认识》分成“生活中的比、比的化简、比的应用”等版块,有的还增加了“我的问题”。

内容既有知识点的罗列,又有方法的列举,还有“图形、算式、符号”等个性化的内容,生动有序的展示着孩子对本单元知识的理解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录:1、数学“深度学习”:学生的建模是“打碎和穿越”2、数学“深度学习”:必要的交流模块的设计在互动环节的作用3、数学“深度学习”:教师介入问题的设计在促使学生深度学习中的作用4、数学“深度学习”:外篇——试卷讲评课想到的数学“深度学习”系列培训之学生的建模是“打碎和穿越”学生的建模不是简单的体验和探究,更不是善意的告知和替代性的总结规律,学生的建模应该是打碎和穿越。

学生的学习都是在必要的情景中完成的,而小学阶段的情景有的时候是重复的,只不过在不同的阶段要掌握的技能和培养能力不同。

这就导致了一种情况,孩子们在使用旧的知识和技能解决问题后就没有了兴趣去学习新的方法和技能,更有甚至,由于老师没有在必要的时机点明本节课的学习目标任务,而恰恰又有“先知”的学生有了用新知识和新技能解决问题的做法,没有经验的老师就让孩子讲了、听了,却没有明确的告诉所有的孩子这就是我们这节课要研究的新内容,那么在学生的心目中,必然会固执的认为这道题用老方法解决干嘛要用我不熟悉的方法来?我不用听、不需再费脑研究了,反正这道题我会。

为了解决这个问题,教师有必要在课堂中点出哪些知识和方法是我们这节课要研究的,要给孩子时间就这个问题再研究,再思考。

在这一点上,如果我们引起了重视,那么我们就可以进一步关注学生的新的建模过程,理解所谓的“打碎”和“穿越”的概念。

分别以四年级和五年级的一道题来解释。

1.牛有20头,牛比羊的3倍多2只,羊有多少头?2.有一瓶糖水500克,其中糖和水的比是1:4,请问这瓶饮料中糖有多少克?第一道题的通常正确做法是(20-2)÷3 ;通常的错误做法是20÷3-2,这其实都是综合法,是建立在数量关系的综合分析上得出来的。

而处理这道题目在四年级,我们希望孩子们能够使用分析法来解决问题,换句话说,这道题最好能让孩子体验到方程解决问题的优越性。

那怎么处理呢?我感觉,首先还是要让孩子们经历综合法的过程,这是有必要的。

在经过学生的交流后,一定会出现依据画图和数量关系的方法来讲解的情况。

在这个基础上,老师要点明,使用传统的思考方法处理这样的题目是有难度的,这一点我们刚才已经体会到了,那么有没有一种简化分析问题的过程的方法呢?我们可以让同学们带着这个要求进行再思考,并进一步提示:如果在这道题目中羊的只数知道了,牛的只数变成问题,解决起来是否还存在刚才的困难呢?既然如此,我们能不能利用四年级学习的新技能,把羊未知的问题巧妙的解决掉呢?使得问题变得容易操作?当学生想到未知数x的时候,教师要点明为了便于观察数量之间的关系,在分析时我们首先应该写出题目中的基本数量关系。

如:羊×3+2=牛写好这个以后,我们让孩子把其他的信息,牛的20只填到关系式里面,就变成了羊×3+2=20老师不要以为孩子就能够懂了,很多孩子任然会停留在综合法的基础上,他们会得出(20-2)÷2=x出现这种情况的原因就是学生的固有的思维模式没有被打碎,在学生的大脑中思考的是如何解决这道题目,那么学生的大脑就会顺着固有的思维台阶一步一步的走向题目,而不是在原有的台阶上做一个调整,这里可以比喻或是加了扶梯或是设了时空穿越门。

这时候老师可以进一步提要求,师:大家提出不知道的量我们要设x,现在我们就把羊设成x只,好了现在我们再写写这个关系是式,是什么?(这个过程就是打碎和穿越的过程,也是给学生重新建模的过程)得出:x×3+2=20这个关系式好面熟,这是个?你们看,我们只是把不知道的数量换成了字母x,就把数量关系式变成了这个样子。

这就——方程。

变成了方程以后,就用到了我们学过的新本领,解方程。

解出的这个x就是我们想要的。

师:你们看用这种方法,与传统的方法比较,我们主要是把解题的重点放在哪里?对,列出数量关系式,确定方程,然后我们把分析这些关系和运算都交给了解方程这个过程。

换句话说,原来的方法,需要进一步分析他们之间的关系,然后决定他们之间如何运算顺序和运算方法。

再以五年级的题目为例,学生一般采用的方式是归一法,或者是按比例分配的方法。

即:500÷(1+4)×……或者 500×1/1+4 等等在原有方法交流的基础上,教师总结,为了方便分析,我们可以写出题目中的数量关系式。

当学生写出:糖:水=1:4 后,教师可以引导学生观察题目中的已知条件,既然已知糖水是500克,那么我们能不能写出糖:糖水= ?从而得出糖:糖水=1:5我们可以试着让孩子把题目中的条件用数换下来糖:500=1:5让孩子利用这个式子来解决问题,你会发现,学生仍然会进一步的确定自己原有的方法,即:归一法 500÷5×1,也会使用前项 1×100 和后项 5×100 这样,比的基本性质来解决。

那么,怎么办?和上面一样,师:我们假设糖是x克,我们把这个关系式再写一遍,X:500=1:5你们发现了什么?是的,我们可以用学到的解比例来完成了。

再比如,在研究这样一道题目。

在一幅1:100图纸上,图上测量的比萨斜塔的高度是54.5厘米,请问它的实际高度是多少米?其中有一个学生就解设实际的高度是x米,结果列出了一个54.5:x=1:100,并进一步得出1x=54.5×100在这个孩子进行了解释以后,就有孩子问怎么等号右边的1:100,就能变成54.5×100呢?孩子说,解比例啊。

提问这个孩子幡然醒悟,明白了。

这个实例就说明虽然我们已经一步步引导孩子写出了方程或比例,但孩子脑子里并没有把当前的实际情况与自己掌握的技能结合,这时候就需要我们老师来点破,当然,能让孩子们自己提出并互相启发解决就更完美了。

师:我们先用条件写出关系式,填上所有的数据后,就神奇的变成了比例(或方程)了,解比例(方程)就可以解决这个问题!在这样的基础上,我们再继续巩固,把以前的他们能用3.4.5年级曾经解决过的题目拿出来,让他们试着写出关系式,直接转换成比例来做,就完成了(打碎和穿越的工作,这样新的模型就在他们的脑子里面顺理成章的建立起来) 其实为什么会说是穿越?我时常感觉学生在解题过程中,那个题目就在那,而题目现在就停留在很多层的空间节点上,空间与空间的穿越是需要打碎的,学生思考问题时的思维一定是在原有空间上移动,想让孩子一下子跳跃到另一个空间再移动到同一个节点上是非常不容易的。

说白了,让孩子换个角度去思考问题是我们培养他们深度学习的一种方法,是我们作为老师要明白的必须的学习原理。

以上的论述就从根本上解释了,为什么有时候上了一节课,尤其是高年级,学生到下课收获甚少,甚至是疑团层层,搞不明白老师在讲什么,只能还是使用的老方法解决问题,而新的知识解决问题的情况不好的主要原因。

而由于新的方法没有掌握,也就是建模失败后,学生后续的学习由于没有新知识做基础,就越发的困难,因为他们是在用第一个空间规律认识第二、第三空间的问题。

学生深度学习系列培训之必要的交流模块的设计在互动环节的作用问题:交流模块的设计被忽视,学生放出去回不来。

其实,我们研究的问题就像一个圆心,而教师设计的交流模块就是一条绳子,我们暂且把学生交流出来的东西认作是这个绳子画出的圆包含的内容,那么这些内容就不会离开研究的问题很远。

比如:四年级在讲轴对称图形时,教师给了孩子不同的平面图形。

让孩子研究对称现象,那么孩子在进行交流时,基本上是这样说的:我这样,两面得到了都是正方形,所以就是对称图形;我这样,我沿着虚线怎么样等等,可以说五花八门,而且老师也不知道该怎么介入,比如:你哪里来的虚线?你说的虚线在哪,怎么确定的?等等问题其实,如果老师设计的交流模块合理,那么需要追问的次数就会较少,也就是说较少了不必要的问题,节省了时间,给学生高度集中注意力的时间提效。

那么该怎么做呢?我们可以试着这么设计交流模块:请介绍你在图形研究对称现象时,做了哪些事(对折或从图形中间划线后对折);你发现了什么现象(重合);这个现象说明了什么;你还有什么想和大家交流的。

这个交流指导可以投到屏幕上,也可以清清楚楚地、节奏慢一点的给孩子要求清出。

这样孩子就会在“对折”、“对折后重合”“折痕所在的直线”“对称轴”这些关键的知识点上反复回味、反刍、自悟。

学生深度学习系列培训之教师介入问题的设计在促使学生深度学习中的作用其实想谈的这个问题是很长时间以来困惑我的。

有的时候我也是是懂非懂,总是想把这个东西抓出来,但去做的时候就感觉粘连不清。

后来我觉得,既然我们授课是有目标的,那为什么不开门见山的就告诉孩子,我们这节课来研究什么呢?但后来发现,不但是其他老师,包括我,有时候也会做不到。

我们总是有意无意中就被孩子带跑了,这种现象时有发生,而且我们都不愿意承认,只有上到课中或者下了课看到越来越懒散的学生才知道大部分孩子根本没有听懂我们在干什么。

举一个例子。

二年级的三位数乘一位数的计算。

教师一般会呈现情景窗,让孩子提出问题。

然后学生尝试解决,得到312+312+312=936;312×3=936。

到了这里好多老师就不会讲了,尤其是当绝大部分孩子采用的是312×3=936的时候。

为什么呢?其实还是老师的教学目标不清楚,脑子里想的就是孩子都会做我怎么讲?其实,虽然孩子做出来了,但这里是两种情况的:一是有孩子是用的加法,他们并不知道乘法的过程;二是即便使用乘法做了,这些孩子也只是受到了知识正迁移的影响(两位数乘一位数),具体为什么可以这么做孩子并没有思考。

这时就需要我们老师来完成了。

首先我们得知道就这节课的授课目标。

一个是怎么算(算法),一个是为什么这么算(算理)。

好,现在我们作如下处理。

(如果你细心会发现,大部分的课都可以这样处理)。

师交流设计:说说自己的结果,并讲讲自己的思路。

师介入:对这两种方法,大家怎么看?(这个介入不是每节课都有的)师问题设计(很重要):既然用乘法简单,我们这节课就来研究像312×3这样的三位数乘一位数的乘法计算,(教师边说边板书课题,这一步很重要,因为这是在告诉孩子我们学习什么知识,我们不是在讲这一道题,这就避免了部分孩子以为我都算对了,老师你怎么还讲?),接着的话更重要了,教师:刚才已经采用乘法的孩子,想一想你是怎样一步步计算出来的?试着先自己说一说为什么这样做?刚才没有采用乘法的孩子,试一试312×3怎样计算,如果算出来,思考一下为什么?这样的问题设计就把本节课的目标讲的非常清楚了,而且对不同采取不同做法的孩子都提出了非常必要合适的要求,而这个要求看似不同,其实是一样的,那就是“孩子们,先说说算法,再说说为什么能这么算”。

接下来其实又涉及到了交流模块的设计了。

在交流的时候,可能孩子直接用横式来介绍,也有可能用竖式来介绍,这都无关紧要。

相关文档
最新文档