乘法公式教学设计1教案,DOC

合集下载

公开课教案集《乘法公式》精品教学设计(1)

公开课教案集《乘法公式》精品教学设计(1)

本课在整个单元中,属于比较重要的环节。

除了起到承接上个课时、转接下课时的作用之外,还有一些重点的计算知识和转化相应的课时。

本单元在学科核心素养中,具体体现出非常重要的一环,就是在高效课堂的设计和转化过程中,注意学生主体意识的培养和学生学习兴趣的提高。

学习兴趣之于学生,是非常重要而且更加有意义的教学活动。

对于不同层次的学生来讲,环节上的应用更加大了不同学生之间互相弥合的意义。

3.4乘法公式教学目标:1.经历探索平方差公式的过程,会通过图形的拼接得到平方差公式,用代数方法验证平方差公式,并会运用所学的知识,进行简单的混合运算.2.通过创设问题情境,让学生在数学活动中建立平方差公式模型,通过观察,归纳出利用平方差公式的条件,解决数字运算问题的方法,培养学生观察、归纳、应用能力. 3.了解平方差公式的几何背景,培养学生的数形结合意识.在探究学习中体会数学的现实意义,培养学习数学的信心.教学重点与难点:重点:平方差公式的几何解释和广泛的应用.难点:准确地运用平方差公式进行简单运算,培养基本的运算技能.教法及学法指导:有效的数学学习方法不能单纯地依赖模仿与记忆,我以动手操作为线索,让学生在动口、动手、动脑的活动中学习知识,让学生进一步理解“探索发现——归纳验证——应用拓展”这一学习与研究数学问题的方法.以探究体验的教学法为主,为学生创造一个良好的学习情境,指导学生深刻思考,细心观察,在解题时,一切从习题特点出发,根据习题特点寻找最佳解题方法,具体在运用公式计算时,要认清结构,找准a、b.课前准备:多媒体课件,一张正方形纸板,剪刀.教学过程:一、剪一剪,拼一拼(1)将边长为a的大正方形一角剪去一个边长为b的小正方形,得到的新图形面积为_______________________________(2)将新图形剪一刀拼成一个熟悉的几何图形,你有几种方案?请小组合作画出图形草图,写出面积(保留乘积形式)(3)由此我们可以得到的乘法公式为______________________________________ 设计意图:通过面积不变性,直观的得到乘法公式,锻炼学生动手能力,顺利引入新课。

乘法公式(教案)

乘法公式(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与乘法公式相关的实际问题,如计算长方形面积。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过拼图游戏,演示完全平方公式的构成和原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“乘法公式在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(4)乘法公式在综合问题中的应用:学生需要将乘法公式应用于解决实际问题,特别是涉及到多个乘法公式的综合运用。
举例:求解(3x+4)²(2x-1)时,如何运用完全平方公式和平方差公式简化计算过程。
在教学过程中,教师要针对这些重点和难点内容进行详细讲解和反复强调,通过典型例题和练习,帮助学生深入理解乘法公式,并能够在实际问题中熟练应用。同时,注重启发学生思考,培养他们分析问题和解决问题的能力。
三、教学难点与重点
1.教学重点
(1)完全平方公式的理解与应用:使学生理解完全平方公式的推导过程,掌握公式结构特点,能够熟练运用公式进行计算。
举例:求解(x+3)²和(x-4)²的结果。
(2)平方差公式的理解与应用:让学生掌握平方差公式的结构,能够将实际问题转化为平方差公式的形式进行计算。
举例:计算9²-4²和5²-3²的结果。

乘法公式初中教案

乘法公式初中教案

乘法公式初中教案教学目标:1. 理解乘法公式的概念和意义。

2. 学会运用乘法公式进行计算和解决问题。

3. 培养学生的逻辑思维能力和数学思维习惯。

教学重点:1. 乘法公式的概念和意义。

2. 乘法公式的运用和计算。

教学难点:1. 乘法公式的理解和记忆。

2. 乘法公式的灵活运用。

教学准备:1. 教学课件或黑板。

2. 练习题和答案。

教学过程:一、导入(5分钟)1. 引导学生回顾加法、减法、乘法、除法的定义和运算规则。

2. 提问:我们已经学过加法、减法、乘法、除法,那么有没有什么规律可以让我们更快地计算乘法呢?二、新课讲解(15分钟)1. 介绍乘法公式的概念:乘法公式是指在乘法运算中,两个数的乘积与它们的因数之间的关系。

2. 讲解乘法公式的意义:乘法公式可以帮助我们更快地计算乘法,避免繁琐的计算过程。

3. 举例讲解乘法公式:以2x3和3x2为例,解释它们的乘积都是6,强调乘法公式的交换律。

4. 讲解乘法公式的运用:通过例题展示如何运用乘法公式进行计算和解决问题。

三、课堂练习(15分钟)1. 布置练习题,让学生独立完成。

2. 选取部分学生的作业进行讲解和点评,纠正错误并巩固知识点。

四、拓展与应用(15分钟)1. 引导学生思考:乘法公式在日常生活中有哪些应用?2. 举例说明乘法公式在实际问题中的应用,如购物时计算总价、计算面积等。

3. 让学生尝试自己用乘法公式解决实际问题,培养学生的应用能力。

五、总结与反思(5分钟)1. 回顾本节课所学内容,让学生复述乘法公式的概念和意义。

2. 提问:通过本节课的学习,你们认为乘法公式在数学中的作用是什么?3. 鼓励学生积极思考,提出问题,培养学生的批判性思维。

教学评价:1. 课后作业:布置相关练习题,检验学生对乘法公式的掌握程度。

2. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,评估学生的学习效果。

3. 学生反馈:收集学生的学习心得和意见,不断改进教学方法,提高教学质量。

初中数学乘法公式教案

初中数学乘法公式教案

初中数学乘法公式教案教学目标:1. 理解乘法公式的含义和运用。

2. 掌握乘法公式的计算方法和步骤。

3. 能够灵活运用乘法公式解决实际问题。

教学重点:1. 乘法公式的含义和运用。

2. 乘法公式的计算方法和步骤。

教学准备:1. 教学课件或黑板。

2. 练习题。

教学过程:一、导入(5分钟)1. 引导学生回顾加法、减法、乘法、除法的定义和运算规律。

2. 提问:我们已经学习了加法、减法、乘法、除法,那么有没有一种方法可以快速计算两个数的乘积呢?二、新课讲解(15分钟)1. 介绍乘法公式的含义:乘法公式是一种用来计算两个数乘积的方法,它将乘法运算转化为加法运算。

2. 讲解乘法公式的计算方法和步骤:a. 将两个数写成加数的形式。

b. 将加数按照一定的顺序相加。

c. 得出结果。

3. 举例讲解乘法公式的运用:以2x3为例,将其写成加数的形式为2+2+2+2,然后按照顺序相加得到结果6。

三、课堂练习(15分钟)1. 让学生独立完成练习题,巩固乘法公式的计算方法和步骤。

2. 引导学生相互讨论,解决练习题中的问题。

四、总结与拓展(5分钟)1. 总结乘法公式的含义和运用,强调乘法公式的计算方法和步骤。

2. 提问:乘法公式可以用来计算两个数的乘积,那么能不能用来计算三个数或者更多数的乘积呢?五、课后作业(布置作业)1. 根据课堂练习的情况,布置适量的作业,让学生巩固乘法公式的计算方法和步骤。

教学反思:本节课通过讲解乘法公式的含义和运用,让学生掌握了乘法公式的计算方法和步骤,并能够灵活运用乘法公式解决实际问题。

在教学过程中,注意引导学生相互讨论,解决练习题中的问题,提高了学生的合作意识和解决问题的能力。

同时,通过提问和拓展,激发了学生的思考和探究欲望,为后续的学习打下了基础。

七年级数学下册《乘法公式的综合运用》教案、教学设计

七年级数学下册《乘法公式的综合运用》教案、教学设计
4.家长配合监督,关注学生的作业进度,确保作业质量。
5.教师及时批改作业,了解学生的学习情况,为下一步教学提供依据。
d.总结:引导学生总结乘法公式的特点、应用规律和注意事项。
e.作业:布置适量的课后作业,巩固所学知识。
4.教学评价:
a.过程性评价:关注学生在课堂上的参与程度、思考问题和解决问题的能力。
b.终结性评价:通过课后作业和阶段测试,评价学生对乘法公式的掌握程度。
c.个性化评价:针对学生的个体差异,给予有针对性的指导和鼓励。
2.完全平方公式:继续采用具体数字,让学生观察并归纳出完全平方公式:a² + 2ab + b² = (a + b)²。同时,引导学生了解完全平方公式的变式,如a² - 2ab + b² = (a - b)²。
3.公式的推导与应用:通过几何图形、实际例题等方式,讲解乘法公式的推导过程和应用方法,让学生理解乘法公式的实际意义。
2.情境导入:展示一个与学生生活相关的实际问题,如计算一个正方形与一个长方形的面积差,引发学生思考如何简化计算过程,从而引出乘法公式的学习。
(二)讲授新知
1.平方差公式:以具体的数字为例,引导学生观察并发现两个数的平方差与这两个数的和与差之间的关系。通过实际计算,总结出平方差公式:a² - b² = (a + b)(a - b)。
七年级数学下册《乘法公式的综合运用》教案、教学设计
一、教学目标
(一)知识与技能
1.让学生掌握乘法公式的综合运用,包括平方差公式、完全平方公式以及它们的变式。
2.培养学生运用乘法公式进行简便计算的能力,提高运算速度和准确性。
3.通过对乘法公式的运用,使学生能够解决一些实际问题,如面积计算、速度问题等。

乘法公式教学设计

乘法公式教学设计

乘法公式教学设计教学设计:乘法公式一、教学目标:1.了解乘法公式的定义和意义;2.掌握乘法公式的运用方法;3.能够灵活运用乘法公式解决实际问题。

二、教学重难点:1.乘法公式的含义和使用方法;2.如何将实际问题转化为乘法公式。

三、教学准备:1.教师:黑板、彩色粉笔、讲义、乘法公式的实例题;2.学生:铅笔、练习册。

四、教学过程:步骤一:导入1.向学生提出一个问题:“小明买了2本书,每本书的价格是10元,你能帮小明计算出总共花了多少钱吗?”。

2.让学生用口算的方法计算出答案,并将结果告诉全班。

步骤二:引入乘法公式1.将步骤一的问题转化为乘法公式:2×10=20。

2.指出“2×10”表示的含义是“2本书,每本书10元”,结果“20”表示的是小明总共花了20元。

3.解释乘法公式的定义和意义,即“乘法公式是一种将多个相同数值相乘的运算表示方式”。

步骤三:乘法公式的运用方法1.教师在黑板上写下一个简单的乘法公式“4×3=12”。

2.向学生解释乘法公式的结构,即“乘法公式由两个乘数和一个积组成”。

3.提醒学生:乘数的位置可以变化,但乘数的值不能变。

4.告诉学生:“乘法公式可以用来计算一些重复性的问题,比如买了多少个相同的物品总共花了多少钱,或者一天有多少小时等等。

”步骤四:练习乘法公式1.让学生用口算的方法解决一些简单的乘法公式,如“2×5=?”、“3×4=?”。

2.让学生交换乘数的位置,并写出相应的乘法公式,如“5×2=?”、“4×3=?”。

3.让学生用乘法公式计算一些实际问题,如“一天有24个小时,一周有7天,一个月有30天,一年有365天,你能计算出一年有多少个小时吗?”。

4.让学生互相出题,看谁能最快地用乘法公式计算出答案。

步骤五:巩固与拓展1.以小组活动的形式,让学生找出自己周围的一些实际问题,并尝试用乘法公式解决。

2.请学生将他们在小组中解决的问题和解决方法向全班汇报,以便分享和学习。

乘法公式教学设计

乘法公式教学设计教学内容本节内容在课本第81—86页。

本节通过对例题和“做一做”的讨论得到两个非常重要的乘法公式:平方差公式和完全平方公式。

并介绍了怎样利用它们来解决一些计算问题,以及利用公式简化计算过程的方法。

教学目标本节通过从例题,总结平方差公式和完全平方公式,介绍平方差公式和完全平方公式的结构特征,探索利用平方差公式和完全平方公式来进行简单的数学计算的方法,以及利用平方差公式和完全平方公式来简化数学计算的过程的方法。

知识与能力1.通过学习和解题理解平方差公式和完全平方公式的意义。

2.能通过观察和应用掌握平方差公式和完全平方公式的结构特征。

3.能够正确运用平方差公式和完全平方公式进行计算。

4.能够学会利用公式简化计算。

过程与方法1.通过一组两数和乘以两数差(完全平方和)的题目利用多项式乘法法则展开,观察结果,引导学生探索其中的规律。

2.通过对平方差(完全平方公式)的几何背景的介绍,进一步理解平方差公式。

3.通过一组专门的练习引导学生进行计算,从而让学生充分理解公式的运用条件。

4.通过教师的举例示范正确的解题过程,学生进行模仿性练习,做到熟悉掌握平方差公式(完全平方公式)的运用。

情感、态度与价值观1.通过引导学生探究公式的规律,激发学生探求知识的热情,培养学生良好的思维品质。

2.让学生自己动手操作发现公式的结构特点,从而增强其解决问题的能力,加强其对数学学习的严谨态度。

3.在教学过程中渗透数学公式的结构美、和谐美,激发学生学习数学的兴趣。

教学重、难点及教学突破重点1.掌握平方差公式和完全平方公式的结构特点,理解公式的意义。

2.利用公式解决计算问题。

难点1.对平方差公式和完全平方公式推导的理解。

2.灵活应用公式简化计算。

教学突破本节知识实际上不是新内容,只是整式乘法的特例,但是又有一定的几何背景,建议教师在教学中能够联系公式的几何背景帮助学生加深对乘法公式的理解和记忆。

在平方差公式的教学中,建议教师从典型的情况入手,通过学生的计算指出结果的普遍性,引导学生熟练运用此公式,并在此过程中渗透公式来源于整式乘法,又作用于整式乘法的辩证唯物主义思想。

乘法公式教案

乘法公式教案一、教学目标1. 知识目标:掌握乘法公式的概念、原理和应用。

2. 能力目标:能够灵活运用乘法公式解决实际问题。

3. 情感目标:培养学生对乘法公式的兴趣和探索精神,增强数学学科的学习动力。

二、教学重点与难点1. 教学重点:乘法公式的概念、原理和应用。

2. 教学难点:如何运用乘法公式解决实际问题。

三、教学准备1. 教具准备:黑板、彩色粉笔、乘法表。

2. 学具准备:学生练习册、习题集。

四、教学过程Step 1 引入新知1. 创设情境:小明要算一本书一共有多少页,他知道每页有24行,每行有32个字,他该如何计算?2. 导入问题:请同学们尝试解决这个问题,思考一下需要用到哪些数学方法?3. 引导讨论:请几位同学分享一下你们的解决思路。

Step 2 发现规律1. 呈现乘法表:在黑板上列出1-10的乘法表。

2. 观察与总结:请同学们观察乘法表,看看有没有什么规律或者特点?3. 引导思考:根据同学们的观察,我们能否总结出乘法公式的一般形式?Step 3 学习乘法公式1. 引入乘法公式:通过引导性的提问,教师介绍乘法公式的概念和原理。

2. 讲解乘法公式:详细讲解乘法公式的推导过程,并解释为什么可以使用乘法公式来解决实际问题。

3. 举例应用:提供具体实例,引导学生根据已学习的乘法公式解决实际问题。

Step 4 练习巩固1. 基础练习:在黑板上出示一些与乘法公式相关的习题,让学生上台做题并解释解题思路。

2. 拓展练习:提供一些较为复杂的应用题,要求学生分组讨论并给出解题思路和答案。

3. 自主练习:让学生在练习册上独立完成相关的练习题。

Step 5 归纳总结1. 归纳乘法公式:请同学们尝试总结乘法公式的基本形式和适用范围。

2. 教师点评:教师对同学们的总结给予点评和肯定。

五、课堂小结通过本节课的学习,我们掌握了乘法公式的概念、原理和应用,并且能够运用乘法公式解决实际问题。

六、作业布置1. 完成练习册上的相关练习题。

《乘法公式(第1课时)》教学设计

《乘法公式(第1课时)》教学设计教学目标知识与技能1.能够归纳出平方差公式;2.理解平方差公式的实际意义;3.能够应用平方差公式进行计算。

过程与方法经历探究平方差公式的过程,培养学生的归纳能力。

情感态度与价值观通过学习平方差公式,渗透应用数学的意识和善于观察、敢于猜想的精神。

重点探究平方差公式的过程,理解平方差公式的实际意义以及应用平方差公式。

教学过程设计活动1探究平方差公式请完成下面计算: ()()11_________x x +-=()()22=-; ()()22_________a a +-= ()()22=-; ()()3232_________x x +-= ()()22=-; ()()_________a b a b +-= ()()22=-。

请同学们观察上面计算的四个算式,相乘的两个多项式有什么特点,结果有什么特点?平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差。

()()22a b a b a b +-=-活动2 平方差公式的实际意义请同学们动手做:①图1中在边长为a的正方形上剪掉一个边长为b 的小正方形(b<a);②剪掉阴影部分;③把剪下的阴影部分按照图2的样子拼接。

2 中染色部分的面积怎样计活动3 运用平方差公式请同学们填写课本P113“做一做”中的表格。

例1 计算:()()22+-;x y x y()()-+--;5353a b a b()()+-。

m n n m解:(略)。

结合第⑶、⑷题的计算,请你谈一谈对平方差公式的认识。

请指出下面算式中的a,b:()()---+;11a a()()---+。

m n n m小结1.请说出平方差公式。

2.运用平方差公式时,应注意哪些问题?活动5 课堂练习1.请同学们做课后练习(P114)第1题。

2.请做课后练习第2题。

3.请做课后习题第4题。

布置作业:课后习题(P114)第1、2、3题。

乘法公式教学设计教案

13.3 乘法公式(1)------两数和乘以这两数的差(一)教学目标1.经历探索平方差公式的过程,进一步发展符号感和推理能力。

2.会推导平方差公式,并能运用公式进行简单计算。

3.认识平方差及其几何背景。

4.在合作、交流和讨论中发掘知识,并体验学习的乐趣。

(二)教学重点:体会公式的发现和推导过程,理解公式的本质,并会运用公式进行简单的计算。

(三)教学难点:从广泛意义上理解公式中的字母含义。

(四)教学过程:图(1)的面积为:图(2)的面积为:学生探讨:从上式中你能发现一些有趣的现象吗?再举几个数试试.如果是一个数和一个字母,或两个都是字母呢?它们的情况又如何?2.计算下列各题:(1)(x+2)(x-2) (2)(1+3a)(1-3a)(3)(x+5y)(x-5y)3、观察以上算式及其计算结果,你发现了什么规律?能不能大胆猜测得出一个一般性的结论?问题研计算(a+b)(a-b)==此环节培养了学生的观察归纳能力33682088202022=-=⨯-⨯336)820)(820(=-+(1)(2a+1)(2a-1)=2 a2-1,原因是“积的乘方”运算错误。

(2)(3a+1)(3a-1)=6a2-1,原因是“数的乘方”运算错误。

(3)(2a+1)(-2a-1)=4a2-1,原因是没有掌握平方差公式的特征。

(4)(-2a+1)(-2a-1)= - 4a2-1,原因是常见的符号错误。

(5)-(2a+1)(2a-1)= - 4a2-1,原因也是常见的符号错误。

策略:针对上述错误,进行题组训练,教师精讲学生多练,还可以每天五分钟小测验提高解题速度和准确率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

乘法公式(1)------两数和乘以这两数的差
(一)教学目标
1.经历探索平方差公式的过程,进一步发展符号感和推理能力。

2.会推导平方差公式,并能运用公式进行简单计算。

3.认识平方差及其几何背景。

4.在合作、交流和讨论中发掘知识,并体验学习的乐趣。

(二)教学重点:体会公式的发现和推导过程,理解公式的本质,并会运用公式进行简单的计算。

(三)教学难点:从广泛意义上理解公式中的字母含义。

(四)教学过程:
(1)(2a+1)(2a-1)=2 a2-1,原因是“积的乘方”运算错误。

(2)(3a+1)(3a-1)=6a2-1,原因是“数的乘方”运算错误。

(3)(2a+1)(-2a-1)=4a2-1,原因是没有掌握平方差公式的特征。

(4)(-2a+1)(-2a-1)= - 4a2-1,原因是常见的符号错误。

(5)-(2a+1)(2a-1)= - 4a2-1,原因也是常见的符号错误。

策略:针对上述错误,进行题组训练,教师精讲学生多练,还可以每天五分钟小测验提高解题速度和准确率。

相关文档
最新文档