(完整版)利用角平分线构造全等三角形

合集下载

构造全等三角形的四种技巧

构造全等三角形的四种技巧

构造全等三角形的四种技巧在几何学中,全等三角形是一个非常重要的概念。

全等三角形是指两个或两个以上的三角形,它们的形状和大小完全相同。

理解并能够构造全等三角形,对于解决各种几何问题有着至关重要的作用。

以下是构造全等三角形的四种技巧:利用公理:全等三角形的公理是:如果两个三角形的三边对应相等,那么这两个三角形全等。

这个公理可以用来构造全等三角形。

确定你需要构造的全等三角形的所有边长,然后根据这些边长画出两个三角形。

这两个三角形的形状和大小将会完全相同。

利用角平分线:角平分线定理指出,一个角的平分线将对应的边分为两段,这两段与角的两边形成的两个小三角形是全等的。

通过这个定理,你可以通过一个角的平分线,构造出一个全等三角形。

利用中垂线:中垂线定理指出,一条中垂线将一个线段分为两段,这两段与线段的两端形成的两个小三角形是全等的。

这个定理可以用来构造全等三角形。

确定你需要构造的全等三角形的所有边长,然后通过中垂线将这些边分为两段。

这样,你就可以得到两个全等的三角形。

利用平行线:平行线定理指出,如果两条平行线被第三条直线所截,那么截得的对应线段成比例。

这个定理可以用来构造全等三角形。

确定你需要构造的全等三角形的所有边长,然后在两条平行线上画出对应的线段。

由于这些线段成比例,因此它们形成的两个小三角形是相似的。

如果这些相似三角形的对应边长度相等,那么它们就是全等的。

以上就是构造全等三角形的四种技巧。

理解和掌握这些技巧,对于解决各种几何问题有着重要的作用。

已知两个三角形全等,则它们对应边上的高也________;对应角平分线也________;对应边上的中线也________。

两个直角三角形全等,除了用定义外,还可以用以下________判定。

已知三角形ABC全等三角形DEF,且AB=18cm,BC=20cm,CA=15cm,则DE=________cm,DF=________cm,EF=________cm.做衣服需要依据身体部位的大小来选择布料,而教学则需要依据学生原有的知识基础来选择教学方法。

构造全等三角形的方法技巧

构造全等三角形的方法技巧
构造全等三角形的方法技巧
方法1 角形
利用“角平分线”构造全等三ห้องสมุดไป่ตู้
【方法归纳】 因角平分线本身已经具备 全等的三个条件中的两个(角相等和公共 边相等),故在处理角平分线问题时,常 作以下辅助线构造全等三角形: (1)在角的两边截取两条相等的线段; (2)过角平分线上一点作角两边的垂线.
思1.如图,AB∥CD,BE平分 ∠ABC,CE平分∠BCD,点E在AD 上,求证:BC=AB+CD. 考
2.如图,已知∠AOB=90°,OM是 ∠AOB的平分线,三角尺的直角顶点 P在射线OM上滑动,两直角边分别与 OA,OB交于点C,D,求证:PC= PD.
方法2 利用“截长补短法”构造全等 三角形
【方法归纳】 截长补短法的具体做法 :在某一条线段上截取一条线段与特定 线段相等,或将某条线段延长,使之与 特定线段相等,再利用三角形全等的有 关性质加以说明.这种方法适用于证明 线段的和、差、倍、分等类的题目.
3.如图,在△ABC中,AD平分 ∠BAC,∠C=2∠B,试判断AB, AC,CD三者之间的数量关系,并 说明理由.(想一想,你会几种方法)
方法3 利用“倍长中线法”构造全 等三角形
【方法归纳】 将中点处的线段延长 一倍,然后利用SAS证三角形全等.
6.已知:如图,AD,AE分别是 △ABC和△ABD的中线,且BA= BD.求证:AE=AC.

《角的平分线的性质》全等三角形

《角的平分线的性质》全等三角形
定义两个三角形全等
如果一个三角形的三个角分别等于另一个三角形的三个角,则这 两个三角形全等。
三角形全等的判定定理
SSS(边边边)、SAS(边角边)、ASA(角边角)、AAS(角角 边)和HL(直角三角形全等)。
角的平分线的性质
一个角的平分线将对应的边分成两段,其中较长的一段等于较短的 一段。
利用角的平分线的性质证明全等三角形的实例
《角的平分线的性质》全等 三角形
2023-11-08
目 录
• 全等三角形概述 • 角的平分线的性质 • 用角的平分线的性质证明全等三角形 • 全等三角形的应用 • 复习与巩固
01
全等三角形概述
全等三角形的定义
两个三角形全等
如果两个三角形的形状和大小完全相同,则这两个三角形全 等。
全等三角形的表示
解决实际问题
要点一
总结词
全等三角形在实际问题中有着广泛的应用,如建筑设 计、工程绘图等领域。利用全等三角形的性质可以解 决许多实际问题。
要点二
详细描述
全等三角形在实际问题中的应用可以通过许多实例来 加以说明,如利用全等三角形测量不可直接测量的距 离和角度、利用全等三角形解决对称问题等。此外, 全等三角形在物理学、化学等领域也有着广泛的应用 ,如解释力学原理、化学反应中的分子结构等。通过 全等三角形的应用,可以帮助我们更好地理解和解决 实际问题。
在全等三角形中,相等的边和角分别用对应符号表示,如 △ABC≌△DEF。
全等三角形的性质
对应边相等
全等三角形的对应边相等,即如果△ABC≌△DEF,则AB=DE,BC=EF, CA=FD。
对应相等
全等三角形的对应角相等,即如果△ABC≌△DEF,则∠A=∠D,∠B=∠E, ∠C=∠F。

2020最新名校课堂小专题4:构造全等三角形的常用方法

2020最新名校课堂小专题4:构造全等三角形的常用方法

小专题4:构造全等三角形的常用方法方法1 利用“角平分线”构造全等三角形模型构建已知点P是MON⊥于⊥于点A,可以过点P作PB ON ∠平分线上一点,若PA OM点B,则PB PA=.1.感知:如图,AD平分18090,,,易知:.∠∠+∠=︒∠=︒=BAC B C B DB DC探究:如图,AD平分18090∠∠+∠=︒∠<︒,,,求证:BAC ABD ACD ABD=.DB DC模型构建若AOP BOP=,∠=∠,且点A是射线OM上任意一点,可以在ON上截取OB OA 连接PB,构造OPB OPA≌.∆∆2.如图,//∠,点E在AD上,求证:AB CD,BE平分ABC∠,CE平分BCD=+.BC AB CD方法2 利用截长补短法构造全等三角形方法指导截长补短法的具体做法:在某一条线段上截取一条线段与特定线段相等,或将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明,这种方法适用于证明线段的和差、倍、分等题目.3.问题背景:如图,在四边形ABCD中,12090AB AD BAD B ADC=∠=︒∠=∠=︒,,.点E,F分别是BC,CD上的点,且60EAF︒∠=.探究图中线段BE,EF,FD之间的数量关系.(1)小王同学探究此问题的方法是:延长FD到点G,使DG BE=,连接AG.先证明ABE ADG∆∆≌,再证明AEF AGF∆∆≌,可得出结论,他的结论应是______; (2)如图,若在四边形ABCD中,180AB AD B D=∠+∠=︒,.E,F分别是BC,CD上的点,且12EAF BAD∠=∠,上述结论是否仍然成立?并说明理由.方法3 利用“倍长中线法”构造全等三角形方法指导将中线延长一倍,然后利用“SAS”判定三角形全等.4.如图,AB AE AB AE AD AC AD AC=⊥=⊥,,,,点M为BC的中点,求证:2DE AM=.方法4 利用“三垂直”构造全等三角形模型构建如图,若AB AC AB AC,,则可过斜边的两端点B,C向过A点的直线作垂线=⊥构造ABD CAE≌.在平面直角坐标系中,过顶点A的直线常为x轴或y轴.∆∆5.已知在△ABC中,90,,将△ABC放在平面直角坐标系中,如BAC AB AC∠=︒=图所示.(1)如图,若A(1,0),B(0,3),求C点坐标;(2)如图,若A(1,3),B(10-,),求C点坐标;(3)如图3,若B(40,),求A点坐标.-,),C(01-参考答案1.证明:过点D 作DE AB ⊥于点E ,DF AC ⊥交AC 的延长线于点F . AD 平分90BAC DE AB DF AC DE DF F DEB ∠⊥⊥∴=∠=∠=︒,,,,. 180180EBD ACD ACD FCD EBD FCD ∠+∠=︒∠+∠=︒∴∠=∠,,.在△DFC 和△DEB 中,,,,F DEB FCD EBD DF DE ∠=∠⎧⎪∠=∠⎨⎪=⎩DFC DEB ∴∆∆≌(AAS ).DC DB ∴=.2.证明:在BC 上截取BF AB =,连接EF . BE 平分ABC ∠,CE BCD ∠平分,ABE FBE FCE DCE ∴∠=∠∠=∠,.在△ABE 和△FBE 中,,,,AB FB ABE FBE BE BE =⎧⎪∠=∠⎨⎪=⎩ABE FBE ∴∆∆≌(SAS ),A BFE ∴∠=∠.//180.180AB CD A D BFE D ∴∠+∠=︒∴∠+∠=︒,. 180BFE CFE CFE D ∠+∠=︒∴∠=∠,.在△FCE 和△DCE 中,,,,CFE D FCE DCE CE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩FCE DCE ∴∆∆≌(AAS )..CF CD BC BF CF AB CD ∴=∴=+=+.3.解:(1)EF BE FD =+(2)EF BE FD =+仍然成立.理由:延长FD 到G ,使DG BE =,连接AG ,180180B ADC ADC ADG B ADG ∠+∠=︒∠+∠=︒∴∠=∠,,.在△ABE 和△ADG 中,,,,BE DG B ADG AB AD =⎧⎪∠=∠⎨⎪=⎩ABE ADG ∴∆∆≌(SAS ).AE AG BAE DAG ∴=∠=∠,.12EAF BAD ∠=∠, GAF DAG DAF BAE DAF BAD EAF EAF ∴∠=∠+∠=∠+∠=∠-∠=∠.在△AEF 和△AGF 中,,,,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩AEF AGF ∴∆∆≌(SAS ).EF FG ∴=.FG DG DF BE DF EF BE DF =+=+∴=+,.4.证明:延长AM 至N ,使MN AM =,连接BN .点M 为BC 的中点,BM CM ∴=.在△AMC 和△NMB 中,,,,AM NM CMA BMN CM BM =⎧⎪∠=∠⎨⎪=⎩AMC NMB ∴∆∆≌(SAS ).AC BN AD C NBM ∴==∠=∠,.180ABN ABC NBM ABC C BAC EAD ∴∠=∠+∠=∠+∠=︒-∠=∠.在△ABN 和△EAD 中,,,,AB EA ABN EAD BN AD =⎧⎪∠=∠⎨⎪=⎩ABN EAD ∴∆∆≌(SAS ).2DE NA AM ∴==.5.解:(1)过点C 作CD x ⊥轴,垂足为D .则90CAD ACD ∠+∠=︒. 9090.BAC BAO CAD BAO ACD ∠=︒∴∠+∠=︒∴∠=∠,.在△ABO 和△CAD 中,,,,AOB CDA BAO ACD AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩ABO CAD ∴∆∆≌(AAS ).BO AD OA CD ∴==,.A (1,0),B (0,3)1 3.31OA OB AD CD ∴====,,,. 4.OD OA AD ∴=+=∴C (4,1).(2)过点A 作AD x ⊥轴,垂足为D ,过点C 作CE AD ⊥,垂足为E .同(1)可证ACE BAD AE BD CE AD ∆∆∴==≌,,.A (1,3),B (10-,),2 3.3 1.BD AD CE DE AD AE ∴==∴==-=∴,,C (4,1).(3)过点A AD x AE y ⊥⊥作轴,轴,垂足分别为D ,E .同(1)可证BAD CAE ∆∆≌,CE BD AE AD OE ∴===,. B (40-,),C (01-,),4 1.OB OC ∴==, 3.AE OB BD OB CE OB OC OE AE ∴=-=-=-+=-()333(,)222AE A ∴=⋅∴-。

全等三角形的构造技巧(2020版)

全等三角形的构造技巧(2020版)

全等三角形的构造技巧一、利用角平分线,构造全等三角形【方法剖析】因为角平分线本身已经具备全等的三个条件中的两个(角相等和公共边相等),故在处理角平分线问题时,常作以下辅助线构造全等三角形:(1)在角的两边截取两条相等的线段;(2)过角平分线上一点作角两边的垂线;(3)延长角平分线的垂线.(一)在角两边截取相等线段例1.如图,AB ∥CD ,BE 平分∠ABC ,CE 平分∠BCD ,点E 在AD 上,求证:BC =AB +CD.证明:在BC 上截取BF =AB ,连接EF.∵∠ABC 、∠BCD 的平分线交AD 于点E ,∴∠ABE =∠FBE ,∠BCE =∠DCE ,在△ABE 和△FBE 中,⎩⎪⎨⎪⎧AB =FB ,∠ABE =∠FBE ,BE =BE ,∴△ABE ≌△FBE.∴∠BAE =∠BFE.∵AB ∥CD ,∴∠BAE +∠CDE =180°.∴∠BFE +∠CDE =180°.∵∠BFE +∠CFE =180°,∴∠CFE =∠CDE.在△FCE 和△DCE 中,⎩⎪⎨⎪⎧∠CFE =∠CDE ,∠FCE =∠DCE ,CE =CE ,∴△FCE ≌△DCE.∴CF =CD.∴BC =BF +CF =AB +CD.练习:1.如图,BC >AB,BD 平分∠ABC 且AD=DC,求证: ∠A+∠C=1800. 分析:在边BC 上截取AB=BE,连接DE,则△BAD ≌△BED,这样,AD 转移到了DE 的位置,∠A 与∠C 就建立了联系。

也可看成 △BAD 翻折到了△BED 的位置。

(二)利用角平分线的性质,过角平分线上一点作角两边的垂线例1.如图,∠AOB =90°,将三角尺的直角顶点落在∠AOB 的平分线上的任意一点P ,使三角尺的两条直角边与∠AOB 的两边分别相交于点E 、F ,试证PE =PF.图1 图2分析:如图1,因为OC 是角平分线,所以本题可以过P 点作PM ⊥OA 于M ,PN ⊥OB 于N ,不难发现只要证明△PME ≌△PNF ,即可得到PE =PF ,根据∠PME =∠PNF =90°、PM =PN(角平 B A M N E F O P BA E F O P G AB C E DA B C E F D 分线性质)、∠MPE =∠NPF 这三个条件,利用ASA 可以证明△PME ≌△PNF 。

(完整版)几种证明全等三角形添加辅助线的方法

(完整版)几种证明全等三角形添加辅助线的方法

教学过程构造全等三角形几种方法在几何解题中,常常需要添加辅助线构造全等三角形,以沟通题设与结论之间的联系。

现分类加以说明。

一、延长中线构造全等三角形例1. 如图1,AD是△ABC的中线,求证:AB+AC>2AD。

证明:延长AD至E,使AD=DE,连接CE。

如图2。

∵AD是△ABC的中线,∴BD=CD。

又∵∠1=∠2,AD=DE,∴△ABD≌△ECD(SAS)。

AB=CE。

∵在△ACE中,CE+AC>AE,∴AB+AC>2AD。

二、沿角平分线翻折构造全等三角形例2. 如图3,在△ABC中,∠1=∠2,∠ABC=2∠C。

求证:AB+BD=AC。

证明:将△ABD沿AD翻折,点B落在AC上的E点处,即:在AC上截取AE=AB,连接ED。

如图4。

∵∠1=∠2,AD=AD,AB=AE,∴△ABD≌△AED(SAS)。

∴BD=ED,∠ABC=∠AED=2∠C。

而∠AED=∠C+∠EDC,∴∠C=∠EDC。

所以EC=ED=BD。

∵AC=AE+EC,∴AB+BD=AC。

三、作平行线构造全等三角形例3. 如图5,△ABC中,AB=AC。

E是AB上异于A、B的任意一点,延长AC到D,使CD=BE,连接DE交BC于F。

求证:EF=FD。

证明:过E作EM∥AC交BC于M,如图6。

则∠EMB=∠ACB,∠MEF=∠CDF。

∵AB=AC,∴∠B=∠ACB。

∴∠B=∠EMB。

故EM=BE。

∵BE=CD,∴EM=CD。

又∵∠EFM=∠DFC,∠MEF=∠CDF,∴△EFM≌△DFC(AAS)。

EF=FD。

四、作垂线构造全等三角形例4. 如图7,在△ABC中,∠BAC=90°,AB=AC。

M是AC边的中点。

AD ⊥BM交BC于D,交BM于E。

求证:∠AMB=∠DMC。

证明:作CF⊥AC交AD的延长线于F。

如图8。

∵∠BAC=90°,AD⊥BM,∴∠FAC=∠ABM=90°-∠BAE。

∵AB=AC,∠BAM=∠ACF=90°,∴△ABM≌△CAF(ASA)。

第12章全等三角形-角平分线的性质、判定及角平分线在全等三角形中的运用(教案)

第12章全等三角形-角平分线的性质、判定及角平分线在全等三角形中的运用(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与角平分线相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示角平分线的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“角平分线在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
举例:设计一些包含角平分线的全等三角形问题,指导学生运用所学知识解决问题。
2.教学难点
(1)角平分线性质的证明:学生需要通过严密的逻辑推理和几何证明来理解角平分线的性质,这对于部分学生来说可能是一个难点。
举例:在指导学生证明角平分线性质时,引导学生运用几何基本定理和逻辑推理方法,逐步展开证明过程。
(2)全等三角形的判定方法:学生在判定全等三角形时,可能会对各种判定方法产生混淆,难以选择合适的方法进行证明。
3.增强学生的数据分析能力,使学生能够从实际例题中提炼关键信息,运用角平分线定理进行问题分析和解决;
4.培养学生的几何直观能力,让学生在实际操作中观察、发现和感受几何图形的性质和相互关系。
三、教学难点与重点
1.教学重点
(1)角平分线的定义及其性质:确保学生理解角平分线将一个角平分成两个相等的角的原理,并掌握相关性质,如角平分线上的点到角的两边的距离相等。
第12章全等三角形-角平分线的性质、判定及角平分线在全等三角形中的运用(教案)
一、教学内容
第12章全等三角形-角平分线的性质、判定及角平分线在全等三角形中的运用。本章内容主要包括:
1.角平分线的定义及性质;
2.判定两个三角形全等时,角平分线所起的作用;

2023年中考数学常见几何模型之角平分线全等类模型

2023年中考数学常见几何模型之角平分线全等类模型

专题07 角平分线的重要模型(一)全等类角平分线在中考数学中都占据着重要的地位,角平分线常作为压轴题中的常考知识点,需要掌握其各大模型及相应的辅助线作法,且辅助线是大部分学生学习几何内容中的弱点,本专题就角平分线的全等类模型作相应的总结,需学生反复掌握。

模型1.角平分线构造轴对称模型(角平分线+截线段等)【模型解读与图示】已知如图1,OP 为AOB ∠的角平分线、PM 不具备特殊位置时,辅助线的作法大都为在OB 上截取ON OM =,连结PN 即可.即有OMP ∆≌ONP ∆,利用相关结论解决问题.图121.(2022·湖北十堰·九年级期末)在△ABC 中,∠ACB =2∠B ,如图①,当∠C =90°,AD 为∠BAC 的角平分线时,在AB 上截取AE =AC ,连结DE ,易证AB =AC +CD .(1)如图②,当∠C≠90°,AD 为∠BAC 的角平分线时,线段AB ,AC ,CD 又有怎样的数量关系?不需要证明,请直接写出你的猜想;(2)如图③,当AD 为△ABC 的外角平分线时,线段AB ,AC ,CD 又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.【答案】(1)AB AC CD =+;证明见解析;(2)AB AC CD +=;证明见解析.【分析】(1)首先在AB 上截取AE =AC ,连接DE ,易证△ADE ≌△ADC (SAS ),则可得∠AED =∠C ,ED =CD ,又由∠AED =∠ACB ,∠ACB =2∠B ,所以∠AED =2∠B ,即∠B =∠BDE ,易证DE =CD ,则可求得AB =AC +CD ;(2)首先在BA 的延长线上截取AE =AC ,连接ED ,易证△EAD ≌△CAD ,可得ED =CD ,∠AED =∠ACD ,又由∠ACB =2∠B ,易证DE =EB ,则可求得AC +AB =CD .【详解】(1)猜想:AB AC CD =+.证明:如图②,在AB 上截取AE AC =,连结DE ,∵AD 为ABC V 的角平分线时,∴BAD CAD ∠=∠,∵AD AD =,∴()SAS ADE ADC ≌△△,∴AED C ∠=∠,ED CD =,∵2ACB B ∠=∠,∴2AED B ∠=∠.∵B EDB ∠=∠,∴EB ED =,∴EB CD =,∴AB AE DE AC CD =+=+.(2)猜想:AB AC CD +=.证明:在BA 的延长线上截取AE AC =,连结ED .∵AD 平分FAC ∠,∴EAD CAD ∠=∠.在EAD V 与CAD V 中,AE AC =,EAD CAD ∠=∠,AD AD =,∴EAD CAD ≌△△.∴ED CD =,AED ACD ∠=∠.∴FED ACB ∠=∠.又2ACB B ∠=∠,FED B EDB ∠=∠+∠,EDB B ∠=∠.∴EB ED =.∴EA AB EB ED CD +===.∴AC AB CD +=.【点睛】此题考查三角形综合题、全等三角形的判定与性质、等腰三角形的判定、角平分线的定义等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.2.(2022·山东烟台·九年级期末)已知在ABC V 中,满足2ACB B ∠=∠,(1)【问题解决】如图1,当90C ∠=︒,AD 为BAC ∠的角平分线时,在AB 上取一点E 使得AE AC =,连接DE ,求证:AB AC CD =+.(2)【问题拓展】如图2,当90C ∠≠︒,AD 为BAC ∠的角平分线时,在AB 上取一点E 使得AE AC =,连接DE ,(1)中的结论还成立吗?若成立,请你证明:若不成立,请说明理由.(3)【猜想证明】如图3,当AD 为ABC V 的外角平分线时,在BA 的延长线上取一点E 使得AE AC =,连接DE ,线段AB 、AC 、CD 又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明. 【答案】(1)证明见解析(2)成立,证明见解析(3)猜想AB AC CD +=,证明见解析【分析】(1)先根据SAS 定理证出AED ACD ≅V V ,根据全等三角形的性质可得ED CD =,AED ACD ∠=∠,再根据三角形的外角性质可得45B BDE ∠=∠=︒,然后根据等腰三角形的判定可得EB ED =,从而可得EB CD =,最后根据线段和差、等量代换即可得证; (2)先根据SAS 定理证出AED ACD ≅V V ,根据全等三角形的性质可得ED CD =,AED C ∠=∠,再根据三角形的外角性质可得B BDE ∠=∠,然后根据等腰三角形的判定可得EB ED =,从而可得EB CD =,最后根据线段和差、等量代换即可得证;(3)先根据SAS 定理证出AED ACD ≅V V ,根据全等三角形的性质可得ED CD =,AED ACD ∠=∠,从而可得FED ACB ∠=∠,再根据三角形的外角性质可得B BDE ∠=∠,然后根据等腰三角形的判定可得EB ED =,从而可得EB CD =,最后根据线段和差、等量代换即可得证.(1)证明:∵AD 为BAC ∠的角平分线,∴EAD CAD ∠=∠,在AED V 与ACD △中,AE AC EAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴()AED ACD SAS ≅V V ,∴ED CD =,AED ACD ∠=∠,又∵90ACB ∠=︒,2ACB B ∠=∠,∴45B ∠=︒,90AED ∠=︒,∴45AED BDE B ∠=∠=∠−︒,∴B BDE ∠=∠,∴EB ED =,∴EB CD =,∴AB AE EB AC CD =+=+.(2)解:(1)中的结论还成立,证明如下:∵AD 为BAC ∠的角平分线时,∴EAD CAD ∠=∠,在AED V 与ACD △中,AE AC EAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴()AED ACD SAS ≅V V ,∴AED C ∠=∠,ED CD =,∵2ACB B ∠=∠,∴2AED B ∠=∠,又∵AED B EDB ∠=∠+∠,∴B EDB ∠=∠,∴EB ED =,∴EB CD=,∴AB AE EB AC CD =+=+.(3)解:猜想AB AC CD +=,证明如下:∵AD 平分EAC ∠,∴EAD CAD ∠=∠,在AED V 与ACD △中,AE AC EAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴()AED ACD SAS ≅V V ,∴ED CD =,AED ACD ∠=∠,如图,∴180180AED ACD ︒−∠=︒−∠,即FED ACB ∠=∠,∵2ACB B ∠=∠,∴2FED B ∠=∠,又∵FED B EDB ∠=∠+∠,∴EDB B ∠=∠,∴EB ED =,∴AB AE EB ED CD +===,∴AB AC CD +=.【点睛】本题主要考查了三角形全等的判定与性质、等腰三角形的判定,熟练掌握三角形全等的判定方法是解题关键.3.(2022·浙江·九年级期中)(1)如图1,在△ABC 中,∠ACB =2∠B ,∠C =90°,AD 为∠BAC的平分线交BC于D,求证:AB=AC+CD.(提示:在AB上截取AE=AC,连接DE)(2)如图2,当∠C≠90°时,其他条件不变,线段AB、AC、CD又有怎样的数量关系,直接写出结果,不需要证明.(3)如图3,当∠ACB≠90°,∠ACB=2∠B ,AD为△ABC的外角∠CAF的平分线,交BC的延长线于点D,则线段AB、AC、CD又有怎样的数量关系?写出你的猜想,并加以证明.【答案】(1)见解析;(2)AB=AC+CD;(3)AB=CD﹣AC【分析】(1)在AB上截取AE=AC,连接DE,根据角平分线的定义得到∠1=∠2.推出△ACD≌△AED(SAS).根据全等三角形的性质得到∠AED=∠C=90,CD=ED,根据已知条件得到∠B=45°.求得∠EDB=∠B=45°.得到DE=BE,等量代换得到CD=BE.即可得到结论;(2)在AC取一点E使AB=AE,连接DE,易证△ABD≌△AED,所以∠B=∠AED,BD=DE,又因为∠B=2∠C,所以∠AED=2∠C,因为∠AED是△EDC的外角,所以∠EDC=∠C,所以ED=EC,BD=EC,进而可证明AB+BD=AE+EC=AC;(3)在AB的延长线AF上取一点E,使得AE=AC,连接DE.证明△ACD≌△AED,根据全等三角形的性质得到DE=BE,BE=CD,即可得出结论.【详解】(1)证明:在AB上取一点E,使AE=AC∵AD为∠BAC的平分线∴∠BAD =∠CAD .在△ACD 和△AED 中,AE AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△AED (SAS ).∴∠AED =∠C =90°,CD =ED ,又∵∠ACB =2∠B ,∠C =90°,∴∠B =45°. ∴∠EDB =∠B =45°.∴DE =BE , ∴CD =BE .∵AB =AE +BE , ∴AB =AC +CD .(2)证明:在AB 取一点E 使AC=AE ,在△ACD 和△AED 中,AC AE BAD EAD AD AD ===⎧⎪∠∠⎨⎪⎩, ∴△ACD ≌△AED ,∴∠C=∠AED ,CD=DE ,又∵∠C=2∠B ,∴∠AED=2∠B ,∵∠AED 是△EDC 的外角,∴∠EDB=∠B ,∴ED=EB ,∴CD=EB ,∴AB=AC+CD ;(3)猜想:AB =CD ﹣AC证明:在BA 的延长线上取一点E ,使得AE =AC ,连接DE ,在△ACD 和△AED 中,AC AE CAD EAD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△AED (SAS ),∴∠ACD =∠AED ,CD =DE ,∴∠ACB =∠FED ,又∵∠ACB =2∠B∴∠FED =2∠B ,又∵∠FED =∠B +∠EDB ,∴∠EDB =∠B ,∴DE =BE ,∴BE =CD ,∵AB =BE -AE∴AB =CD ﹣AC .【点睛】本题考查全等三角形的判定和性质,关于线段和差关系的证明,通常采用截长补短法.4.(2022·北京九年级专题练习)在四边形ABDE 中,C 是BD 边的中点.(1)如图(1),若AC 平分BAE ∠,90ACE ∠=︒,则线段AE 、AB 、DE 的长度满足的数量关系为______;(直接写出答案)(2)如图(2),AC 平分BAE ∠,EC 平分AED ∠,若120ACE ∠=︒,则线段AB 、BD 、DE、AE的长度满足怎样的数量关系?写出结论并证明.【答案】(1)AE=AB+DE;(2)AE=AB+DE+12BD,证明见解析.【分析】(1)在AE上取一点F,使AF=AB,由三角形全等的判定可证得△ACB≌△ACF,根据全等三角形的性质可得BC=FC,∠ACB=∠ACF,根据三角形全等的判定证得△CEF≌△CED,得到EF=ED,再由线段的和差可以得出结论;(2)在AE上取点F,使AF=AB,连结CF,在AE上取点G,使EG=ED,连结CG,根据全等三角形的判定证得△ACB≌△ACF和△ECD≌△ECG,由全等三角形的性质证得CF=CG,进而证得△CFG是等边三角形,就有FG=CG=12BD,从而可证得结论.【详解】解:(1)如图(1),在AE上取一点F,使AF=AB.∵AC平分∠BAE,∴∠BAC=∠FAC.在△ACB和△ACF中,AB AFBAC FACAC AC⎧⎪∠∠⎨⎪⎩===∴△ACB≌△ACF(SAS).∴BC=FC,∠ACB=∠ACF.∵C是BD边的中点,∴BC=CD.∴CF=CD.∵∠ACE=90°,∴∠ACB+∠DCE=90°,∠ACF+∠ECF=90°.∴∠ECF=∠ECD.在△CEF和△CED中,CF CDECF ECDCE CE⎧⎪∠∠⎨⎪⎩===∴△CEF≌△CED(SAS).∴EF=ED.∵AE=AF+EF,∴AE=AB+DE.故答案为:AE=AB+DE;(2)AE=AB+DE+12BD.证明:如图(2),在AE上取点F,使AF=AB,连结CF,在AE上取点G,使EG=ED,连结CG.∵C 是BD 边的中点,∴CB =CD =12BD .∵AC 平分∠BAE ,∴∠BAC =∠FAC . 在△ACB 和△ACF 中,AB AF BAC FAC AC AC ⎧⎪∠∠⎨⎪⎩===∴△ACB ≌△ACF (SAS ).∴CF =CB ,∠BCA =∠FCA .同理可证:△ECD ≌△ECG ∴CD =CG ,∠DCE =∠GCE .∵CB =CD ,∴CG =CF .∵∠ACE =120°,∴∠BCA +∠DCE =180°−120°=60°.∴∠FCA +∠GCE =60°.∴∠FCG =60°.∴△FGC 是等边三角形.∴FG =FC =12BD .∵AE =AF +EG +FG ,∴AE =AB +DE +12BD .【点睛】本题主要考查了全等三角形的判定与性质的运用,能熟练应用三角形全等的判定和性质是解决问题的关键.模型2.角平分线垂两边(角平分线+外垂直)【模型解读与图示】已知如图1,OP 为OAB ∠的角平分线、PM OA ⊥于点M 时,辅助线的作法大都为过点P 作PN OB ⊥即可.即有PM PN =、OMP ∆≌ONP ∆等,利用相关结论解决问题. 图1 图2图3邻等对补模型:已知如图2,AP 是∠CAB 的角平分线,EP =DP辅助线:过点P 作PG ⊥AC 、PF ⊥AB结论:①︒=∠+∠180EPD BAC (D P E A 、、、四点共圆);②EG DF =;③DF AE AD 2+=1.(2022·北京·中考真题)如图,在ABC ∆中,AD 平分,.BAC DE AB ∠⊥若2,1,AC DE ==则ACD S ∆=____.【答案】1【分析】作DF AC ⊥于点F ,由角平分线的性质推出1DF DE ==,再利用三角形面积公式求解即可.【详解】解:如图,作DF AC ⊥于点F ,∵AD 平分BAC ∠,DE AB ⊥,DF AC ⊥,∴1DF DE ==, ∴1121122ACD S AC DF ∆=⋅=⨯⨯=.故答案为:1. 【点睛】本题考查角平分线的性质,通过作辅助线求出三角形ACD 中AC 边的高是解题的关键.B2.(2022·山东泰安·中考真题)如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 的平分线BP 交于点P ,若∠BPC =40°,则∠CAP =( )A .40°B .45°C .50°D .60°【答案】C 【分析】根据外角与内角性质得出∠BAC 的度数,再利用角平分线的性质以及直角三角形全等的判定,得出∠CAP =∠FAP ,即可得出答案.【详解】解:延长BA ,作PN ⊥BD ,PF ⊥BA ,PM ⊥AC ,设∠PCD =x °,∵CP 平分∠ACD ,∴∠ACP =∠PCD =x °,PM =PN ,∵BP 平分∠ABC ,∴∠ABP =∠PBC ,PF =PN ,∴PF =PM ,∵∠BPC =40°,∴∠ABP =∠PBC =∠PCD ﹣∠BPC =(x ﹣40)°,∴∠BAC =∠ACD ﹣∠ABC =2x °﹣(x °﹣40°)﹣(x °﹣40°)=80°,∴∠CAF =100°,在Rt △PFA 和Rt △PMA 中,{PA PA PM PF==, ∴Rt △PFA ≌Rt △PMA (HL ),∴∠FAP =∠PAC =50°.故选C .【点睛】本题考查了角平分线的性质以及三角形外角的性质和直角三角全等的判定等知识,根据角平分线的性质得出PM =PN =PF 是解题的关键.3.(2022·江苏扬州·中考真题)如图,在ABCD Y 中,BE 、DG 分别平分ABC ADC ∠∠、,交AC 于点E G 、.(1)求证:,BE DG BE DG =∥;(2)过点E 作EF AB ⊥,垂足为F .若ABCD Y 的周长为56,6EF =,求ABC ∆的面积. 【答案】(1)见详解(2)84【分析】(1)由平行四边形的性质证()ABE CDG ASA ∆≅∆即可求证;(2)作EQ BC ⊥,由ΔΔΔABC ABE EBC S S S =+即可求解;(1)证明:在ABCD Y 中,∵//AB CD ,∴BAE DCG ∠=∠,∵BE 、DG 分别平分ABC ADC ∠∠、,ABC ADC ∠=∠,∴ABE CDG ∠=∠,在ABE ∆和CDG ∆中,∵BAE DCG AB CDABE CDG ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ABE CDG ASA ∆≅∆,∴BE DG AEB CGD =∠=∠,,∴BE DG ∥.(2)如图,作EQ BC ⊥,∵ABCD Y 的周长为56,∴28AB BC +=,4.(2022·河北·九年级专题练习)已知OP平分∠AOB,∠DCE的顶点C在射线OP上,射线CD交射线OA于点F,射线CE交射线OB于点G.(1)如图1,若CD⊥OA,CE⊥OB,请直接写出线段CF与CG的数量关系;(2)如图2,若∠AOB=120°,∠DCE=∠AOC,试判断线段CF与CG的数量关系,并说明理由.【答案】(1)CF=CG;(2)CF=CG,见解析【分析】(1)结论CF=CG,由角平分线性质定理即可判断.(2)结论:CF=CG,作CM⊥OA于M,CN⊥OB于N,证明△CMF≌△CNG,利用全等三角形的性质即可解决问题.【详解】解:(1)结论:CF=CG;证明:∵OP平分∠AOB,CF⊥OA,CG⊥OB,∴CF=CG(角平分线上的点到角两边的距离相等);(2)CF=CG.理由如下:如图,过点C 作CM ⊥OA ,CN ⊥OB ,∵OP 平分∠AOB ,CM ⊥OA ,CN ⊥OB ,∠AOB =120°,∴CM =CN (角平分线上的点到角两边的距离相等),∴∠AOC =∠BOC =60°(角平分线的性质),∵∠DCE =∠AOC ,∴∠AOC =∠BOC =∠DCE =60°,∴∠MCO =90°-60° =30°,∠NCO =90°-60° =30°,∴∠MCN =30°+30°=60°,∴∠MCN =∠DCE ,∵∠MCF =∠MCN -∠DCN ,∠NCG =∠DCE -∠DCN ,∴∠MCF =∠NCG ,在△MCF 和△NCG 中,CMF CNG CM CNMCF NCG ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MCF ≌△NCG (ASA ),∴CF =CG (全等三角形对应边相等).【点睛】本题考查三角形综合题、角平分线的性质、全等三角形的判定和性质,解题的关键是掌握角平分线的性质的应用,熟练证明三角形全等.模型3.角平分线垂中间(角平分线+内垂直)【模型解读与图示】已知如图1,OP 为AOB ∠的角平分线,PM OP ⊥于点P 时,辅助线的作法大都为延长MP 交OB 于点N 即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

善于构造 活用性质
安徽 张雷
几何问题中,若出现角平分线这一条件时,可联想角平分线的特性,灵活利用角平分线的特性来解决问题.
1.显“距离”, 用性质
很多时候,题意中只给角平分线这个条件,图上并没有出现“距离”,而角平分线性质的运用又离不开这个“距离”,所以同学们应大胆地让“距离”现身(过角平分线上的一点向角的两边作垂线段)
例:三角形的三条角平分线交于一点,你知道这是为什么吗? 分析:我们知道两条直线是交于一点的,因此可以想办法证
明第三条角平分线通过前两条角平分线的交点.
已知:如图,△ABC 的角平分线AD 与BE 交于点I ,求证:点I 在∠ACB 的平分线上. 证明:过点I 作IH ⊥AB 、IG ⊥AC 、IF ⊥BC ,垂足分别是点
H 、G 、F . ∵点I 在∠BAC 的角平分线AD 上,且IH ⊥AB 、IG ⊥AC ∴IH=IG (角平分线上的点到角的两边距离相等) 同理 IH=IF ∴IG=IF (等量代换) 又IG ⊥AC 、IF ⊥BC
∴点I 在∠ACB 的平分线上(到一个角的两边的距离相等的点,在这个角的平分线上).即:三角形的三条角平分线交于一点.
【例2】已知:如图,PA 、PC 分别是△ABC 外角∠MAC 和∠NCA 的平分线,•它们交于点P ,PD ⊥BM 于D ,PF ⊥BN 于F .
求证:BP 为∠MBN 的平分线.
【分析】要证BP 为∠MBN 的平分线,只需证PD=PF ,而PA 、PC 为外角平分线,•故可过P 作PE ⊥AC 于E .根据角平分线性质定理有PD=PE ,PF=PE ,则有PD=PF ,故问题得证.
【证明】过P 作PE ⊥AC 于E .
∵PA 、PC 分别为∠MAC 与∠NCA 的平分线.且PD ⊥BM ,PF ⊥BN ∴PD=PE ,PF=PE,∴PD=PF
又∵PD ⊥BM ,PF ⊥BN,∴点P 在∠MBN 的平分线上,
D C A E
H
I F G
2D
C
B
A
3
5
E
F
1
4
即BP是∠MBN的平分线.
2.构距离,造全等
有角平分线时常过角平分线上的点向角两边引垂线,根据角平分线上的点到角两边距离相等,可构造处相应的全等三角形而巧妙解决问题.
例3.△ABC中,∠C=90°,AC=BC,DA平分∠CAB交BC于D点,问能否在AB•上确定一点E使△BDE的周长等于AB的长.请说明理由.
解:过D作DE⊥AB,交AB于E点,则E点即可满足要求.
因为∠C=90°,AC=BC,又DE⊥AB,∴DE=EB.
∵AD平分∠CAB且CD⊥AC
、ED⊥AB,∴CD=DE.
由“HL”可证Rt△ACD≌Rt△AED.∴AC=AE.
∴L△BDE=BD+DE+EB =BD+DC+EB =BC+EB=AC+EB =AE+EB =AB.
例4.如图,∠B=∠C=90°,M是BC上一点,且DM平分∠ADC,AM平分∠DAB.求证:AD=CD+AB.
证明:过M作ME⊥AD,交AD于E.
∵DM平分∠ADC,∠C=90°.
MC=ME.根据“HL”可以证得Rt△MCD≌Rt△MED,∴CD=ED.
同理可得AB=AE.∴CD+AB=ED+AE=AD.即AD=CD+AB.
3.巧翻折, 造全等
以角平分线为对称轴,构造两三角形全等.即在角两边截取相等的线段,构造全等三角形.
例5.如图,已知△ABC中∠BAC=90°,AB=AC,CD•垂直于∠ABC•的平分线BD 于D,BD交AC于E,求证:BE=2CD.
分析:要证BE=2CD,想到要构造等于2CD的线段,结合角平分线,•利用翻折的方法把△CBD沿BD翻折,使BC重叠到BA所在的直线上,即构造全等三角形(△BCD ≌△BFD),然后证明BE和CF(2CD)所在的三角形全等.
证明:延长BA、CD交于点F
∵BD ⊥CF (已知) ∴∠BDC=∠BDF=90° ∵BD 平分∠ABC (已知) ∴∠1=∠2 在△BCD 和△BFD 中
21()()()BD BD BDC BDF ∠=∠⎧⎪
=⎨⎪∠=∠⎩
已知公共边已证
∴△BCD ≌△BFD (ASA ) ∴CD=FD , 即CF=2CD
∵∠5=∠4=90°,∠BDF=90° ∴∠3+∠F=90°,∠1+∠F=90°。

∴∠1=∠3。

在△ABE 和△ACF 中
4513()AB AC ∠=∠⎧⎪
=⎨⎪∠=∠⎩
已证
∴△ABE ≌△ACF (ASA )∴BE=CF , ∴BE=2CD 。

例6.如图,已知AC ∥BD 、EA 、EB 分别平分∠CAB 和△DBA ,CD 过点E ,则AB 与AC+BD•相等吗?请说明理由. 【分析】要证明两条线段的和与一条线段相等时常用的两种方法.
1.可在长线段上截取与两条线段中一条相等的一段,•然后证明剩余的线段与另一条线段相等.(割)
2.把一个三角形移到另一位置,使两线段补成一条线段,再证明它与长线段相等.(补)
34
D
C
A
6
5(1)
F E
1
2
34
D
C
A
B
6
5
(2)
E
F
1
2
证法一:如图(1)在AB 上截取AF=AC ,连结EF .在△ACE 和△AFE 中
D C A B E
12AC AF AE AE =⎧⎪
∠=∠⎨⎪=⎩
∴△ACE ≌△AFE (SAS )

,∴
,又
,∴∠6=∠D
在△EFB 和△BDE 中
634D BE BE ∠=∠⎧⎪
∠=∠⎨⎪=⎩
∴△EFB ≌△EDB (AAS ) ∴FB=DB ∴AC+BD=AF+FB=AB 证法二:如图(2),延长BE ,与AC 的延长线相交于点F
434AC BD F ⇒∠=∠⎫
⎬∠=∠⎭
P ⇒∠F=∠3
在△AEF 和△AEB 中
312F AE AE ∠=∠⎧⎪
∠=∠⎨⎪=⎩
∴△AEF ≌△AEB (AAS ), ∴AB=AF ,BE=FE 在△BED 和△FEC 中
564BE FE F ∠=∠⎧⎪
=⎨⎪∠=∠⎩
∴△BED ≌△FEC (ASA ) ∴BD=FC, ∴AB=AF=AC+CF=AC+BD .。

相关文档
最新文档