模拟乘法器设计____模拟电路课程设计

合集下载

模拟乘法器实验报告

模拟乘法器实验报告

模拟乘法器实验报告模拟乘法器实验报告引言:模拟乘法器是电子电路领域中非常重要的一种电路设计,它能够实现数字信号的乘法运算。

在本次实验中,我们将学习并实现一种基于模拟电路的乘法器设计,并对其性能进行评估。

一、实验目的本次实验的主要目的是通过设计和实现模拟乘法器电路,加深对模拟电路设计原理的理解,并通过实际测量和分析,评估乘法器的性能。

二、实验原理模拟乘法器是通过电压的乘法运算来实现的。

在本次实验中,我们采用了一种基于差分放大器和电流镜电路的乘法器设计。

其基本原理是利用差分放大器的非线性特性,将输入信号进行放大和非线性变换,从而实现乘法运算。

三、实验步骤1. 设计乘法器电路的基本框架,包括差分放大器、电流镜等电路元件的选择和连接。

2. 根据设计要求,选择适当的电阻和电容值,并进行电路元件的布局和连线。

3. 使用示波器和信号发生器,分别输入模拟的乘数和被乘数信号,并观察输出信号。

4. 调整输入信号的幅值和频率,记录输出信号的变化情况,并进行分析和比较。

5. 对乘法器电路进行性能评估,包括增益、非线性失真、带宽等方面的指标。

四、实验结果与分析通过实验测量和分析,我们得到了乘法器电路的性能数据。

首先,我们观察到输出信号的幅值与输入信号的幅值成正比关系,表明乘法器电路的放大倍数与输入信号的幅值相关。

其次,我们发现输出信号的频率与输入信号的频率一致,说明乘法器电路能够正确地传递输入信号的频率特性。

此外,我们还对乘法器电路的非线性失真进行了评估,发现在输入信号较大的情况下,输出信号存在一定的非线性畸变,这可能是由于差分放大器的非线性特性引起的。

五、实验总结通过本次实验,我们深入学习了模拟乘法器的原理和设计方法,并通过实际测量和分析,对乘法器的性能进行了评估。

实验结果表明,所设计的乘法器电路能够较好地实现乘法运算,并具有一定的线性范围。

然而,在实际应用中,我们还需要考虑乘法器电路的稳定性、功耗等因素,并进一步优化电路设计,以满足不同应用场景的需求。

模拟乘法器MC1496 1596设计混频电路

模拟乘法器MC1496 1596设计混频电路

班级:姓名:学号:指导教师:**成绩:电子与信息工程学院信息与通信工程系混频器的设计1概述在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频等调制与解调的过程均可视为两个信号相乘的过程,而集成模拟乘法器正是实现两个模拟量,电压或电流相乘的电子器件。

采用集成模拟乘法器实现上述功能比用分立器件要简单得多,而且性能优越,因此集成模拟乘法器在无线通信、广播电视等方面应用较为广泛。

混频器在通信工程和无线电技术中,应用非常广泛,在调制系统中,输入的基带信号都要经过频率的转换变成高频已调信号。

在解调过程中,接收的已调高频信号也要经过频率的转换,变成对应的中频信号。

特别是在超外差式接收机中,混频器应用较为广泛,混频电路是应用电子技术和无线电专业必须掌握的关键电路。

本次设计主要内容是基于MC1496的混频器应用设计与仿真,阐述混频器基本原理,并在电路设计与Multisim仿真环境中创建集成电路乘法器MC1496电路模块,利用模拟乘法器MC1496完成各项电路的设计与仿真,并结合双踪示波器实现对信号的混频,对接收信号进行频率的转换,变成需要的中频信号。

1.1混频器原理混频技术应用的相当广泛,混频器是超外差接收机中的关键部件。

直放式接收机是高频小信号检波,工作频率变化范围大时,工作频率对高频通道的影响比较大(频率越高,放大量越低,反之频率低,增益高),而且对检波性能的影响也较大,灵敏度较低。

采用超外差技术后,将接收信号混频到一固定中频,放大量基本不受接收频率的影响,这样,频段内信号的放大一致性好,灵敏度可以做得很高,选择性也较好。

因为放大功能主要放在中放,因此可以用良好的滤波电路。

采用超外差接收后,调整方便,放大量﹑选择性主要由中频部分决定,且中频较高频信号低,性能指标容易得到满足。

混频器在一些发射设备中也是必不可少的。

在频分多地址信号的合成、微波接力通信、卫星通信等系统中也有其重要地位。

此外,混频器也是许多电子设备、测量仪器(如频率合成器、 频谱分析仪等)的重要组成部分。

模拟乘法器的综合应用设计实验

模拟乘法器的综合应用设计实验

实验课程名称:_高频电子线路(a)1496内部电路 (b)1496引脚图图1 MC1496的内部电路及引脚图图2 MC1496的内部电路及电路模块引脚图DSB电路的设计与仿真调幅就是用低频调制信号去控制高频振荡(载波)的幅度,使高频振荡的振幅按调制信号的规律变化。

把调制信号和载波同时加到一个非线性元件上(例如晶体二极管或晶体三体管经过非线性变换电路,就可以产生新的频率成分,再利用一定带宽的谐振回路选出所需的频率成分就可实现调幅。

幅度调制信号按其不同频谱结构分为普通调幅(AM)信号,抑制载波的双)信号,抑制载波和一个边带的单边带(SSB)信号。

利用模拟乘法器相乘原理实现调幅是很方便的,工作原理如下:在乘法器的一个输入端输入载波信号另一输入端输入调制信号若要输出普通调幅信号,只要调节外部电路的平衡电位器,使输出信号中有载波即可。

输出信号表达式为:普通振幅调制电路的原理框图与抑制载波双边带振幅调制电路的原理框图如图图3图4 1496构成的振幅调制电路电原理图图中载波信号经高频耦合电容C1输入到Uc ⑩端,C3为高频旁路电容,使⑧交流接地。

调制信号经高频耦合电容C2输入到U Ω④端,C5为高频旁路电容,使①交流接地。

调制信号从⑿脚单端输出。

电路采用双电源供电,所以⑤脚接Rb 到地。

因此,改变R 5也可以调节大小,即:Ω+--=≈5007.0550R V u I I EE Ω--=5007.055I V R EE图7,使模拟乘法器①④脚间电压为0V,即电路平衡。

f=500KHZ /50mV 调制信号Uy:f=2KHz/200mV,此调制。

信号的时域和频域波形如图8所示。

实验测得DSB过零点信号波形如图9所示。

为曲线。

实验测得DSB过零点信号波形如图9所示。

为M曲线。

图9)混频器电路设计与仿真混频电路的作用是在本地振荡电压的作用下,将载频为fc的高频已调信号不失真地变换f的中频已调信号。

由于乘法器可以产生只包含两个输入信号之和频及差频分量的输出信号,所以用模拟乘法器和带通滤波器可以方便地实现混频功能。

protel课设报告模拟乘法器.doc

protel课设报告模拟乘法器.doc

protel课设报告模拟乘法器摘要Protel是当今电子行业中常用的EDA工具,能够完成原理图的绘制与仿真以及PCB板的制作,操作方便,功能强大。

本次设计便是以protel DXP为基础平台,综合运用其原理图(SCH)绘制,原理图(SCH)仿真以及印刷板(PCB)的制作功能,基本展现了protel的基本功能。

该设计对模拟乘法器进行了简单的原理说明,原理图的绘制,原理图的仿真以及最终的PCB的制作。

关键字protel;EDA;pcb;模拟乘法器;幅度调制;电路仿真Abstract Protel is commonly used in the electronics industry today, the EDA tool, to complete the principle of mapping and simulation, as well as the production of PCB board, easy to operate and powerful. The design is based in protel DXP platform, comprehensive use of their schematic SCH drawn schematic SCH simulation, as well as printing plates PCB production function, the basic display of the basic functions of the protel. The design of the analog multiplier principle of a simple description of the schematic drawing, schematic diagram of the simulation and ultimately the production of PCB. Keywords Protel; EDA; PCB; Analog Multiplier; Amplitude Modulation; Simulation 引言Protel是一款使用方便,操作简单,功能强大的EDA工具,作为一名要和电子打交道的大学生,掌握这个软件是很有必要的。

Protel课程设计模拟乘法器调幅电路

Protel课程设计模拟乘法器调幅电路

目录1 模拟乘法器电路的原理及设计 (1)1.1 课程设计性质 (1)1.2 课程设计目的 (1)1.3 课程设计内容及要求 (1)1.4 课程设计基本原理 (1)1.4.1 基本原理: (1)1.4.2 集成模拟乘法器MC1496 (2)1.4.3 幅度调制 (5)1.4.4 设计原理图说明 (5)2 Protel绘制原理图 (6)2.1 模拟乘法器调幅电路原理图的绘制 (6)2.2 Protel具体绘制步骤 (6)2.3 模拟乘法器调幅电路元件布局 (10)2.4 电路原理图 (10)3 模拟乘法器调幅电路PCB制作 (11)3.1 PCB简要说明 (12)3.2 封装 (12)3.3 布局与自动布线 (13)3.4 自动布线结果: (15)3.5 设置敷铜 (16)4 总结体会 (18)参考文献 (19)1 模拟乘法器电路的原理及设计1.1 课程设计性质综合设计性试验,本课程设计涉及的主要学科分支为通信电子线路。

1.2 课程设计目的1. 掌握用集成模拟乘法器实现全载波 调幅、抑止载波双边带调幅的方法。

研究已调波与调制信号以及载波信号的关系。

2. 通过实验对比全载波调幅、抑止载波双边带调幅波形。

3. 了解并掌握模拟乘法器(MC 1496)的工作原理,掌握调整与测量其特性参数的方法4. 熟悉并巩固Protel 软件画原理图,以及Multisum 仿真软件进行仿真,独立完整地设计一定功能的电子电路,以及仿真和调试等的综合能力。

1.3 课程设计内容及要求1. 绘制具有一定规模、一定复杂程度的电路原理图*.sch (自选)。

可以涉及模拟、数字、高频、单片机等等电路。

2. 绘制电路原理图相应的双面印刷版图*.pcb 。

本课设内容与要求:主要利用MC 1496设计幅度调制器,在已知电源电压为 +12V 和-12V 下,工作频率MHz f 100≈,设计幅度调制器,要求输出功率:mW P O 50≥,效率%50>η1.4 课程设计基本原理1.4.1 基本原理:幅度调制就是载波的振幅(包络)随调制信号的参数变化而变化。

集成模拟乘法器及其应用-模拟电子技术课件

集成模拟乘法器及其应用-模拟电子技术课件

•集成模拟乘法器术及课其件应用-模拟电上子技一页
下一页
三、鉴相电路
鉴相电路用来比较两输入信号的相位差,即它 的输出电压与两输入信号的相位差成正比。用模拟
乘法器构成的鉴相电路如图6.2.5(a)所示,令输入电
压 u X 、uY 分别为
uX Uxmsint
uy Uymcost
uoKxuyKxUm Uym si ntcots
下一页
由式 u 0U m tco ct可s见,模拟乘法器的输出电压
是一个幅度Um(t)随低频信号而变化的高频信号,波 形如图6.2.7(c)所示。称它为普通调频波(简称AM
波)。将式展开,并应用三角函数关系,则得
u 0 U cm 1 m aco tc so c ts U cc mo c t s 2 1 m a U cc mo c s 2 1 m a U cc mo c s
+VCC
+
uBE3 -
IC3 V3
RE
-VEE
图6.1.2 模拟乘法器原理图
•集成模拟乘法器术及课其件应用-模拟电子技上一页
下一页
6.1.2 单片集成模拟乘法器
采用两个差分放大电路可构成较理想的模拟 乘法器,称为双差分对模拟乘法器,也称为双平 衡模拟乘法器。
如图6.1.3所示(虚线框内)是根据双差分对
6.1 集成模拟乘法器
6.1.1 集成模拟乘法器的基本工作原理
一、模拟乘法器的基本特性 模拟乘法器有两个输入端、一个输出端。
若输入信号为 u X 、u Y ,则输出信号 u O 为 :
X K
Y
uOKuXuY
模拟乘法器电路符号
•集成模拟乘法器术及课其件应用-模拟电上子一技页

实验 模拟乘法器电路

实验   模拟乘法器电路

实验模拟乘法器电路一、实验目的和要求1.掌握模拟乘法器的基本概念与特性,NI multisim 10模拟乘法器。

2.掌握模拟乘法器组成的乘法与平方运算电路、除法与开平方运算电路、函数发生电路电路与计算机仿真设计与分析方法。

二、实践内容或原理1.NI multisim 10模拟乘法器在NI multisim 10模拟乘法器模型中,输出电压U=K[X K(U X+X off)·Y K(U X+X off)]+O ff(1.1)out式中,U out为在Z(K*XY)端的输出电压;U X为在X端的输入电压;U Y为在Y端的输入电压;K为输出增益,默认值1V/V;O ff为输出补偿,默认值0V;Y off为Y 补偿,默认值0V;X off 为X补偿,默认值0V;Y K为Y增益,默认值1V/V;X K为X增益,默认值1V/V。

单击Sources→CONTROL-FUNCTION→ MULTIPLLER,即可取出一个乘法器放置在电路工作区中,双击乘法器图标,即可弹出乘法器属性对话框,可以在对应的窗口中对乘法器的参数值、标识符等进行修改。

2.乘法与平方运算电路当两个输入电压U X(图2.1中的V1)和U Y(图2.1中的V2)加到乘法器X 和Y端时,乘法器输出端的输出电压U O可表示为U=KU X U Y (2.1)O图2.1 乘法电路从图2.1仿真分析结果可见,K =1,U X (V1)=2V ,V Y (V2)=4.3V ,输出电压U O =8.6V ,满足U O =KU X U Y 关系。

从图2.2仿真分析结果可见,当K =1,U X (V1)=U Y (V2)=2V 时,输出电压U O =4V ,满足U O =KU 2X =KU 2Y 关系,即平方运算关系。

图2.2 平方运算电路3.反相输入除法运算电路一个二象限反相输入除法运算电路如图3.1所示,它由运放3554AM 和接于负反馈支路的乘法器A1构成。

模拟乘法器MC1496的模拟调制、解调与混频、倍频的设计与仿真

模拟乘法器MC1496的模拟调制、解调与混频、倍频的设计与仿真

模拟乘法器MC1496的模拟调制、解调与混频、倍频的设计与仿真学号:************名:***年级专业:测控工程指导老师:***摘要集成模拟乘法器是继集成运算放大器后最通用的模拟集成电路之一,是一种多用途的线性集成电路。

可用作宽带、抑制载波双边平衡调制器,不需要耦合变压器或调谐电路,还可以作为高性能的SSB乘法检波器,AM调制/解调器、FM解调器、混频器、倍频器、鉴相器等,它与放大器相结合还可以完成许多的数学运算,如乘法、除法、乘方、开方等。

本设计主要应用集成模拟乘法器MC1496实现以上功能。

目录摘要 (1)第一章模拟乘法器MC1496/1596 (3)第二章,集成模拟乘法器的应用 (5)2.1 利用乘法器实现振幅调制 (5)2.2利用乘法器实现同步检波 (6)2.3利用乘法器实现混频 (6)2.4利用乘法器实现倍频 (6)第三章电路仿真与结果 (8)3.1振幅调制与解调电路的仿真 (8)3.2 混频电路的仿真 (9)3.3倍频器电路的仿真 (11)第四章仿真电路的参数和结果分析 (12)第四章仿真电路的参数和结果分析 (13)4.1 振幅的调制与解调 (13)4.2混频电路 (13)4.3倍频器电路 (13)第五章心得体会 (14)第六章参考文献 (15)第一章 模拟乘法器MC1496/1596单片集成模拟乘法器MC1496/1596的内部电路如图1-1所示。

图1-1 单片集成模拟相乘器MC1496/1596的内部电路图中晶体管VT 1~VT 4组成双差分放大器,VT 5、VT 6组成单差分放大器,用以激励VT 1~VT 4;VT 7、VT 8、VD 及相应的电阻等组成多路电流源电路、VT 7、VT 8分别给VT 5、VT 6、提供I 0/2的恒流电流;R 为外接电阻,可用以调节I 0/2的大小。

另外,由VT 5、VT 6两管的发射级引出接线端2和3,外接电阻R y ,利用R y 的负反馈作用可以扩大输入电压u 2的动态范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

乘法运算电路
1、课程设计的目的
模拟电子技术基础课程设计是学习模拟电子技术基础课程之后的实践教学环节。

其目的是训练学生综合运用学过的模拟电子技术的基础知识。

独立完成查找资料,选择方案,设计电路,撰写报告等工作。

使学生进一步理解所学本课程的内容。

并理论联系实际提高和培养学生的创新能力,为后续课程的学习毕业设计。

毕业后的工作打下基础。

2、设计方案论证
理想模拟乘法器具备的条件:1.r i1和r i2为无穷大;2.r o为零;
3. k值不随信号幅值而变化,且不随频率而变化;
4.当u X或u Y为零时u o为零,电路没有失调电压、噪声。

由乘法电路的输出电压正比于其两个输入电压的乘积,即
u o = u I1u I2
求对数,得:
再求指数,得:
所以可以利用对数电路、求和电路和指数电路,得到乘法运算电路,其方块图1为:
对数电路
对数电路
u I1
u I2
ln u I1
ln u I2
求和电路
ln u I1+ ln u I2
指数电路
u O = u I1u I2
图1 乘法运算电路方块图
2.1 Multisim介绍
Multisim是加拿大图像交互技术公司(Interactive Image Technoligics 简称IIT公司)推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。

它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。

它的前身为
EWB(Electronics Workbench)软件。

它以界面形象直观、操作方便、分析功能强大、易学易用等突出优点,早在20世纪90年代初就在我国得到迅速推广,并作为电子类专业课程教学和实验的一种辅助手段。

21世纪初,EWB 5.0更新换代推出EWB 6.0,并更名为Multisim 2001;2003年升级为Multisim 7.0;2005年发布Multisim 8.0时其功能已十分强大,能胜任电路分析、模拟电路、数字电路、高频电路、RF电路、电力电子及自动控制原理等个方面的虚拟仿真,并提供多达18种基本分析方法。

工程师们可以使用Multisim交互式地搭建电路原理图,并对电路行为进行仿真。

Multisim提炼了SPICE仿真的复杂内容,这样工程师无需懂得深入的SPICE技术就可以很快地进行捕获、仿真和分析新的设计,这也使其更适合电子学教育。

通过Multisim和虚拟仪器技术,PCB设计工程师和电子学教育工作者可以完成从理论到原理图捕获与仿真再到原型设计和测试这样一个完整的综合设计流程。

2.1.1破解版Multisim7安装方法注:电脑第一次安装Multisim7,须安装两遍;第二次及以后安装均会将跳过第一遍步骤,直接从第二遍步骤开始。

第一遍安装步骤:(1)双击Multisim7破解版文件夹/双击Electronics Workbench MULTISMv7.0文件夹/Setup/Next/ 接受协议/Next安装DAO3.5。

(2)第一遍安装结束,问是否现在重起计算机?选择“NO”/Finish。

第二遍安装步骤:(1)仍双击Electronics Workbench MULTISMv7.0文件夹下的Setup/Next/接受协议/在Serial栏输入任意密码,Next/要求第二次输入密
码,必须输入与上一次相同的密码,Next/弹出提示密码有误对话框,选择“否”。

(2)接下来为软件选择安装路径/Next开始自动安装过程。

(3)以后出现的对话框均选“否”或“确定”,/关闭记事本/一直到Finish。

(4)回到Electronics Workbench MULTISMv7.0文件夹下/双击破解CRACK文件夹。

(5)将文件夹里的multisim文件复制到刚才安装好的Multisim7文件夹中,弹出是否要复盖已经存在的multisim文件对话框?选择“是”。

(6)双击Multisim7文件夹中的multisim.exe文件或点击开始/程序/Multisim7,即可运行Multisim7。

此设计是利用
Multisim10.0.1设计的乘法运算电路并且进行仿真分析。

Multisim10.0.1不但提供了强大的元件库用来模拟实际器件,使我们可以在计算机上画出要进行仿真分析的电路,代替传统的实验室搭接硬件电路的实验发法;同时又提供了许多的分析命令和虚拟仪器,使我们可以用它们来分析电路,确定电路工作的性能。

如图2所示为Multisim的开始工作界面
元件
型号
主要参数数量R1.R2.R.R0 100K 可调
3R3.R4.R5.R7.R8
R3.R4.R5为10K ,R7.R8为1K
5U1,U2,U3S9013 3集成块
uA741
4
图2 multisim开始工作界面
2.2 元器件清单
表1元件清单如下表:
表1 元器件清单
2.3 系统的电路组成
2.3.1 直流电源部分
直流电源由电源变压器,整流电路,滤波电路,稳压电路四部分构

稳压电源的组成框图3如下:
+ 电 源 + 整 流 + 滤 波 + 稳 压 +
u1 u2 u3
u I U0
_ 变压器 _ 电 路 _ 电 路 _ 电 路
图3 电路图
电源用Multisim仿真如图4所示:
图4 multisim的仿真
(1)整流,滤波电路
用四个整流二极管组成单相桥式整流电路,将交流电压U2变成脉
动的直流电压,再经滤波电容C1滤除纹波,输出直流电压Ui ,U I=1.2U2 
两个二极管分别与LM7812和LM7912反向并联,起到保护电路的作
用。


(2)稳压电路 
稳压电路中用三端固定稳压器组成固定电压输出电路,电容C为抗干扰电容,用以旁路在输入导线过长时窜入的高频干扰脉冲,后面的电容C是用来改善输出瞬变特性和防止电路产生自激振荡.所接的二极管对稳压器起保护作用,防止输入端短路时C2和C2上电荷对稳压器内部放电使内部输出管击穿而损坏.
三端固定式集成稳压器构成稳压电路时要求输入电压Ui不能过
低,
Ui—U0>3V
2.3.2 乘法运算电路部分
电路原理图如下图5所示:
图5 乘法运算电路原理图总原理图如下图6所示:
图6 总电路图
电路由三部分组成:
第一部分为两个对数运算电路公式如下,电路原理图如图7所示:
;
图7 对数原理图
图7 对数原理图
第二部分由一个加法运算电路组成。

公式如下,电路原理图如8图所示:
=;
图8加法运算电路原理图
第三部分由指数运算电路组成公式如下,电路原理图如9图所示:
=;

图9 指数运算电路原理图
R1,R2和R7均采用可调电阻。

3、设计结果与分析
由运算关系:Uo=KuxUy,测试得到如下表2数据:
Ux/V Uy/V Uo/V系数K
11-0.03-0.03
1.1 1.1-0.048-0.04
1.2 1.2-0.063-0.044
1.3 1.3-0.09-0.05
1.4 1.4-0.110-0.056
1.5 1.5-0.135-0.06
1.5 1.6-0.150-0.0625
1.6 1.5-0.150-0.0625
1.6 1.6-0.164-0.064
1.6 1.7-0.185-0.068
1.7 1.6-0.182-0.067
1.7 1.7-0.202-0.069
1.7 1.8-0.230-0.075
1.8 1.7-0.229-0.074
1.8 1.8-0.259-0.08
1.8 1.9-0.339-0.094
1.9 1.8-0.332-0.097
1.9 1.9-0.432-0.12
2.0 2.0-0.80-0.2
表2 Uo=KuxUy的关系表
静态时测得输出电压为8.9v.
由以上测试数据可知,由于系统误差原因的存在,实验结果与理想值存在一定的误差。

但在一定的小范围内,该电路基本可以实现乘法运算的关系。

4、设计体会
通过此次的模拟电子技术基础的课程设计,在单独完成整个课设的过程中,我不但将已学的课本知识巩固了一遍,还学会了许多课外的知识,更加学会了multisim10.0.1仿真软件的使用。

这些都为以后的学习生活以及工作增加了许多的实践经验。

在课设的过程中,由于该电路的设计多采用已学的课本芯片,并且是基本按照课本中时序逻辑电路的设计来设计的电路。

在仿真的过程中,每一条连线不但考验我的细心还考验我的耐心,更加锻炼了我的一种整体上的思维,且学会了去走一步就提前去想下一步的该怎么走的思维方式。

使我比较深入地掌握了乘法运算电路的设计方法,并且同时熟悉了对数运算电路、加减运算电路和指数运算电路的设计方法;
通过这次课程设计,使我对该课程有了更进一步的了解,该课程设计不仅让我的把课本上的知识抽象的理论知识运用于实验中,更培养了我的单独思考问题的能力。

5、参考文献。

相关文档
最新文档