微积分期末测试题及答案

合集下载

大一微积分期末试卷及答案

大一微积分期末试卷及答案

微积分期末试卷 一、选择题(6×2)cos sin 1.()2,()()22()()B ()()D x x f x g x f x g x f x g x C π==1设在区间(0,)内( )。

A是增函数,是减函数是减函数,是增函数二者都是增函数二者都是减函数2x 1n n n n 20cos sin 1n A X (1) B X sin21C X (1) xn e x x n a D a π→-=--==>、x 时,与相比是( )A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无价小3、x=0是函数y=(1-sinx)的( )A连续点 B可去间断点 C跳跃间断点 D无穷型间断点4、下列数列有极限并且极限为1的选项为( )n 1X cosn=200000001()5"()() ()()0''( )<0 D ''()'()06x f x X X o B X oC X X X X y xe =<===、若在处取得最大值,则必有( )Af 'f 'f '且f f 不存在或f 、曲线( )A仅有水平渐近线 B仅有铅直渐近线C既有铅直又有水平渐近线 D既有铅直渐近线1~6 DDBDBD二、填空题1d 12lim 2,,x d xax ba b →++=xx2211、( )=x+1、求过点(2,0)的一条直线,使它与曲线y=相切。

这条直线方程为:x23、函数y=的反函数及其定义域与值域分别是:2+1x5、若则的值分别为:x+2x-31 In 1x + ;2 322y x x =-;3 2log ,(0,1),1xy R x=-; 4(0,0) 5解:原式=11(1)()1mlimlim 2(1)(3)3477,6x x x x m x m x x x m b a →→-+++===-++∴=∴=-= 三、判断题1、无穷多个无穷小的和是无穷小( )2、0sin limx xx→-∞+∞在区间(,)是连续函数()3、0f"(x )=0一定为f(x)的拐点()4、若f(X)在0x 处取得极值,则必有f(x)在0x 处连续不可导( )5、设函数f(x)在[]0,1上二阶可导且'()0A '0B '(1),(1)(0),A>B>C( )f x f f C f f <===-令(),则必有1~5 FFFFT四、计算题1用洛必达法则求极限212lim x x x e →解:原式=222111330002(2)lim lim lim 12x x x x x x e e x e x x--→→→-===+∞- 2 若34()(10),''(0)f x x f =+求解:33223333232233432'()4(10)312(10)''()24(10)123(10)324(10)108(10)''()0f x x x x x f x x x x x x x x x x f x =+⋅=+=⋅++⋅⋅+⋅=⋅+++∴=3 24lim(cos )x x x →求极限4I cos 224I cos lim 022000002lim 1(sin )4cos tan cos lim cos lim lim lim lim 22224n xx x n x xx x x x x x e e x In x x x x In x x x x xx e →→→→→→→-=---=====-∴=解:原式=原式4 (3y x =-求 511I 31123221531111'3312122511'(3312(1)2(2)n y In x In x In x y y x x x y x x x x =-+---=⋅+⋅-⋅---⎤=-+-⎥---⎦解:5 3tan xdx ⎰2222tan tan sec 1)tan sec tan tan sin tan tan cos 1tan tan cos cos 1tan cos 2x xdx x xdx x xdx xdx xxd x dx x xd x d xxx In x c=----++⎰⎰⎰⎰⎰⎰⎰⎰解:原式=( = = = =6arctan x xdx ⎰求22222222211arctan ()(arctan arctan )22111(arctan )2111arctan (1)211arctan 22xd x x x x d x x x x dx x x x dx x x xx c=-+--+⎡⎤--⎢⎥+⎣⎦+-+⎰⎰⎰⎰解:原式= = = =五、证明题。

大一微积分期末试题附答案

大一微积分期末试题附答案

微积分期末试卷一、选择题(6×2)cos sin 1.()2,()()22()()B ()()D x x f x g x f x g x f x g x C π==1设在区间(0,)内( )。

A是增函数,是减函数是减函数,是增函数二者都是增函数二者都是减函数2x 1n n n n 20cos sin 1n A X (1) B X sin21C X (1) xn e x x n a D a π→-=--==>、x 时,与相比是( )A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无价小3、x=0是函数y=(1-sinx)的( )A连续点 B可去间断点 C跳跃间断点 D无穷型间断点4、下列数列有极限并且极限为1的选项为( )n 1X cosn=200000001()5"()() ()()0''( )<0 D ''()'()06x f x X X o B X oC X X X X y xe =<===、若在处取得最大值,则必有( )Af 'f 'f '且f f 不存在或f 、曲线( )A仅有水平渐近线 B仅有铅直渐近线C既有铅直又有水平渐近线 D既有铅直渐近线二、填空题1d 12lim 2,,x d xax ba b →++=xx2211、( )=x+1、求过点(2,0)的一条直线,使它与曲线y=相切。

这条直线方程为:x23、函数y=的反函数及其定义域与值域分别是:2+1x5、若则的值分别为:x+2x-3三、判断题1、 无穷多个无穷小的和是无穷小( )2、 0sin limx xx→-∞+∞在区间(,)是连续函数()3、 0f"(x )=0一定为f(x)的拐点()4、 若f(X)在0x 处取得极值,则必有f(x)在0x 处连续不可导( )5、 设函数f(x)在[]0,1上二阶可导且'()0A '0B '(1),(1)(0),A>B>C( )f x f f C f f <===-令(),则必有四、计算题1用洛必达法则求极限212lim x x x e →2 若34()(10),''(0)f x x f =+求3 24lim(cos )xx x →求极限4 (3y x =-求5 3tan xdx ⎰五、证明题。

微积分期末考试试题及答案

微积分期末考试试题及答案

微积分期末考试试题及答案一、选择题(每题2分,共20分)1. 函数 \( f(x) = x^2 \) 在 \( x = 0 \) 处的导数是()A. 0B. 1C. 2D. -1答案:A2. 曲线 \( y = x^3 - 2x^2 + x \) 在 \( x = 1 \) 处的切线斜率是()A. 0B. 1C. -1D. 2答案:B3. 函数 \( f(x) = \sin(x) \) 的原函数是()A. \( -\cos(x) \)B. \( \cos(x) \)C. \( x - \sin(x) \)D. \( x + \sin(x) \)答案:A4. 若 \( \int_{0}^{1} f(x) \, dx = 2 \),且 \( f(x) = 3x^2 +1 \),则 \( \int_{0}^{1} x f(x) \, dx \) 等于()A. 3B. 4C. 5D. 6答案:C5. 函数 \( g(x) = \ln(x) \) 在 \( x > 0 \) 时的反导数是()A. \( e^x \)B. \( x^e \)C. \( e^{\ln(x)} \)D. \( x \ln(x) - x \)答案:D6. 若 \( \lim_{x \to 0} \frac{\sin(x)}{x} = 1 \),则\( \lim_{x \to 0} \frac{\sin(2x)}{x} \) 等于()A. 2B. 1C. 4D. 0答案:A7. 函数 \( h(x) = e^x \) 的泰勒展开式在 \( x = 0 \) 处的前三项是()A. \( 1 + x + \frac{x^2}{2} \)B. \( 1 + x + \frac{x^2}{2!} \)C. \( 1 + x + \frac{x^3}{3!} \)D. \( 1 + x + \frac{x^2}{3!} \)答案:B8. 若 \( \frac{dy}{dx} = 2y \),且 \( y(0) = 1 \),则 \( y(x) \) 是()A. \( e^{2x} \)B. \( e^{-2x} \)C. \( 2^x \)D. \( 2^{-x} \)答案:A9. 函数 \( F(x) = \int_{0}^{x} e^t \, dt \) 的导数是()A. \( e^x \)B. \( e^0 \)C. \( x \cdot e^x \)D. \( e^0 \cdot x \)答案:A10. 曲线 \( y = x^2 + 3x \) 与直线 \( y = 6x \) 交点的横坐标是()A. 0B. 3C. -1D. 2答案:C二、填空题(每空3分,共15分)11. 若 \( f(x) = 2x - 1 \),则 \( f''(x) \) 等于 _________。

微积分复习试题及答案10套(大学期末复习资料)

微积分复习试题及答案10套(大学期末复习资料)

微积分复习试题及答案10套(大学期末复习资料)习题一(A) 1、求下列函数的定义域:ln(4),x2(1) (2) (3) y,y,logarcsinxyx,,4a||2x,113y,,log(2x,3)(4) (5) yx,,,1arctanax,2x2、求下列函数的反函数及其定义域xx,32(1) (2) (3) yy,,yx,,,1ln(2)x2,1x,3x,,(4)yx,,,2sin,[,] 3223、将下列复合函分解成若干个基本初等函数2x(1) (2) (3) yx,lnlnlnyx,,(32ln)ye,,arcsin123(4) y,logcosxa4、求下列函数的解析式:112,求. (1)设fxx(),,,fx()2xx2(2)设,求 fgxgfx[()],[()]fxxgxx()1,()cos,,,5、用数列极限定义证明下列极限:1232n,1,,(1)lim(3)3 (2) lim, (3) ,lim0nn,,n,,n,,3353n,n6、用函数极限定义证明下列极限:x,31x,32lim(8)1x,,lim1,lim,(1) (2) (3) 23x,x,,x,,3xx,967、求下列数列极限22nn,,211020100nn,,3100n,limlimlim(1) (2) (3)32n,,n,,n,,54n,n,144nn,,,12n111,,,,?,lim,,lim,,,(4)? (5) ,,222,,x,,x,,1223n(n1),,,nnn,,,,1111,,k,0(6) (7)() lim,,,?lim,,2x,,x,,n,31541,,nknnkn,,,111,,,,?12n222lim(1)nnn,,(8) (9) limx,,x,,111,,,,?12n5558、用极限的定义说明下列极限不存在:1x,3limcosx(1) (2) (3) limsinlimx,,x,0x,3x|3|x,9、求下列函数极限:22xx,,56xx,,562(1) (2) (3) limlimlim(21)xx,,x,x,13x,3x,3x,2222256x,xx,,44()xx,,,(4) (5) (6) limlimlim2x,x,,,220xx,,21x,2,nx,1x,9x,1(7) (8) (9) limlimlimm3,1xx,9x,1x,1x,3x,1 2nnxxx,,,,?13x,,12(10), (11)lim() (12)limlim33x,1,x1x,1xx,,111,xx,110、求下列函数极限:22xx,,56xx,,56 (2) (1)limlim2x,,x,,x,3x,3nn,1axaxaxa,,,,?011nn,lim(11)xx,,,(3) (4)lim,(,0)ab,00mm,1x,,x,,bxbxbxb,,,,?011mm,lim(11)xxx,,,(5) x,,11、求下列极限式中的参变量的值:2axbx,,6lim3,(1)设,求的值; ab,x,,23x,2xaxb,,lim5,,(2)设,求的值; ab,x,11x,22axbxc,,lim1,(3)设,求的值; abc,,x,,31x,12x,0arcsin~xxtan~xx1cos~,xx12、证明:当时,有:(1),(2) ,(3); 213、利用等价无穷小的性质,求下列极限:sin2xsin2xsecxlimlimlim(1) (2) (3) 2x,0x,0x,0,tan5x3x2x3sinx21111sin,,x,limlim()(4) (5)lim (6)x,0x,0x,0xxx,tansinxxtansin1cos,x14、利用重要极限的性质,求下列极限:sin2xsinsinxa,xxsin(1) (2) (3) limlimlimx,0xa,x,0,sin3xxa,1cos2x xsinxx,tan3sin2xx,4,,(4) (5) (6) limlimlim1,,,x,0x,0,,xsinxx,3xx,, xxx,3xk,21,,,,,,(7) (8) (9) limlim1,,lim1,,,,,,,,,,xxx,,xxxk,,,,,,, 1/x(10)lim12,x ,,,,x15、讨论下列函数的连续性:,,,xx1,,2fxxx()11,,,,(1) ,,211xx,,,x,x,0,sinx,x,0(2)若,在处连续,则为何值. fxax()0,,a,,1,1sin1,,xxx,x,e(0,x,1)(3) 为何值时函数f(x),在[0,2]上连续 a,a,x(1,x,2),53xx,,,52016、证明方程在区间上至少有一个根. (0,1)32x,0x,317、证明曲线在与之间至少与轴有一交点. xyxxx,,,,252(B)arccoslg(3,x)y,1、函数的定义域为 ( ) 228,3x,x(A) ,,,,,7,3 (B) (-7, 3) (C) ,7,2.9 (D) (-7, 2.9),1 2、若与互为反函数,则关系式( )成立。

《微积分》期末考试试卷附答案

《微积分》期末考试试卷附答案

《微积分》期末考试试卷附答案一、填空题(共5小题,每小题4分,共20分)1、已知2)(x e x f =,x x f -=1)]([ϕ,且0)(≥x ϕ,则=)(x ϕ2、已知a 为常数,1)12(lim 2=+-+∞→ax x x x ,则=a .3、已知2)1(='f ,则=+-+→xx f x f x )1()31(lim 0 . 4、函数)4)(3)(2)(1()(----=x x x x x f 的拐点数为 . 5、=⎰xx dx 22cos sin .二、选择题(共5小题,每小题4分,共20分)1、设)(x f 为偶函数,)(x ϕ为奇函数,且)]([x f ϕ有意义,则)]([x f ϕ是(A) 偶函数; (B) 奇函数;(C) 非奇非偶函数; (D) 可能奇函数也可能偶函数.2、0=x 是函数⎪⎩⎪⎨⎧=≠-=.0 ,0,0 ,cos 1)(2x x x x x f 的(A) 跳跃间断点; (B) 连续点; (C) 振荡间断点; (D) 可去间断点.3、若函数)(x f 在0x 处不可导,则下列说法正确的是(A) )(x f 在0x 处一定不连续; (B) )(x f 在0x 处一定不可微;(C) )(x f 在0x 处的左极限与右极限必有一个不存在;(D) )(x f 在0x 处的左导数与右导数必有一个不存在.4、仅考虑收益与成本的情况下,获得最大利润的必要条件是:(A) )()(Q C Q R ''>''; (B) )()(Q C Q R ''<''; (C) )()(Q C Q R ''='';(D) )()(Q C Q R '='.5、若函数)(x f '存在原函数,下列错误的等式是: (A) )()(x f dx x f dx d ⎰=; (B) )()(x f dx x f ⎰=';(C) dx x f dx x f d )()(⎰=; (D) C x f x df +=⎰)()(.三、计算题(共4小题,每小题15分,共60分)1、设x x f x x-=--422)2(,求)2(+x f .2、计算)1cos(lim n n n -+∞→.3、求极限)21(lim 222n n n n n n n n ++++++∞→ .4、求极限xx x x cos sec )1ln(lim 20-+→.微积分参考答案:一、填空1. 答案:)1ln(x -2. 答案:13. 答案:44. 答案:25. 答案:C x x +-cot tan二、选择1. A2. D3. B4. D5. B三、计算题1、设x x f x x -=--422)2(,求)2(+x f .答案:42)2(42--=++x x f xx解:令2-=x t ,则 2222)2(2)(48444)2(4)2(222--=+-=+-=---+++-+t t t t f t t t t t t ,于是 42422)2(2)2(44444)2(222--=--=-+-=++-++-+x x x x f x x x x x .2. 计算)1cos(lim n n n -+∞→. 答案:1 解:nn n n n n ++=-+∞→∞→11cos lim )1cos(lim 11010cos 1111cos lim =++=++=∞→nn n .3、求极限)21(lim 222n n n n n n n n ++++++∞→ . 答案:1解:由于1)21(2222222+≤++++++≤+n n n n n n n n n n n n , 而1111lim lim 22=+=+∞→∞→n n n n n n , 1111lim 1lim 222=+=+∞→∞→n n n n n , 所以1)21(lim 222=++++++∞→n n n n n n n n .4、求极限xx x x cos sec )1ln(lim 20-+→. 答案:1 解:x x x xx x x x x x x x x x cos sin 212lim sin )1ln(lim cos lim cos sec )1ln(lim 20220020+=+=-+→→→→ 1sin lim cos )1(1lim020=+=→→x x x x x x .。

微积分试卷及标准答案6套

微积分试卷及标准答案6套

微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1.已知则对于,总存在δ>0,使得当,)(lim 1A x f x =+→0>∀ε时,恒有│ƒ(x )─A│< ε。

2.已知,则a = ,b =2235lim 2=-++∞→n bn an n 。

3.若当时,α与β 是等价无穷小量,则 。

0x x →=-→ββα0limx x 4.若f (x )在点x = a 处连续,则 。

=→)(lim x f ax 5.的连续区间是 。

)ln(arcsin )(x x f =6.设函数y =ƒ(x )在x 0点可导,则______________。

=-+→hx f h x f h )()3(lim0007.曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。

8. 。

='⎰))((dx x f x d 9.设总收益函数和总成本函数分别为,,则当利润最大时产2224Q Q R -=52+=Q C 量是。

Q 二. 单项选择题 (每小题2分,共18分)1.若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则()。

(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在2.设则为函数的( )。

11)(-=x arctg x f 1=x )(x f(A) 可去间断点(B) 跳跃间断点 (C) 无穷型间断点(D) 连续点3.( )。

=+-∞→13)11(lim x x x(A) 1 (B) ∞(C)(D) 2e 3e4.对需求函数,需求价格弹性。

当价格( )时,5p eQ -=5pE d -==p 需求量减少的幅度小于价格提高的幅度。

(A) 3 (B) 5 (C) 6(D) 105.假设在点的某邻域内(可以除外)存)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→得0x 0x 在,又a 是常数,则下列结论正确的是( )。

微积分试卷及答案

微积分试卷及答案

微积分试卷及答案【篇一:微积分试题和答案】s=txt>数学教研是:一、选择题(每题2分)1、设??x?定义域为(1,2),则??lgx?的定义域为() a、(0,lg2)b、(0,lg2?c、(10,100)d、(1,2)x2?x2、x=-1是函数??x?=的() 2xx?1a、跳跃间断点 b、可去间断点 c、无穷间断点 d、不是间断点 3、试求a、?4、若x?01b、0c、1d、? 4yx??1,求y?等于() xya、x?2y2x?yy?2x2y?xb、c、d、2x?y2y?x2y?x2x?y2x的渐近线条数为() 1?x2a、0b、1 c、2 6、下列函数中,那个不是映射()5、曲线y?d、3a、y2?x (x?r?,y?r?)b、y2??x2?1c、y?x2d、y?lnx (x?0) 二、填空题(每题2分) 1、__________(n?)1x,则() fx的间断点为__________x??nx2?1fx)m?il2、、设(x2?bx?a?5,则此函数的最大值为__________ 3、已知常数 a、b,limx?11?x4、已知直线 y?6x?k是 y?3x2的切线,则 k?__________5、求曲线 xlny?y?2x?1,在点(,11)的法线方程是__________ 三、判断题(每题2分)x2是有界函数( ) 1、函数y?21?x2、有界函数是收敛数列的充分不必要条件( )3、若lim???,就说?是比?低阶的无穷小 ( ) ?4、可导函数的极值点未必是它的驻点 ( )5、曲线上凹弧与凸弧的分界点称为拐点( ) 四、计算题(每题6分) 1、求函数 y?xsin1x的导数12、已知f(x)?xarctanx?ln(1?x2),求dy23、已知x2?2xy?y3?6,确定y是x的函数,求y?4、求limtanx?sinx2x?0xsinx5、计算 1(cosx)x 6、计算lim?x?0五、应用题1、设某企业在生产一种商品x件时的总收益为r(x)?100x?x2,总成本函数为c(x)?200?50x?x2,问政府对每件商品征收货物税为多少时,在企业获得利润最大的情况下,总税额最大?(8分)12、描绘函数y?x2?的图形(12分)x六、证明题(每题6分)1f()?a 1、用极限的定义证明:设limf(x)?a,则limx???x?0?x2、证明方程xex?1在区间(0,1)内有且仅有一个实数一、选择题1、c2、c3、a4、b5、d6、b 二、填空题1、x?02、a?6,b??73、184、35、x?y?2?0 三、判断题 y??(x?(esin1x)?)?1sinlnxx1111???ecos(?2)lnx?sin??xxxx??1sin1111x?x(?2coslnx?sin)xxxx1sinlnxx2、dy?f?(x)dx112x?(arctanx?x?)dx221?x21?x?arctanxdx3、解:2x?2y?2xy??3y2y??02x?3y?y??22x?3y?y???4、解:2)2(2?3y?)(2x?3y2)?(2x?2y)(2?6yy?)(2x?3yx2?当x?0时,x?tanx?sinx,1?cosx?212xxtanx(1?cosx)1?原式=lim?lim3?2x?0x?0xsinxx25、解:令x?t6dx?6t5原式??(1?t2)t3t2?6?1?t2t2?1?1?6?1?t21?6?(1?)21?t?6t?6arctant?c??6arctan6、解:1?c原式?lime?x?0xlncosx?ex?0?lim1xlncosx其中:1lncosxx?0x2lncosx?lim x?0?x21(?sinx)?lim?x?02x?tanx1?lim??x?0?2x2lim??原式?e?12五、应用题1、解:设每件商品征收的货物税为a,利润为l(x) l(x)?r(x)?c(x)?ax?100x?x2?(200?50x?x2)?ax??2x2?(50?a)x?200l?(x)??4x?50?a50?a令l?(x)?0,得x?,此时l(x)取得最大值4a(50?a)税收t=ax?41t??(50?2a)41令t??0得a?25t?????02?当a?25时,t取得最大值2、解:d????,0???0,???间断点为x?0y??2x?1x2令y??0则x?y???2?2x3令y???0则x??1渐进线:【篇二:微积分试卷及答案6套】>一. 填空题 (每空2分,共20分)x?1?an2?bn?5?2,则a =,b =。

大一微积分期末试卷及答案

大一微积分期末试卷及答案

微积分期末试卷cos sin 1.()2,()()22()()B ()()D x x f x g x f x g x f x g x C π==1设在区间(0,)内( )。

A是增函数,是减函数是减函数,是增函数二者都是增函数二者都是减函数2x 1n n n n 20cos sin 1n A X (1) B X sin21C X (1) xn e x x n a D a π→-=--==>、x 时,与相比是( )A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无价小3、x=0是函数y=(1-sinx)的( )A连续点 B可去间断点 C跳跃间断点 D无穷型间断点4、下列数列有极限并且极限为1的选项为( )n 1X cosn=200000001()5"()() ()()0''( )<0 D ''()'()06x f x X X o B X oC X X X X y xe =<===、若在处取得最大值,则必有( )Af 'f 'f '且f f 不存在或f 、曲线( )A仅有水平渐近线 B仅有铅直渐近线C既有铅直又有水平渐近线 D既有铅直渐近线1~6 DDBDBD 一、 填空题1d12lim2,,xd xax ba b→++=xx2211、( )=x+1、求过点(2,0)的一条直线,使它与曲线y=相切。

这条直线方程为:x23、函数y=的反函数及其定义域与值域分别是:2+1x5、若则的值分别为:x+2x-31 In1x+; 2 322y x x=-; 3 2log,(0,1),1xy Rx=-; 4(0,0)5解:原式=11(1)()1mlim lim2(1)(3)3477,6x xx x m x mx x xm b a→→-+++===-++∴=∴=-=二、判断题1、无穷多个无穷小的和是无穷小()2、sinlimxxx→-∞+∞在区间(,)是连续函数()3、f"(x)=0一定为f(x)的拐点()4、若f(X)在x处取得极值,则必有f(x)在0x处连续不可导()5、设函数f(x)在[]0,1上二阶可导且'()0A'0B'(1),(1)(0),A>B>C( )f x f f C f f<===-令(),则必有1~5 FFFFT三、计算题1用洛必达法则求极限212lim xxx e→解:原式=111330002(2)lim lim lim12x xxx x xe e xexx--→→→-===+∞-2 若34()(10),''(0)f x x f=+求解:333'(''''f xf xf x =+⋅=+=⋅++⋅⋅+⋅=⋅+++∴=3 24lim(cos )x x x →求极限 4I cos 224I cos lim 022000002lim 1(sin )4cos tan cos lim cos lim lim lim lim 22224n xx x n x xx x x x x x e e x In x x x x In x x x x xx e →→→→→→→-=---=====-∴= 解:原式=原式4 (3y x =-求511I 31123221531111'3312122511'(3312(1)2(2)n y In x In x In x y y x x x y x x x x =-+---=⋅+⋅-⋅---⎤=-+-⎥---⎦解:5 3tan xdx ⎰2222tan tan sec 1)tan sec tan tan sin tan tan cos 1tan tan cos cos 1tan cos 2x xdx x xdx x xdx xdx xxd x dx x xd x d xxx In x c=----++⎰⎰⎰⎰⎰⎰⎰⎰解:原式=( = = = =6arctan x xdx ⎰求22222222211arctan ()(arctan arctan )22111(arctan )2111arctan (1)211arctan 22xd x x x x d x x x x dx x x x dx x x xx c=-+--+⎡⎤--⎢⎥+⎣⎦+-+⎰⎰⎰⎰解:原式= = = =四、 证明题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微积分期末测试题及答

Document number:NOCG-YUNOO-BUYTT-UU986-1986UT
一 单项选择题(每小题3分,共15分)
1.设lim ()x a
f x k →=,那么点x =a 是f (x )的( ). ①连续点 ②可去间断点 ③跳跃间断点 ④以上结论都不对
2.设f (x )在点x =a 处可导,那么0()(2)lim
h f a h f a h h
→+--=( ). ①3()f a ' ②2()f a ' ③()f a ' ④1()3f a ' 3.设函数f (x )的定义域为[-1,1],则复合函数f (sinx )的定义域为( ).
①(-1,1) ②,22ππ⎡⎤-⎢⎥⎣⎦
③(0,+∞) ④(-∞,+∞) 4.设2
()()lim 1()x a f x f a x a →-=-,那么f (x )在a 处( ). ①导数存在,但()0f a '≠ ②取得极大值 ③取得极小值 ④导数不存在
5.已知0lim ()0x x f x →=及( ),则0
lim ()()0x x f x g x →=. ①g (x )为任意函数时 ②当g (x )为有界函数时
③仅当0lim ()0x x g x →=时 ④仅当0
lim ()x x g x →存在时 二 填空题(每小题5分,共15分)
sin lim sin x x x x x
→∞-=+. 31lim(1)x x x
+→∞+=.
3.()f x =那么左导数(0)f -'=____________,右导数(0)f +'=____________.
三 计算题(1-4题各5分,5-6题各10分,共40分) 1.111lim()ln 1
x x x →-- 2.t t x e y te ⎧=⎨=⎩
,求22d y dx
3.ln(y x =,求dy 和22d y dx .
4.由方程0x y e xy +-=确定隐函数y =f (x ) ,求
dy dx . 5.设111
1,11n n n x x x x --==+
+,求lim n x x →∞.
6.lim(32x x →∞
=,求常数a ,b . 四 证明题(每小题10分,共30分)
1.设f (x )在(-∞,+∞)上连续,且()()lim lim 0x x f x f x x x
→+∞→-∞==,证明:存在(,)ξ∈-∞+∞,使 ()0f ξξ+= .
2.若函数f (x )在[a ,+∞]上可导,对任意x ∈(a,+∞),有()f x M '≤,M 是常数,则2()lim 0x f x x
→+∞=. 3.证明函数1sin y x
=在(c ,1)内一致连续,但在(0,1)内非一致连续. 答案
一 单项选择题(每小题3分,共15分)
1.④
2.①
3.④
4.③
5.②
二 填空题(每小题5分,共15分)
sin lim sin x x x x x
→∞-=+ . 2.31lim(1)x x x
+→∞+= __e_.
3.()f x =那么左导数(0)f -'=__-1__,右导数(0)f +'=__1__.
三 计算题(1-4题各5分,5-6题各10分,共40分)
2.t t x e y te
⎧=⎨=⎩,求22d y dx
3.ln(y x =,求dy 和22d y dx .
4.由方程0x y e xy +-=确定隐函数y =f (x ) ,求
dy dx
. 5.设1111,11n n n x x x x --==++,求lim n x x →∞.
6.lim(32x x →∞
=,求常数a ,b . 四 证明题(每小题10分,共30分)
1.设f (x )在(-∞,+∞)上连续,且()()lim lim 0x x f x f x x x
→+∞→-∞==,证明:存在(,)ξ∈-∞+∞,使 ()0f ξξ+= .
2.若函数f (x )在[a ,+∞]上可导,对任意x ∈(a,+∞),有()f x M '≤,M 是常数,则2
()lim 0x f x x →+∞=. 3.证明函数1sin y x
=在(c ,1)内一致连续,但在(0,1)内非一致连续.。

相关文档
最新文档