土壤-机器系统力学

合集下载

土壤物理机械性质

土壤物理机械性质

第一节 土壤物理机械性质
各种土壤的粘结力及对铁片的粘着力 (Schubler)
土 壤 1.硅质纯砂土 2.腐殖质 3.菜园土 4.砂粘土 5.壤粘土 6.灰色纯粘土 干土的相对粘结力 (以灰色纯粘土作为100) 0.0 8.7 7.6 57.3 68.8 100.0 湿土对铁片的粘着力 (磅/英尺2) 3.8 8.8 6.4 7.9 10.6 17.2
第一节 土壤物理机械性质
土壤物理机械性质:当土壤受到外力作用(如耕作)时发生 的形变、显示出一系列动力学特性(dynamic property)叫做土 壤物理机械性质。它是多项土壤动力学性质的统称,包括了一 下性质: 一.土壤粘结性(soil cohesion) (一)概念: 指土壤颗粒之间被此粘结在一起的性质。又称 为“土壤内聚力”。它使土壤具有抵抗外力(机械破坏和根系 穿插时)而不被破坏的能力。 粘结性强弱的表示指标为粘结力 :单位面积的粘结力。其单 位为N/cm2。 颗粒的粘结力有范德华力、库仑力、水膜的表面张力等物理 引力,以及氢键、各种化学胶结力。
第一节 土壤物理机械性质
三.可塑性(plasticity):
(一)概念:土壤在适宜水分范围内在外力的作用下变形,当外力撤消后和干 燥后仍能保持这种变形的特性,也称可塑性。传统的泥塑艺术工艺,就是利用粘 土的这一特性形成的。 原因:粘粒成薄片状,在有水存在的条件下,粘粒表面被包一层水膜,外力 揉搓时,片状的粘粒重新排列且粘结固定,由于粘结力的存在,失水后能保持原 状。粘结性关系到土壤耕作质量。 土壤表现塑性的含水量范围 塑性的含水量范围是土粒间的水膜 塑性的含水量范围 已厚到允许土粒滑动变形,但又没有丧失其 粘结性的范围 (二)影响可塑性的因素 凡影响粘结性的因素都影响可塑性 (1)下塑限(塑限)(lower plastic limit): 土壤呈现塑性的最小含水量 (2)上塑限(upper plastic limit): 土壤因含 水量增多而丧失塑性,并开始成为流体时的含水量。也有人叫流限(liquid limit) (3)塑性值(塑性指数)plastic index :上塑限与下塑限的差值。在这一含水量 范围内,土壤才会有塑性。它也是土壤可塑性强弱的指标。

第九章土壤的物理机械性和耕性

第九章土壤的物理机械性和耕性
以上两项,在实际应用时有时不加区别。
精品资料
精品资料
(三) 土壤的位移阻力 土壤的位移阻力,主要(zhǔyào)是外物破碎土
壤时遇 到的阻力,常用抗剪强度来表示。
精品资料
测定(cèdìng)土壤的抗剪强度
将土样置于剪切盒中,施加垂直压力,使 土样在横断面上感受压应力(yìnglì)P0。固定下盒, 在 上盒上施以水平力S,土样在上下盒的交界面 上受到剪应力(yìnglì)的作用。当剪应力(yìnglì)超 过一定值 时,土块便被剪断,这时的剪应力(yìnglì)称为土 壤的 抗剪强度。
精品资料
土壤胶粒表面多带负电荷,如果吸引了周围的 阳离子,都带有正电荷,仍是互相排斥的,只有 (zhǐyǒu)当排斥力小于分子之间的范德华力时,胶粒 才能互相吸引。
精品资料
4、水膜的表面张力 当土壤中含有一定水分(shuǐfèn)的时候,
在土粒与土粒的接触点上,水膜相互连接,而 形成凹形的曲面,借表面张力的作用,可使相 邻的土粒互相靠近。
精品资料
5、浓浆结持状态 土壤呈浓浆状,可在重力作用下流动,没有
(méi yǒu)
精品资料
(一) 1、定义
土壤的抗压性,是指土壤对挤压力的反应, 其衡量(héng liáng)的指标是土壤的坚实度。
精品资料
土壤坚实度有两种表示方法: 一是用压缩(yā suō)每单位容积土壤所需的力表 示 ( 单位:公斤/厘米3) ;
四、土壤的可塑性(soil plastcity) (一) 概念
土壤在一定含水量范围内,在外力作用下 可以任意改变形状,当外力取消,土壤干燥后, 仍能保持所获得(huòdé)的形状,这种性质称为
精品资料
(二) 产生塑性的原因 土壤中的粘粒是薄片状的,彼此间有很大

土壤动力学基础

土壤动力学基础

2 压实土壤所产生的阻力
压实土壤所产生的阻力 所消耗的功等于压出车辙所做的 功,即:
Z
RL BL pdz
0
式中:R—行走阻力
L— 行驶距离 B—车轮或履带宽度 p—接地压力
Z—下陷(车辙)深度
据 则:
(1)履带压实土壤所产生的阻力
P
(kc b
k )Z n
R
BZ (kc 0B
k )z ndz
• 塑限
WP
• 液限 WL
• 塑性指数 PI WL WP
(7)粘附极限
Wt
1.土壤土壤的主要力学参数及其测定
(1)土壤坚实度 又称土壤硬度,是指一定形状的几何体插入土壤时所
受的阻力。最常用的是锥体和平板。
(2)土壤外附力与内聚力
土壤外附力(系数):土壤着金属或其它材料表面的力,N/m2 土壞内聚力(系数):土壤颗粒间的粘结力, N/m2 这两个参数可用土壤外附力/内聚力测定仪测定。
tg
f
式中: C Wtg 为最大推进力,第一项是由土壤内聚性所发挥 出的推进力;第二项是由于土壤的内摩擦性所发挥的推进力 。 f为滚动阻力系数, f R
W
为提高牵引系数,一方面靠提高推力;再一方面就是减小阻 力。
(2)改进途径 ① 提高推进力的途径
从 是
Hmax Ac Wtg
可看出,要增加推进力,一个方法
式中: —剪切应力; —-土壤内摩擦角;p—正压(应)力;
d—剪切位移;c—土壤(切向)内聚力系数; k 、 k1、 k2—土壤剪切变形模数。
四、行走机构推力计算 1行走机构受力分析
牵引力T=H-R
滑转率(打滑率)
i
车辆理论速度 - 车辆实际速度 车辆理论速度

1土壤-车辆系统力学-part2

1土壤-车辆系统力学-part2

砂壤土(含水量19.7%)
粘土(含水量37.7%)
第五章 土壤的水平应力-应变关系及复合载荷-变形关系
第三节
土壤水平变形模量K的试验结果
水平变形模量K值是否是土壤特性的参数素有争议。
贝克学派等人把K值作为土壤参数,其测试结果与测试元件、载荷(压力)条
件及试验方法等无关,它仅仅是一种土壤特性。 而另一些学者试验证明,K值并非土壤特性参数,它与试验的边界条件有关, 发现K值随垂直载荷(正压力)的增加而呈线性增长。 国内有些学者也进行了试验研究,其结果是:
更为接近。
第五章 土壤的水平应力-应变关系及复合载荷-变形关系
第四节
滑动下陷与水平变形
对于低载荷(p=12kpa和23.2kpa ),Z(j )线的斜度几乎是零,但对 较大的载荷,斜度较大。即滑动下陷增加较快,载荷再增加到超过承载能 力(p=42.2kpa),就会引起粘土土壤块的坍塌。 一般来说,在摩擦性的砂土中的滑动下陷远比在内聚性的粘土中大,这
重复加载和下陷
水平载荷的车辆)
在含水量约为35 %的湿粘土上进行 实际试验的车辆下 陷和通过次数的关
图5-18
系。
由图表明,在第一次通过后, 本来坚硬的粉粘土达到触变性阶 段,出现连续的滑动下陷,并伴 随着相应的强度下降,降低的相 对值是用水道试验站( Wes )“ 圆锥指数”(CI)计量的,如虚 线所示。
行驶中的2.54~25.4cm/s的剪切速度正是最典型的.
表 5-1 两种剪切速率下的土壤剪切强度的试验研究结果
土壤 砂壤土(含水量28.6%)
垂直载荷 (lb/in2) 0 10.2 0 10.2 0 10.2
抗剪强度(lb/in2) 51(度∕秒) 1.2(度∕秒) 1.6±0.3 8.3±0.6 3.2±0.3 11.1±0.8 1.5±0.4 8.5±1.0 1.5±0.3 7.7±0.7 3.4±0.6 11.0±0.7 1.6±0.4 7.7±0.8

土壤的物理机械性质及其对车辆行驶性能的影响

土壤的物理机械性质及其对车辆行驶性能的影响

土壤的物理机械性质及其对车辆行驶性能的影响1.土壤的物理机械性质土壤是工程机械的作业对象,又是其支承基础。

土壤的物理机械性质直接影响工程机械的作业阻力、运行阻力,牵引性能及运行通过性。

1.1土壤的粒度组成工程中所研究的土壤系指各种大小的土壤颗粒任意组合而构成的堆积物。

土壤通常由土壤颗粒、水和空气三相物质构成。

若土粒间的空隙全部被水充满,形成饱和土,即为两相土壤。

土壤各相的相对含量决定了土壤的状态与性质。

[1]实际土壤是不同粒度土粒的混合物。

不同粒度土粒的相对含量直接影响土壤的性质。

为了研究土壤的性质,常常要确定土壤的粒度组成.即进行颗粒分析试验。

工程中实用的颗粒分析试验方法有筛分法和比重计法。

筛分法适用于粒径大于0.1 mm以上的土壤;比重汁法适用于粒径小于0.1mm的土壤。

如果土壤中同时含有大于和小于0.1 mm的土粒时,两种方法并用。

[2]土壤中各级粒度分组搭配情况,用其含量《以重量计》的百分数表示,称为土壤的颗粒级配。

颗粒不均匀,称为级配良好;颗粒较均匀,则级配不好。

颗粒分布均匀程度用不均匀系数K表示:K=K60K10 d60--限定粒径,土壤中小于该粒径的颗粒占总土重的60%d10--有效粒径,土壤中小于该粒径的颗粒占总土重的10%K值愈大,说明颗粒愈不均匀。

当K>5时称为不均匀土壤。

1.2土壤的含水量与塑性土壤的含水量ω是土壤中所含水的质量m2与土壤颗粒的质量m1之比:ω=m2m1×100%土壤在外力作用下变形。

当外力解除后,土壤保持其变形形状的能力称为它的塑性。

粘性土是可塑性土壤,而砂和砾石则为非塑性土壤。

[3]含水量对土壤的塑性有重要影响。

当含水量大于一定界限时,粘性土会呈现某种流动状态。

这一极限含水量称为粘性土的流动界限(液限)或称为塑性上限二当含水量小于某一界限时,则粘性土壤会失去压延性而变成硬性的固体状态,这一极限含水量称为粘性土的压延界限(塑限)或称为塑性下限。

第5章 土壤物理机械性质

第5章 土壤物理机械性质

5.3 土壤黏着力和黏结力
5.3.1 土壤黏着力的测定
土壤黏着力是指土壤在湿润状态下黏附的外物(农具、车轮 等)上的性质,实际是土壤颗粒—水—外物相互吸引的性质。
土壤黏着力的大小与土壤颗粒组成、结构、有机质含量和土壤 湿度有密切关系。黏土及无结构的土壤具有较大的黏着力,质地 较砂以及有良好结构的土壤黏着力较小。
5.2 土壤塑性
土壤塑性是指土壤在一定含水量的条件下,由外力作用,可 以改变形状,并在外力消失后仍能保持其形状的性质。
土壤具有可塑性是因为土壤的片状黏粒间因水膜的连接,使 土粒间可以相互滑动,但不断裂的。
土壤塑性与土壤含水量有关,由含水量的多少可定出可塑性 上限和可塑性下限,其差值为土壤可塑性(塑性指数)。土壤可 塑性越大,说明土壤具有可塑性的含水量范围约宽,土壤可塑性 越强。
用木棒粉碎风干土,并过0.5或1.0mm土筛,土样作为待测定土样。 称过筛土样30~50g放于玻璃缸中加水搅拌至土样呈稠状,接近流限(可塑上 限),盖好盛稠状土样的容器,静置24小时,使容器内土样达到最大膨胀值。将膨胀 值达最大值的土样置入矩形金属或有机玻璃缸(5×3×2cm)中(缸内壁于装土样前 抹底层凡士林),称重,如没有特制容器,可用大铝盒做为盛膨胀土样容器。将容器 中土样表面抹平,并在土样表面刻入不太深的对角线沟。然后置于空气中风干。土样 收缩,并与容器壁离开形成缝隙,测量干缩的土样长度及厚度,小心取出土样,用滤 纸擦掉土表凡士林油。随之再将土样置于烘箱中(105℃)烘至恒重。 测量容器中土样干、湿前后容积:干缩容积按对角线长度与厚度计算)、对角线 长度以及含水量变化值(差值),分别计算土样的线性收缩系数、体积收缩系数及湿 度收缩系数。
土块压碎后,分别放入铝盒中,测定其土样含水量(于105℃烘箱中,烘 至恒重)。

土壤力学在基础工程中的应用

土壤力学在基础工程中的应用

土壤力学在基础工程中的应用土壤力学是研究土壤力学性质和土壤与结构物相互作用的学科。

在基础工程中,土壤力学的应用至关重要。

本文将从土壤的力学性质、土壤与基础工程的相互作用以及土壤力学在基础工程中的具体应用等方面进行探讨。

一、土壤的力学性质土壤是由颗粒状物质、水和空气组成的,具有一定的力学性质。

首先,土壤的重要性质之一是其孔隙结构。

土壤中存在不同大小的孔隙,这些孔隙对土壤的渗透性、压缩性和抗剪强度等力学性质有着重要影响。

其次,土壤的含水量也是影响土壤力学性质的重要因素。

土壤中的水分含量会影响土壤的体积变化和强度特性。

最后,土壤的颗粒间摩擦力和颗粒间的黏聚力也是决定土壤力学性质的重要因素。

二、土壤与基础工程的相互作用土壤与基础工程之间的相互作用主要体现在两个方面:承载力和变形特性。

首先,土壤的承载力是指土壤能够承受的荷载大小。

在基础工程中,土壤的承载力决定了基础的稳定性和安全性。

其次,土壤的变形特性是指土壤在受到外力作用时所产生的变形行为。

土壤的变形特性对基础工程的设计和施工有着重要影响。

三、土壤力学在基础工程中的具体应用1. 基础工程的地基处理在基础工程中,土壤力学的一个重要应用是地基处理。

地基处理是通过改变土壤的力学性质,提高土壤的承载力和变形特性,以确保基础工程的稳定性和安全性。

常见的地基处理方法包括填筑、振动加固和土壤改良等。

土壤力学的理论和方法可以指导地基处理的设计和施工,提高工程的质量和效益。

2. 基础工程的基础设计土壤力学在基础工程的基础设计中起到了至关重要的作用。

基础设计是根据土壤的力学性质和工程要求确定基础的形式、尺寸和材料等参数。

土壤力学的理论和方法可以帮助工程师进行基础设计的计算和分析,确保基础的稳定性和安全性。

同时,土壤力学还可以指导基础的施工和监测,保证基础工程的质量和可靠性。

3. 基础工程的地震设计土壤力学在基础工程的地震设计中也起到了重要的作用。

地震是一种强烈的地质灾害,会对基础工程产生巨大的影响。

土壤的性质专题知识讲座

土壤的性质专题知识讲座

1、概念:
土旳级配:土旳各级土粒组合情况,用其含 量旳百分数表达,称为土旳颗粒级配。
2、表达措施:
土旳级配常以颗粒级配曲线表达。
如图所示,纵坐标表达不不小于(不小于)某 一粒径旳土粒占土样总量旳百分数;横坐标表 达颗粒直径。
级配曲线可反应下列内容:
(1)粒组范围及土旳级配;
(2)颗粒分布情况;
当曲线平缓时,阐明土中大旳及小旳颗粒都有, 颗粒不均匀,即各级粒组搭配良好,称为级配良 好旳土;当曲线较陡时,表达土中颗粒直径范围 较小,颗粒均匀,属于级配不好旳土。
(2)塑限WP:伴随水分旳继续蒸发,自由水进 一步降低,体积进一步收缩,而土仍呈塑性状 态,当孔隙中旳自由水大致蒸发完时,土旳强 度开始迅速提升,并开始失去可塑性而呈半固 体状态,这一分界含水量为土旳塑限WP 。 WP 也称为压延界线。
(3)缩限WC:继续蒸发土中旳水分,土旳体 积仍将随之收缩,但收缩旳量不断降低,直到 停止收缩,相应旳含水量为收缩界线,即缩限 WC 。 WC也称为收缩界线。
一、土旳固体颗粒
土旳骨架是由多种不同尺寸旳土粒构成,自 然界旳土粒大小很不均匀,碎石颗粒旳直径可 达10cm以上,而在平静水中缓慢沉积旳细微 粘土颗粒旳直径只有万分之一mm,不同大小 旳土粒在土中旳相对含量是决定土旳工程性质 旳主要指标之一,所以,首先按土粒旳直径大 小进行归并与分类,将土粒提成若干粒组,每 一粒组具有一定旳土粒直径变化范围,按此范 围将土进行分类。
为各项工程服务,如铁道工程、路桥工程等。
工程机械只有和地面相互作用,才干完毕其 功能,车辆在地面行驶要靠土体支撑,要借助 土旳反力来发挥推动力。
举例:牵引力旳产生。
§1 土壤旳物理机械性质
§1.1 土旳形成与构造
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

土壤-机器系统力学研究机器在作业和行驶中与土壤相互作用的力学问题的一门学科。

或称耕作与行驶土壤动力学。

其任务是探明机器作用于土壤和土壤所起反应的规律;在土壤基础行为属性水平上建立相互关系的数学模型,以期能预测机器的行驶性能、作业质量、效率、能耗和经济性,以及土壤在机器通过和作业后的性能变化、压实、水土流失等问题,从而合理研制和设计机器的结构形态,优化机器和机器系统的设计和运用,保护土壤生态系统和农业资源。

概述在农业机械领域内,土壤-机器系统力学的研究包括两部分:一是由土壤支承并借土壤对机器的反作用而产生驱动力的行走理论,即土壤-车辆系统力学,其研究对象是拖拉机和农业机械的行走装置;二是对土壤进行机械作业的耕作理论,即土壤耕作力学,其研究对象是土壤耕作机械和农田建设机械中的土方作业机械。

土壤-机器系统力学所涉及的,一般是深度在几十厘米以内的耕作层或地面土壤,而且机器是在广阔的地面上、在不同的季节以较高的速度对小范围饱和或非饱和的各种土壤施加复杂的载荷,使土壤在短时间内产生较大的变形。

这与经典土力学所处理的建筑物地基与土壤的相互作用有较大的差异,后者是长年在固定地点以相当大的静载荷或地震波作用于较大范围、深达几十米的土壤,使土壤产生缓慢而相对微小的变化。

因而不能完全采用经典土力学和土动力学的某些相类似的假定、理论、公式和方法。

对于土壤物质的多样性和性质的多变性,机器作用力的复杂性,土壤反应因应力路径、载荷历史而不同的特性,以及速率效应、机器振动等的特点,结合耕作、土方工程和越野行驶的技术要求进行的研究,要以19世纪末至20世纪30年代苏联的Β.Π.戈里亚奇金和美国的M.L.尼科尔斯的研究为开端。

至第二次世界大战末期,特别是50年代以后,土壤-机器系统力学逐步形成一门独特的新学科,它的形成和发展与机器力学、土壤物理、土力学、土动力学、连续介质力学、流变学、系统力学、随机过程和数理统计,以及新的分析方法和数值方法的发展有密切联系。

中国这方面的研究始于20世纪50年代中期。

首先是建立室内试验土槽进行了拖拉机水田叶轮的研究;60年代初设计了贝氏仪,发展了船式拖拉机浮式和半浮式工作原理;进行了电渗犁的试验和犁耕土垡运动和阻力的分析;70年代初研制了水田土壤剪切仪、静载式和动载式水田土壤承压仪和水田土壤外附力/内聚力测定仪;并应用这些仪器对水田土壤参数与不同行走装置性能的关系进行了研究,提出了由土壤内聚力产生的推进力和由于沉陷、壅泥、积泥等外应力产生的行走阻力计算公式。

70年代末至80年代初,还进行了水田土壤流变及触变性质的研究,提出了水田土壤的应力-应变-时间模型和水田土壤含水量与触变率之间的函数关系;进行了犁体曲面数学模型和优化。

80年代以来进行的有土壤对金属表面粘附的机理研究与测定,履带和轮胎附着、驱动、压实性能和精确喷印网格法的研究,土壤切削的二维和三维有限元分析等。

研究内容在农业机械领域内,土壤-机器系统力学研究的主要内容包括:①各种土壤参数(材料特性、静力学特性、动力学特性、物理量传导特性、行为属性、综合特性等)的测试技术和田间快速测定技术及分布规律;②土壤行为属性机理、应力-应变模型、本构关系、失效理论;③典型行走装置(钢轮、叶轮、胎轮、金属履带、橡胶履带等)与土壤相互作用的基础工艺过程,其接地压强、沉陷量、驱动力、行驶阻力、滑行率间的定性定量关系,行走装置构型和设计的优化;④拖拉机及其机组、各种自走式农业机械在各种土壤和地面条件下的牵引性能、通过性能、越障性能、转向操纵性、振动特性、行驶稳定性和运输效率;⑤土壤耕作机械和土方作业机械在以不同方式切削、挖掘、推移、破碎和抛置土壤的作业过程中,土壤的变形、破坏、移动、受力和能耗与土壤参数、机器结构参数和作业参数间的定性、定量关系,工作部件构型和设计的优化;⑥拖拉机和各种田间作业机械对土壤的压实、水土流失与土壤参数、机器结构参数、作业参数之间的定性、定量关系,以及机组结构形态(型式、尺寸、重量、功率等关系)的优化。

研究方法土壤-机器系统力学的研究一般采用带有本学科特色的经验法、半经验法(或类比法)、模型试验和理论研究等方法。

经验法将机器放在不同的土壤中进行试验,测取其性能、能耗等数据。

同时用特定的简易方法测定各种试验土壤的关键特性或综合性参数。

将同一土壤的土壤特性、机器参数和性能数据相关联,得出定量关系即经验公式。

利用这些经验公式,只须用简易的田间测定,即可预测机器性能。

如在第二次世界大战中,为利用简便的贯入仪来预测各型车辆能否在各类地段通过而发展的“圆锥指数法”。

在土壤耕作力学方面,以贯入仪测定耕层平均坚实度,用以预估田间土壤在适耕情况下各种相应型号犁体的犁耕比阻,也是经验法的例子。

此法便于大面积执行,但发展成套的计算程序须经大量试验。

在规定条件下得出的经验公式,不能随意推广应用于试验范围外的场合。

半经验法(类比法)应用现有尚不完整的理论知识,为土壤与机器间的相互关系提供简单模型,并通过反复试验来校核与修正,从而建立起半经验、半理论公式。

20世纪20年代苏联戈里亚奇金提出的铧式犁牵引阻力有理公式:F=fG+kab+εabv2,以及第二次世界大战后联邦德国W.泽内提出的类似公式: F=k0+(1-cosγn)cv2就是例子。

两式中G为犁的重量;a为耕深;b为耕宽;v为犁的前进速度;f为综合摩擦系数; γn为犁壁翼端推土角;k,k0,ε, c为与土壤性质和犁体曲面等因素有关的系数。

在土壤-车辆系统力学方面,50年代初,美国M.G.贝克用平板承压贯入仪和扭转剪切环构成贝氏仪,各自近似地模拟行走装置的垂直沉陷和水平推进,用该仪器测得的土壤数据,代入贝克在前人公式的基础上提出的式(1)作为行走装置的压力沉陷模型;代入贝克在前人公式基础上提出、并经Z.雅诺西简化的式(2)作为塑性土壤上行走装置水平牵引力-滑移率的模型:上两式中p为接地比压;z为沉陷量;b为接地面积宽度或半径;kο为土壤内聚变形模量;k φ为土壤摩擦变形模量;n为沉陷指数; τ为土壤抗剪强度;c为土壤内聚力; Φ为土壤内摩擦角;k为土壤水平变形模量;j为土壤剪位移。

两式中的kο、kφ、k、n、c、Φ等六个参数可用贝氏仪测定的两组曲线计算得出。

半经验法尽管应用的公式不完全符合实际情况,其结果有的尚好,有的较差。

但在缺乏完整理论的情况下,仍不失为处理实际问题的途径之一。

模型试验法应用相似原理,将系统性能方程表达为包含所有显著变量并相互独立的无因次项关系式,以模型与原型的无因次项对应相等作为模型设计准则。

通过对模型的观察或测试,预测原型的性能,从而提供某些不能用理论分析方法获得的数量关系。

同时,也可用以揭示某一系统物理参数的本质与效应。

在土壤-机器系统力学中,由于土壤参数等不易放大、缩小,模型设计条件往往不能全部实现,从而出现预测因数的畸变。

在这种情况下,需要通过分析来确定设计条件的畸变因数与预测畸变因数间的关系。

可用几个不同比例模型的实验数据进行插值估计,或故意歪曲一二项其他设计条件来补偿。

模型试验可以在便于控制的室内土槽进行。

通过量纲分析处理可减少预测方程中的项目数;通过合成土壤可处理较多的田间条件;通过真实模型可辨认起作用的因素,并可不通过测定来定量一些难测的物理因素等。

1957年以来,美国、中国和其他国家的学者用模型试验法对土壤-机器系统中的力学问题进行了研究,在充气轮胎、凿形齿、推土铲、圆盘犁等的土壤 -机器关系方面取得一定成果。

但对土壤的相似性、以及畸变因数的控制和处理尚待进一步深入研究。

理论方法通常是将力学原理和连续介质力学方法应用于土壤-机器基础关系的研究,建立一套包括土壤和机器的基本参数,以及所有输入变量相互作用结果的定量关系式,经过验证,从而把握客观变化的规律。

理论方法的优点是能适应较大范围的环境变化,得出较高的计算精度。

但由于土壤特别是农业土壤的材料差别大,特性变异大,参数难测,响应不属于保守力系,有关速率的效应未明,本构关系复杂,失效或破坏尚缺乏严格和实用的精确概念等原因,应用时往往十分困难、繁琐、费时费力。

近年来,在新的分析方法、数值方法和计算机应用等的综合影响下,情况有所改进。

英国剑桥大学“土壤力学小组”在20世纪50年代后期提出的粘性土临界状态理论,及其他人企图将此理论应用到非饱和土的工作,将土壤的容积应变与土壤的静水压力和剪应力相关联,成为三维本构模型,首次将实践中十分明显的密度变化这一因素引入模型研究,为理论解法的逼近实际提供了新的途径。

由于各种理论解法需要输入的土壤参数往往难测,理论方法最适用于探究变量改变的效应;此时可假设一套土壤参数,而不必实际测定。

研究设施主要有:①行走装置和土壤耕作部件原型或模型试验用的土槽和各种试验台车及测定装置;②土壤参数的实验室及现场、田间测定仪器与设备,包括土壤水分、容重、透气度和压力测定仪,土壤三轴试验仪,土壤剪切仪和承压仪,土壤外附力和内聚力测定仪,贝氏仪等;③行走装置和土壤耕作部件几何参数、变形、内应力和外压力测定装置;④力和扭矩传感-记录装置;⑤前进速度和转速传感-记录装置等。

发展趋势随着电子计算机的广泛应用和差分、有限元、边界元等近似方法的发展,土壤-机器系统力学的基本理论研究正在日益发展、深入。

已开始研究涉及表土或农业土壤的基本力学特性、土壤在受载过程中的密度场、应力场和应变场的变化,以及土壤屈服、塑性流动、破坏和加速度的产生等问题。

计入土壤孔隙率对应力-应变关系的影响的临界状态理论普遍受到重视。

与此同时,将发展和改进实验室特别是田间测试技术。

模型试验方法也将继续得到应用和发展。

此外,在中国,还将针对各地区的保土蓄墒耕作、水田作业和湿田作业,以及低洼地区机器的通过性等一系列突出问题进行基础性研究和技术开发。

参考书目M.G.贝克著,《地面-车辆系统导论》翻译组译:《地面-车辆系统导论》,机械工业出版社,北京,1978。

(M.G. Bekker,Introduction to Terrain-Vehicle Systems,University of Michigan Press,Ann Arbor,1969.)。

相关文档
最新文档