电容器相关知识要点

合集下载

高一物理《电容器的电容》知识点总结

高一物理《电容器的电容》知识点总结

高一物理《电容器的电容》知识点总结一、电容器1.基本构造:任何两个彼此绝缘又相距很近的导体,都可以看成一个电容器.2.充电、放电:使电容器两个极板分别带上等量异种电荷,这个过程叫充电.使电容器两极板上的电荷中和,电容器不再带电,这个过程叫放电.3.从能量的角度区分充电与放电:充电是从电源获得能量储存在电容器中,放电是把电容器中的能量转化为其他形式的能量.4.电容器的电荷量:其中一个极板所带电荷量的绝对值.二、电容1.定义:电容器所带电荷量Q 与电容器两极板之间的电势差U 之比.2.定义式:C =Q U. 3.单位:电容的国际单位是法拉,符号为F ,常用的单位还有微法和皮法,1 F =106 μF =1012 pF .4.物理意义:电容器的电容是表示电容器容纳电荷本领的物理量,在数值上等于使两极板之间的电势差为1 V 时,电容器所带的电荷量.5.击穿电压与额定电压(1)击穿电压:电介质不被击穿时加在电容器两极板上的极限电压,若电压超过这一限度,电容器就会损坏.(2)额定电压:电容器外壳上标的工作电压,也是电容器正常工作所能承受的最大电压,额定电压比击穿电压低.三、平行板电容器的电容1.结构:由两个平行且彼此绝缘的金属板构成.2.电容的决定因素:电容C 与两极板间电介质的相对介电常数εr 成正比,跟极板的正对面积S 成正比,跟极板间的距离d 成反比.3.电容的决定式:C =εr S 4πkd ,εr为电介质的相对介电常数,k 为静电力常量.当两极板间是真空时,C =S 4πkd. 四、电容器深度理解1.静电计实质上也是一种验电器,把验电器的金属球与一个导体连接,金属外壳与另一个导体相连(或者金属外壳与另一个导体同时接地),从验电器指针偏转角度的大小可以推知两个导体间电势差的大小.2.C =Q U 与C =εr S 4πkd的比较 (1)C =Q U 是电容的定义式,对某一电容器来说,Q ∝U 但C =Q U不变,反映电容器容纳电荷本领的大小;(2)C =εr S 4πkd 是平行板电容器电容的决定式,C ∝εr ,C ∝S ,C ∝1d ,反映了影响电容大小的因素.3.平行板电容器动态问题的分析方法抓住不变量,分析变化量,紧抓三个公式:C =Q U 、E =U d 和C =εr S 4πkd4.平行板电容器的两类典型问题(1)开关S 保持闭合,两极板间的电势差U 恒定,Q =CU =εr SU 4πkd ∝εr S d ,E =U d ∝1d. (2)充电后断开S ,电荷量Q 恒定,U =Q C =4πkdQ εr S ∝d εr S ,E =U d =4πkQ εr S ∝1εr S.。

高中物理电容器知识点

高中物理电容器知识点

高中物理电容器知识点
电容器是一种用来储存电荷的电器元件,它被广泛应用于电子设备中。

在高中物理课程中,学生需要学习关于电容器的基础知识,包括定义、单位、量测、组装等。

一、电容器的定义
电容器是一种被用来储存电荷的电器元件。

当两个导体之间存在电势差时,需要一种介电质将它们隔开,并且在这种介电质中,电子可以移动。

这种介质的容量来衡量储存电荷的能力,我们称之为电容。

二、电容器的单位
电容的单位是法拉(F),在SI基本单位中,其符号为F。

一个法拉电容意味着当一个电容器上的电势差为1伏,所存储的电荷量为1库时,它的电容量就是1法拉。

三、电容器的量测
在实践中,我们使用一种称为法拉计或电容伏特计来量测电容器的电容。

当我们将一个电容器连接到电容伏特计中时,伏特计的指针会随着电容器上的电势差变化而移动。

通过手动调节电容伏特计的刻度,我们可以得知电容器的电容大小。

四、电容器的组装
在实践应用中,我们可以通过将两个导体隔开并在它们之间加入一种介质来组装一个电容器。

导体可以是任何形状,包
括平面、球面和圆柱形导体。

介质可以是空气、纸板、玻璃、塑料等非导体材料,以及异质材料组合。

在电容器中,导体扮演的是正电荷和负电荷的角色。

当电容器上存在电势差时,正、负电荷会被吸引并聚集在导体的两端。

当我们将电容器连接到电路中时,这些电荷会从一个导体流入电路,从而产生电流。

电容器知识点

电容器知识点

电容器知识点电容器是储存电荷能量的电子元件,它由两个带电体组成,其间隔有绝缘体隔离,当它们连接到电源时,电子从负极移动到正极,并在两个电极之间储存电荷。

电容器的主要作用是在电路中起储能和滤波作用,用于平稳电压,消除干扰。

电容器的基础知识:1.电容的定义电容是指电容器储存电荷的能力,单位是法拉(F)。

其定义为:在电场强度相等的条件下,电容器中储存电荷的比率。

2.电场电场是电荷周围空间内产生的特殊场。

两个带有电荷的物体之间产生的力是通过电场进行传递的。

3.图形符号电容器在电路中的图形符号是两个平行的线段,它们之间有一个对角线,与对角线相交的两个线段代表了电容器的两个电极,对角线代表绝缘材料。

4.电容器的类型电容器可分为电解电容器、塑料电容器、陶瓷电容器、纸介电容器等多种类型,不同类型的电容器具有不同的性能和适用场合。

5.电容的计算公式电容的计算公式为:C=Q/V,其中C代表电容,Q代表电荷,V代表电压。

电容器的工作原理:电容器的工作原理是基于电场的原理。

电容器由两个带有电荷的导体组成,之间有一层绝缘体,当它们连接到电源时,电子从负极移动到正极,电子被储存在电容器的电介质中,形成一个宏观的正负电势差。

当电容器的两个电极之间的电压发生变化时,储存在电容器中的电荷也会随之变化,电容器材料的绝缘特性决定了电容器储存电荷的能力。

电容器的应用:1.滤波电容器在电路中可以用于滤波。

例如,当电子流经电容器时,电容器能够吸收电子,并储存电荷,这样会使电子的流量减少,从而起到平稳电压的效果。

2.稳压电容器可以用于稳压作用。

在高峰值负载的情况下,电容器能够稳定电压,并保持恒定的电流流量,从而起到稳压的效果。

3.电源电容电容器也可以作为电源电容来使用。

在直流电源中,电容器可以平稳输出电压,并消除喇叭声和磁场干扰。

4.振荡电路电容器可以用于振荡电路。

例如,当电容器和电感器连接在一起时,可以通过它们之间交替储存电荷,从而产生振荡。

高二物理电容器知识点

高二物理电容器知识点

高二物理电容器知识点电容器是物理学中重要的电学元件,广泛应用于电子设备和电路中。

了解和掌握电容器的知识对于高中物理学习非常重要。

本文将介绍高二物理中的电容器知识点。

一、电容器基本概念电容器是由两个导体之间通过电介质隔离而构成的装置。

其中一个导体带正电荷,另一个导体带负电荷,二者之间存在电势差。

电容器的单位是法拉(F),符号为C。

电容器的容量取决于导体之间的距离和电介质介电常数。

二、平行板电容器平行板电容器是最简单的电容器,由两块平行金属板组成,两板之间填充电介质。

电容器的容量与两板面积A、板间距离d和电介质介电常数k有关。

容量C可以用公式C = kε0A/d表示,其中ε0为真空中的介电常数。

三、电容器的充放电过程1. 充电过程:当平行板电容器接入电源时,电荷会从电源的正极流向电容器的一极板,同时另一极板上的电荷流入电源的负极,直到电容器两极板上的电压达到电源电压为止。

2. 放电过程:当断开电源连接时,电容器会通过外电路放出储存的电荷,直到两极板上的电势差降至零。

四、串联和并联电容器1. 串联电容器:当多个电容器连接在同一电路上,其模拟电压相等,但电荷分布不均匀。

串联电容器的总容量为各个电容器倒数之和的倒数,即1/C = 1/C1 + 1/C2 + ...2. 并联电容器:当多个电容器的正极和负极相连时,其模拟电压相等,电荷分布均匀。

并联电容器的总容量为各个电容器容量之和,即C = C1 + C2 + ...五、能量和电容器电容器可以储存电荷,它的能量由以下公式计算:E = 1/2CV²,其中E为能量,C为电容量,V为电压。

当电容器充电时,电能转化为储存在电场中的能量;在放电过程中,电场的能量转化为电能。

六、应用领域电容器在现代电子设备和电路中具有广泛应用,如滤波器、隔直流、信号传输和储存等。

电容器还可以作为存储器件,例如动态随机存取存储器(DRAM)。

总结:本文介绍了高二物理电容器的基本概念、平行板电容器、充放电过程、串联与并联电容器、能量和应用领域等知识点。

电容器知识点总结

电容器知识点总结

电容器知识点总结:1、基础知识1)电容器上的电压升高过程是电容器中电场建立的过程,在这个过程中,它从电源吸收能量。

2)在较低电压等级的电力线路上串联电容器补偿主要用于调压。

3)在较高电压等级的电力线路上串联电容器主要是用于提高电力系统的稳定性。

4)当母线电压下降时,并联在母线上的电容器的无功出力将下降.5)如果某1l0kV/10KV变电站中,在其10KV母线上安装并联电容器,则能减少110KV线路及变压器的电能损耗。

6)电容等于单位电压作用下电容器每一极板上的电荷量,电容器储存的电量与电压成正比(C=Q/U),串联电容器的等效电容等于各电容倒数之和的倒数(C=C1C2/C1+C2),并联电容器的等效电容等于各电容之和(C=C1+C2),电容器具有隔断直流电,通过交流电的性能。

7)将可以单独使用的子单元电容器组装在充满绝缘油的大箱壳中组成的电容器叫集合式并联电容器。

8)并联谐振时,UL=Uc=XL*I=Xc*I=Xc*U/R=QU(Q为谐振电路的品质因数,U为电源电压)即,电容C两端的电压等于电源电压与电路品质因数Q的乘积。

2、常见类型(1)并联电容器。

用来补偿无功功率,提供功率因数,改善电压质量,降低线损。

(2)串联电容器。

用于工频高压输、配电线路中,用来补偿线路分布感抗,提高系统的动、静态稳定性,改善线路电压质量(提高线路末端电压),加长送电距离,增大输送能力。

(3)耦合电容器。

用于高压电力线路的高频通信、测量、控制、保护以及在抽取电能的装置中作部件用。

耦合电容器的作用是使强电和弱电两个系统通过电容耦合,给高频信号构成通路,并且阻止高压工频电流进入弱电系统,使强电系统和弱电系统隔离,保证设备和人身安全。

耦合电容器电压抽取装置抽取的电压是100V。

3、常用参数1)环境温度不允许超过40℃,外壳温度不允许超过50℃2)并联电容器装置应在额定电压下运行,一般不宜超过额定电压的1.05倍,最高不得超过1。

高中物理电容器知识点汇总

高中物理电容器知识点汇总

高中物理电容器知识点汇总
以下是高中物理电容器的知识点汇总:
1. 电容器的定义:电容器是一种能够存储电荷的装置,由两个导体极板和介质组成。

2. 电容的定义:电容是指电容器存储电荷的能力,用C表示,单位是法拉(F)。

3. 电容量的计算公式:电容量C等于电容器两极板电势差(电压)V与所存储电荷量Q的比值,即C=Q/V。

4. 电容与极板面积和间距的关系:电容与极板面积的成正比,与极板间距的成反比,即C∝A/d,其中A为极板面积,d为极板间距。

5. 并联电容器的等效电容:并联连接的电容器可以看成一个总电容,其电容等于各个电容器电容的和,即Ct=C1+C2+...+Cn。

6. 串联电容器的等效电容:串联连接的电容器可以看成一个总电容,其倒数等于各个电容器倒数的和的倒数,即1/Ct=1/C1+1/C2+...+1/Cn。

7. 初始充电电路:电容器通过电源充电时,电流从电源正极流向电容器的正极板,然后从电容器的负极板流向电源的负极。

8. 初始放电电路:电容器通过电阻放电时,电流从电容器的正极板流向电容器的负极板,并且电流的大小随时间逐渐减小。

9. 电容器的时间常数:电容器放电过程中的电流下降到初始值的63%所需的时间称为电容器的时间常数,记作τ=RC,其中R是电阻值,C是电容值。

10. 电容器的充电和放电曲线:电容器充电曲线呈指数增长,放电曲线呈指数衰减。

11. 电容器的应用:电容器广泛应用于电子电路中,如直流电源滤波、信号耦合、定时器等。

这些是高中物理电容器的知识点的主要内容,希望对你有帮助!。

高中物理电容器知识点

高中物理电容器知识点

高中物理电容器知识点电容器是高中物理中重要的概念之一。

电容器是电路中储存和释放电荷的元件,它的主要作用是把电能转化为电荷能和电场能。

在高中物理学中,学生需要学习电容器的原理、性质和其在电路中的应用。

一、电容器的原理电容器是由两个导体之间隔以绝缘物而形成的,其中的导体被称为电容器的极板,绝缘物被称为电介质。

当电容器接通电源时,正极板获得正电荷,负极板获得负电荷。

这样,在电容器中就形成了两极之间的电场。

根据电场的性质,电荷聚集在导体表面,导致极板上的电荷密度不均匀,而电场强度正比于电荷密度。

二、电容器的性质1. 电容量(C):电容器的电容量是指在单位电压下储存的电荷量。

电容量与电容器的极板面积和极板间的距离成正比,与介质的性质有关。

电容量的单位是法拉(F)。

2. 电容器的介质:介质对电容器的性能和特性起着重要的作用。

不同的电介质具有不同的电介质常数和击穿强度。

电介质常数越大,电容器的电容量越大。

3. 充电和放电过程:当电容器连接到电源时,处于充电状态;当断开电源连接时,电容器会放电。

电容器的充电和放电过程遵循指数衰减规律。

三、电容器的应用1. 高压电容器:高压电容器常用于电子设备和电力系统中,用于储存和释放高压电能。

它能够在瞬间提供大量电荷来满足高电压的需求。

2. 电路运算器:电容器在电路运算器中起到重要作用,例如在振荡电路中用来稳定输出频率,或者在隔离和滤波电路中用来控制信号的幅度和频率。

3. 电子元件:电容器在电子元件中广泛应用,例如耳机、扬声器、电视和电脑等。

它们能够作为电容器存储和释放电能,产生声音或视频信号。

4. 电力系统:电容器在电力系统中用于提供无功功率补偿。

通过调节电容器的容量,可以提高电力系统的功率因数,降低电力系统的线损。

总结:电容器是高中物理中的核心概念之一,了解电容器的原理和性质对于理解电路和电子设备有着重要的意义。

掌握电容器的用途和应用,可以帮助学生更好地理解电子技术和电力工程。

高三物理电容器知识点归纳总结

高三物理电容器知识点归纳总结

高三物理电容器知识点归纳总结电容器是物理学中的一个重要概念,它在电路中起到储存电荷和能量的作用。

在高三物理中,学生将会学习电容器的基本原理、公式和应用。

本文将对高三物理学习中的电容器知识点进行归纳总结。

一、电容器的基本原理1. 电容器是由两个导体板隔开的绝缘介质组成,导体板可以是金属板或金属箔片。

2. 在电容器中,当有电荷通过时,正电荷会聚集在一侧导体上,而负电荷会聚集在另一侧导体上。

3. 在电容器中,两个导体间的电荷分布形成了电场,导致电容器具有存储电荷和储存电能的能力。

二、电容器的电容量1. 电容量是电容器存储电荷的能力,用C表示,单位是法拉(F)。

2. 电容量与电容器的结构和介质的性质有关,与导体板的面积A和板间距d成正比,与绝缘介质的相对介电常数εr成正比。

3. 电容量的计算公式为C = εrε0A/d,其中εr为相对介电常数,ε0为真空中的介电常数,大约为8.85 × 10^(-12) C^2/(N·m^2)。

三、电容器的充放电过程1. 充电过程:当电源连接到电容器时,电场驱使电荷从电源的正极流向一个导体板上,而从另一导体板上的电荷流回电源的负极。

2. 放电过程:当电源断开连接时,两个导体板上的电荷开始通过外电路回流,直到电容器中不再存储电荷。

四、电容器的串并联1. 串联:将两个或多个电容器连接在同一电路中,其总电容量等于各电容器倒数的和的倒数,即Ct = 1/(1/C1 + 1/C2 + ...)。

2. 并联:将两个或多个电容器的正极和负极相连,其总电容量等于各电容器的和,即Ct = C1 + C2 + ...。

五、电容器在电路中的应用1. 电容器可以用来存储电能,常用于电子设备和电动汽车等充电系统中。

2. 电容器可以用作电路中的滤波器,用于去除交流信号中的噪音。

3. 电容器可以用来改变电路的时间常数,从而调节电路的响应速度。

六、电容器的安全使用注意事项1. 在使用电容器时,需要注意它们的极性,将导体板连接在正确的位置上,否则可能导致短路或损坏电容器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.滤波电容,去耦电容,旁路电容2.电容特性3.电容滤波电路关于滤波电容、去耦电容、旁路电容作用(转)2007-07-28 11:10滤波电容用在电源整流电路中,用来滤除交流成分。

使输出的直流更平滑。

去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。

旁路电容用在有电阻连接时,接在电阻两端使交流信号顺利通过。

1.关于去耦电容蓄能作用的理解1)去耦电容主要是去除高频如RF信号的干扰,干扰的进入方式是通过电磁辐射。

而实际上,芯片附近的电容还有蓄能的作用,这是第二位的。

你可以把总电源看作密云水库,我们大楼内的家家户户都需要供水,这时候,水不是直接来自于水库,那样距离太远了,等水过来,我们已经渴的不行了。

实际水是来自于大楼顶上的水塔,水塔其实是一个buffer的作用。

如果微观来看,高频器件在工作的时候,其电流是不连续的,而且频率很高,而器件VCC到总电源有一段距离,即便距离不长,在频率很高的情况下,阻抗Z=i*wL+R,线路的电感影响也会非常大,会导致器件在需要电流的时候,不能被及时供给。

而去耦电容可以弥补此不足。

这也是为什么很多电路板在高频器件VCC管脚处放置小电容的原因之一(在vcc引脚上通常并联一个去藕电容,这样交流分量就从这个电容接地。

)。

2)有源器件在开关时产生的高频开关噪声将沿着电源线传播。

去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地。

2.旁路电容和去耦电容的区别去耦:去除在器件切换时从高频器件进入到配电网络中的RF能量。

去耦电容还可以为器件供局部化的DC电压源,它在减少跨板浪涌电流方面特别有用。

旁路:从组件或电缆中转移出不想要的共模RF能量。

这主要是通过产生AC旁路消除无意的能量进入敏感的部分,另外还可以提供基带滤波功能(带宽受限)。

我们经常可以看到,在电源和地之间连接着去耦电容,它有三个方面的作用:一是作为本集成电路的蓄能电容;二是滤除该器件产生的高频噪声,切断其通过供电回路进行传播的通路;三是防止电源携带的噪声对电路构成干扰。

在电子电路中,去耦电容和旁路电容都是起到抗干扰的作用,电容所处的位置不同,称呼就不一样了。

对于同一个电路来说,旁路(bypass)电容是把输入信号中的高频噪声作为滤除对象,把前级携带的高频杂波滤除,而去耦(decoupling)电容也称退耦电容,是把输出信号的干扰作为滤除对象。

高频旁路电容一般比较小,根据谐振频率一般是0.1u,0.01u等,而去耦合电容一般比较大,是10u或者更大,依据电路中分布参数,以及驱动电流的变化大小来确定。

数字电路中典型的去耦电容值是0.1μF。

这个电容的分布电感的典型值是5μH。

0.1μF的去耦电容有5μH的分布电感,它的并行共振频率大约在7MHz左右,也就是说,对于10MHz以下的噪声有较好的去耦效果,对40MHz以上的噪声几乎不起作用。

1μF、10μF的电容,并行共振频率在20MHz以上,去除高频噪声的效果要好一些。

每10片左右集成电路要加一片充放电电容,或1个蓄能电容,可选10μF左右。

最好不用电解电容,电解电容是两层薄膜卷起来的,这种卷起来的结构在高频时表现为电感。

要使用钽电容或聚碳酸酯电容。

去耦电容的选用并不严格,可按C="1"/F,即10MHz取0.1μF,100MHz取0.01μF。

电容器选用及使用注意事项:1,一般在低频耦合或旁路,电气特性要求较低时,可选用纸介、涤纶电容器;在高频高压电路中,应选用云母电容器或瓷介电容器;在电源滤波和退耦电路中,可选用电解电容器。

2,在振荡电路、延时电路、音调电路中,电容器容量应尽可能与计算值一致。

在各种滤波及网(选频网络),电容器容量要求精确;在退耦电路、低频耦合电路中,对同两级精度的要求不太严格。

3,电容器额定电压应高于实际工作电压,并要有足够的余地,一般选用耐压值为实际工作电压两倍以上的电容器。

4,优先选用绝缘电阻高,损耗小的电容器,还要注意使用环境。

BACK电容特性:在消费类电子产品系统中,体积越来越小,器件摆放越来越密,模拟、数字部分已很难通过布局有效分开,系统设计工程师往往在电源网络中使用很多电容,衰减高频数字噪声,期望能“净化”电源,减少对模拟电路的干扰。

在电压调整器中,在输入、输出端通常都各有一只电容,跨接在输入、输出管脚和地(GND)之间。

输入电容的主要作用是滤除交流噪声,抑制输入端的电压变化。

而输出电容的作用,除了构成反馈环路的一部分之外(增加一个额外的零点,当然不可避免的也要带来一个极点,提高环路的相位裕量),还可以抑制由于负载电流或者输入电压瞬变引起的输出电压变化。

从某种角度来说,滤除交流噪声与抑制电压突变在本质上是一回事,那就是去除交流信号。

电容的特性不同介质种类的电容,其自身特性相差甚远。

在描述电容的特性之前,我们需要了解以下几个参数:电阻—符号R,是指通过导体的直流电压与电流之比,单位为欧姆。

电抗—符号X,是交流电路中由电感和电容引起的阻抗部分,包括感抗(X L)和容抗(X C),单位为欧姆。

阻抗—符号Z,是一个复合参数,实部为电阻,虚部为电抗,单位为欧姆,所以阻抗也可以表示为:Z = R + jX。

电导—符号G,是指通过导体的直流电流与电压之比,电阻的倒数,单位为西门子。

电纳—符号B,是导纳的虚数部分,包括容纳(B C)和感纳(B L),单位为西门子。

导纳—符号Y,是阻抗Z的倒数,也是一个复合参数,实部为电导,虚部为电纳,单位为西门子,也可以表示为:Y = G + jB导纳Y通常表示的是器件并联的情况,而阻抗Z表示的则是器件串联的情况,见图1。

其中,W=2πf电容: Z=R+jX=R+1/jwc=R+1/j2πfc=R-j1/2πfc电感: Z=R+jX=R+jwL=R+j2πfL图1:阻抗与导纳的表示方法。

所以对于串联的器件组合,如果θ>0℃,则说明器件两端有感性,越接近90℃,感性越强,当θ=90℃时,为纯感性器件。

同样θ< 0℃,则说明器件有容性,越接近-90℃,容性越强,当θ=-90℃时,为纯容性器件。

常见的几种类型的电容特点如表1所示,表1:不同种类电容的优缺点。

现实中并没有纯电阻,也没有纯电容或电感,都是这几种理想器件的组合。

实际的电解电容的等效电路可以表示如图2所示。

其中:Ra—介质吸收引起的电阻,Ca—介质吸收引起的电容,RLE—漏电引起的电阻,RL—引线引起的电阻,LL—引线引起的电感。

实际的多层陶瓷电容的等效电路则可以如3表示,对于用作滤波作用的电容,当然不希望有ESL,即使在高频也保持良好的容性,即θ等于或接近-90度。

图2:电解电容的等效电路。

电容的并联效果既然实际的电容特性与理想电容有一定的差距,那么接在输入、输出端的滤波电容到底产生了什么样的作用呢?有的应用手册上给出,使用两颗电容并联到GND,一颗容值较大的电解电容,另一颗是容值较小的陶瓷电容,比如C1=10uF,C2=0.1uF,为了研究并联的交流特性,加入一只电阻R0,等效成如下电路,交流特性的影响是由两只电容引起的,如图4所示。

图3:多层陶瓷电容的等效电路。

图4:两只电容并联的交流等效电路。

其中R0为信号源内阻,R1为电容C1的等效串联电阻,R2为电容C2的等效串联电阻。

传输函数可以表示成下式,从上式不难看出,系统包括两个极点,两个零点。

,当满足条件C1>>C2,R1>>R2时,极点可以表达成下式,以上面50V/10uF电解电容,和16V/1uF陶瓷电容的数据作为依据,对上述器件进行如下赋值,ESR取f=100kHz的值。

R0 = 1Ω,C1 = 8.21uF,C2 = 0.997uF,R1 = 774mΩ,R2 = 190mΩ,图3网络的频率特性如图4所示,从上图看出,在紧接着第一个极点P1之后,出现了第一个零点Z1,它是由R1、C1形成的,如果没有电容C2,AC曲线将保持水平,不再有衰减。

正是由于C2的存在,使得增益在通过第二个极点P2之后继续衰减,直至第二个零点Z2。

因此要使两只电容并联的增益衰减更多,可以将Z2外移,也就是使电容C2以及R2远小于C1、R1。

这是假定电容C、ESR在所有频率下都是定值的条件下,用MATHCAD计算出的理想曲线。

实际上,根据上表中的数据告诉我们,C、ESR会随着频率而变化,而且在高频时会出现ESL,考虑到这些因素,得到的曲线如图5所示。

图6是使用网络分析仪(Agilent 4395A)得到的实际频响曲线。

图5:两只电容并联的幅度\相位频率特性。

图6:根据实测数据计算出的频率特性。

在频率小于100kHz时,图5与图6几乎没有差别,大约在f>700kHz,由于ESL的作用,增益上翘。

当满足条件R1×C1 = R2×C2时,根据上式系统可以简化成一个极点,一个零点。

现实中满足这种条件的有两种情况,两只电容C1、C2完全相同,意味着类型、容值、ESR和频率特性等一样。

图7:网络分析测到的频率特性。

容值与ESR成反比,对于同一类型的电容,实际上也基本满足这个规律。

此时其零、极点变为零点->极点->实际上此时可以等效成1个电容,它的容值为两个电容的并联Ce = C1//C2,ESR为两个ESR并联Re = R1//R2。

三只电容并联的情况如图8所示,传输函数可以表示成图8:三只电容并联的交流等效电路。

从上式不难看出,系统包括三个极点,三个零点。

假定上述器件给出值如下,R0 = 1Ω、C1 = 10uF、C2 = 1uF、C3=0.1uF、R1 = 2Ω、R2 = 100mΩ、R3=50mΩ,网络的频率特性如图9,衰减是第一个极点P1开始,到最后一个零点Z3结束。

P1是由C1、R0+R1引起的,Z3是由C3、R3引起的。

同样类似的情况,当满足R1×C1 = R2×C2 = R3×C3时,仍可以等效成一只电容,其容值为三个电容的并联Ce = C1//C2//C3,ESR为三个电阻并联Re = R1//R2//R3。

对于线性电压调整器,用户只关心输出端的交流噪声。

这个噪声只有两个来源,一个是来自输入端,一个则是来自调整器本身。

幸运的是,来自BCD新一代线性电压调整器能够很好地解决这两个问题。

芯片本身出色的PSRR性能,可以很好的抑制来自输入端的交流噪声,尤其是在低频部分;而自身的输出噪声很低,几乎可以忽略。

比如AP2121,PSRR 为70dB,从DC可以持续到1kHz、10Hz ~ 100kHz之间的噪声电压只有30uVrms。

因此在使用AP2121时,根本不需要再额外使用多个电容并联,尤其是大的电解电容,就可以得到干净的电压源。

相关文档
最新文档