群论群论基础课件
群论课件

可约性的判定
2 2 2 2
16
第四节 群表示的特征标
1.定义:设群G={E,A,B,C,…},它的一个表示 D={D(E),D(A),D(B),D(C),…},则群元R的特征标 为D(R)的对角元之和(迹) X(R)=TrD(R)= Daa ( R)
a 1 n
式中,R表示G的任一元 Daa是对角元,n是表示空间的维数。 特征标系:群G中所有的g个群元在D中的特征标 注:对可约表示和不可约表示同样适用, 第a个不可约表示Da(R)的特征标写成Xa(R)
8
第二节 舒尔(Schur)引理
1.舒尔引理一 D是群G的一个表示,若存在一个矩阵A,与D中所 有矩阵都对易,即 D(R)A=AD(R) R∈G 则有: (1)若D是不可约的,A必为常数矩阵 A=λ E 式中,λ为标量,E为单位矩阵 (2)若A不是常数矩阵,则D必为可约表示。若A为厄 米矩阵,则约化矩阵就是使A对角化的矩阵。 注:厄米矩阵—矩阵与其共轭矩阵相等 R+=R
21
3.不等价不可约表示的符号
(1)Mulliken符号
符号 A、A1、A2 B(B1,B2,…)
E,T
表示含义 适用情况 +1(对称)、恒等表示、 一维 其他表示 -1(反对称)、其他表 示
二维、三维
脚标加 g,u
有中心反演
(2)Bethe符号
1,2,3, ...
22
4.可约表示的约化(特征标的应用)
19
证明:
(i ( X (i )* ( R) X ( j ) ( R) Duu)* ( R) Daaj ) ( R) R R u a (i ( Duu)* ( R)Daaj ) ( R) ua R
群论第二章ppt

5
§2.1 群的概念
显然只有群元素比较少时这乘法表才排得出来,在乘法表 中每列与每行,每个元素出现一次,也仅一次,这为乘法表 的重排定理。 若群是Abel群(交换群),则乘法表中对主对角线是对称 的。下面给出几个例子 例1 G 1, 1 乘法为普通数乘法,单位元素为1 e ,a=-1逆元素为 自 己,其乘法定律 ee=e, aa=e, ea=ae=a, 这群在量子力学中很重要,这群与空间反演相对应,三维 空间矢量 r 作用 er r ar r e保持 r 不变的恒等变换 a 使 r 反演的反演变换,则 e, a 构成反演群。 我们称群G与反演群同构。
11
§2.1 群的概念
给出乘法表如下表:从表中看出,群中元素任一个u乘 积 ug a , 给出并且仅一次给出G所有元素,满足重排定理。 e a b c d f —— |—————————————— e | e a b c d f a | a e d f b c b | b f e d c a c | c d f e a b d | d c a b f e f | f b c a e d 后面看到重排定理大大限制了互相不同构有限群数目。还 可以证明,阶数为相同素数的有限群都同构。三客体置换群 S 3 与平面正三角形对称群D3 同构。
a G
ae ea a
4
§2.1 群的概念
2. 乘法表与群示例
如果我们知道群中每两个元素的乘积,则群 结构就确定了。这乘积可以排列成一个乘法 表,例如G中有元素e,a,b,c,d,乘法表为 e a b c d e ee=e ea=a b c d
a b c d ae=a aa b c d ba ca da ab bb cb db ac bc cc dc ad ba cd dd
群论61群论基础

3 子群 在 G4(2)中,子集:{E, A}; {E, B}; {E, C} 构成较小的群——子
群。 定理: g 阶群 G 的任意子群 H, 它的阶 h 必为 g 的除数。即, g =hn, n 为整数。 如:G6 的子群的阶是:6 和 1,2,3。 4类 若 A = X-1BX, 称 A 和 B 共轭。若 A 和 B 及 C 共轭,则 B 与 C
共轭。相互共轭的元素完整集合称为群的类。 所有类的阶必定是群阶的整数因子。
Ex 2 把 G3, G4(1), G4(2), G5 群的元素整理成类。
6.2 对称点群
1 对称元素与对称操作
C3
σv C2
σv C2
σh C2 σv
AB3
对称元素
对称操作
——————————————————————————
A2
A2 E A
— 循环群
G = { X, X2, X3, …, Xn = E}
— Abel 群 AB = BA.
四阶群 (i) 四阶循环群
X = A X2 = B X3 = C X4 = E
G4(1) E A B C E E A BC A ABCE B B CE A C C EAB
(ii)
G4(2) E A B C E E A BC A AECB B B CE A C C BAE
E AB
E
EAB
A
ABE
B
BE A
(i) 若 AA = A2 = E -> BB = B2 = E; -> AB = B -> A = E(不合理)
(ii) 若 AA = A2 = B, AB = AA2 = A3 = E; BA = E, BB = A.
群论基础-第1章 群的基本知识

其中的元素左乘或右乘仍为该群 G. ( 群中群论无顺序 )
Ak G = G Ak = G
*
五 子群和陪集
P.12
1 子群 (subgroup)
(1) 定义:群 G 中集合 S 在相同的群乘下构成的群,为 G
的子群
( 2) 显然子群:(1)E, (2)G
(3) 子群 S 的条件和检验: (1)不变元素;
σˆv σˆv σˆv σˆ v Ĉ32 Ê Ĉ31 σˆv σˆv σˆ v σˆv Ĉ31 Ĉ32 Ê
P.8 5 列表
群的名称 数群 置换群 矩阵群 对称群
群元
群乘
数 运算(加、乘等)
置换
相继置换
矩阵
矩阵乘法
对称操作 相继操作
举例 例(1) Z3群 d3群 D3群
*
七 不变子群
P.19
1 定义:有子群 N G
若 XNX- 1 = N 或 XN = NX (X 为 G 中的任一元素)
则 N为不变子群
2 性质
(1)不变子群必包括一个或几个完整的类
(即不变子群由完整的类构成)
证明:若 群元 C N ( 注意 群元 C 与类 C 不同)
则 X C X- 1 N (∵ XNX- 1 = N, C N )
= (YX)A(YX)-1 = ZAZ-1 ( Z = YX G )
故 C 与 A 共轭
(3) 相似矩阵
矩阵群中彼此共轭的元为彼此相似的矩阵
*
2 类: 群 G 中彼此共轭的群元构成类
P.17
对于类 C, 自然有 XCX-1 = C ( X为群 G 中任一群元)
[提问: 为什么?]
3 类的性质
(1) 单位元自成一类 (XEX-1= E)
群论-1 群论基础

一般记为c = a· b,或c = ab 。
二元运算一般也称为“乘法”—— 数值加法 数值乘法 对称操作…… 集合的所有代数性质都由其乘法结果决定
群论-群论基础-集合与运算
A
乘法表:有限集
l m O
D3 e a b k
B
k
C
e
e a b k
a
a b e l
b
b e a m
k
k m l e
l
l k m a
群论-群论基础-集合与运算
3 一些基本概念
1) 阿贝尔群:交换群
2) 有限群:可给出群表
3) 无限群:离散群,连续群
4) 群元素的阶: gn = e 群阶:|G| 5) 生成元:通过乘法产生群G的最小子集
6) 循环群:一个生成元
群论-群论基础-集合与运算
4 一些基本性质 设G = {gi } 是一个群 ∀ gi , gj ∈ G, 方程 gi x = gj , x gi = gj 有唯一解 ( gi -1 ) -1 = gi ( gi gj ) -1 = gj -1 gi -1
群论-群论基础
第一章 群论基础
群的基本概念和基本性质
§1.1 §1.2 §1.3 §1.4 集合与运算 群的定义和基本性质 子群及其陪集 群的共轭元素类
§1.5
§1.6 §1.7 §1.8
正规子群和商群
直积和半直积 对称群 置换群
群论-群论基础-集合与运算
§0 绪论
群论的发展历史
群论在数学中的作用
物理学中的群论
—— 群论基础
主讲 翦知渐
群论
教材与参考书
教材: 自编 参考书:群论及其在固体物理中的应用 (徐婉棠) 物理学中的群论 (马中骐) 物理学中的群论基础 (约什)
群论部分

二、子群、陪集、不变子群
群元素的个数称为群的阶。 如果群H的所有元素包含在一个较大的群G中,则称H是G的 子群。 显然,单位元I必定构成G的子群,而且群G的任何子群也 必定把单位元包括在内(子群必须有单位元,而单位元只有 一个)。可以证明: 若G的阶是g,子群H的阶是h,则g/h一定是整数。 例1 实数乘法群 正实数的集合构成它的子群,但负实数则不是。 例2 C2n{I,C2,i, σn} 它含有下列子群:C2{I,C2},Ci{I,i(中心反演或中心反伸)}, Cs{I,σn(水平面反映)}。 一些元素的总体构成一个集合。集合A表示为{a1,a2,….an}, a1,a2等是A的元素。
集合中各元素都不相同,或者说,相同的元素只取其中之 一。要记住,集合是指一些元素的总体,某一元素x与集合 A的乘积x· A或A· x仍然是一个集合。集合A与集合B的乘积 A· B或B· A是A的所以元素与B的每一个元素乘积的集合,所 以,也是一个集合。群是满足一定条件的集合,而集合并不 一定是群。两个集合中的元素一一相等,则称此两集合相 等。 根据上面所说,显然有:群G与自身的乘积就等于它自己, 即G· G=G。 子群的陪集—设子群H∈G,对于任意属于G但不属于H的元 素x,对应的集合 xH={xh1,xh2,…,xhn} 称为H关于x的左陪集,其中h1,h2…等皆H的元素。Hx是 右陪集。
C2
Q
C2 Q
C2 Q
Q C2
比如,Q·Q={{σxz,σyz}·{σxz,σyz}={I,c2}=C2。 因而{C2,Q}构成C2v的因子群,它与σs{I, σ}有相同乘法 表,是同构的。 例2 C4v{I,c2,2c4,2σv,2σa}对于其不变子群C2{I,c2}的因 子群有4个元素:{C2,c4· 2, σv· 2, σa· 2},它与C2v{I,c2, C C C σxz, σyz}同构。
群论

第六章群论6.1 群论基础1 群的定义设G是一些元素的集合,G = {g0, g1, …, g i, …}. 在G中定义了乘法运算,如果G对这种运算满足下面四个条件:(1) 有唯一的单位元e. e∈G, 对任意f∈G, 都有ef = fe = f(2) 封闭性. 对任意f , g∈G, 若f g= h, 必有h∈G.(3) 结合律 . 对任意f , g, h∈G, 都有(f g) h = f (g h)(4) 逆元素. 对任意f∈G, 有唯一的f -1∈G,使f f -1= f -1f = e,则称G为一个群. e 称为群G 的单位元,f –1称为f的逆元素。
有限群中群元素的数目称为群的阶。
2群的乘法表二阶群G2 E AE E AA A E三阶群G3 E A BE E A BA AB EB B E A(i) 若AA = A2 = E -> BB = B2 = E; -> AB = B -> A = E(不合理) (ii) 若 AA = A2 = B, AB = AA2 = A3 = E; BA = E, BB = A.G3 E A A2E E A A2A A A2 EA2 A2 E A—循环群G = { X, X2, X3, …, X n = E}—Abel群 AB = BA.四阶群(i) 四阶循环群X = A X2 = B X3 = C X4 = EG4(1) E A B CE E A B CA ABC EB BC E AC C E A B(ii)G4(2) E A B CE E A B CA A E C BB BC E AC C B A EEx1构造五阶群的乘法表。
3 子群在G4(2)中,子集:{E, A}; {E, B}; {E, C} 构成较小的群——子群。
定理:g阶群G的任意子群H, 它的阶h必为g的除数。
即,g =hn, n为整数。
如:G6的子群的阶是:6和1,2,3。
第1章 群论基础

第1章群论基础11.1基本概念..........................................11.1.1群的定义......................................11.1.2群的乘法......................................11.1.3群的生成元....................................21.1.4更多例子......................................31.1.5半群,环和域*...................................41.2群的分拆..........................................41.2.1集合的分拆....................................51.2.2共轭类.......................................51.2.3子群和陪集....................................61.2.4Lagrange 定理...................................71.2.5不变子群和商群..................................71.2.6双陪集*......................................81.3群的分类..........................................81.3.1同态和同构....................................81.3.2同态基本定理...................................91.3.3其它的同态定理*.................................101.4群在集合上的作用.....................................111.4.1置换群.......................................111.4.2置换可表示为轮换的乘积............................131.4.3置换群的共轭类..................................141.4.4置换表示......................................141.4.5轨道........................................161.5群的直积..........................................171.5.1直积........................................171.5.2半直积.......................................171.6有限群的分类定理*....................................181.6.1Abel 群的分类...................................191.6.2非Abel 群的分类..................................191.6.3小阶群表.......... (19)文件生成时间:2007年10月3日试用讲义.请不要在网上传播.您可以阅读、打印,但不可以拷贝本您可以阅读、打印,但不可以拷贝本您可以阅读、打印,但不可以拷贝本您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本您可以阅读、打印,但不可以拷贝本您可以阅读、打印,但不可以拷贝本您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文§1.1基本概念§1.1.1群的定义定义1(群)设G 是一些元素的集合,G ={g ,h ,···}.在G 中已经定义了二元运算·,如果G 对这种运算满足一下四个条件,•封闭:∀f ,g ∈G ,f ·g ∈G ;•结合率:∀f ,g ,h ∈G ,(f ·g )·h =f ·(g ·h );•存在唯一的单位元素:∃e ∈G ,∀f ∈G ,e f =f e =f ;•有逆:∀f ∈G ,∃唯一的f −1∈G ,f ·f −1=f −1·f =e ,则称代数结构(G ,·)是一个群,二元运算“·”称为群的乘法.二元运算是一种映射,ϕ:G ×G →G ,ϕ(f ,g )=h⇐⇒f ·g =h .在不引起歧义的情况下,我们会省略乘法符号.群G 的元素个数称为群的阶,记为|G |.根据群的元素个数,可以将群分为有限群(元素的数目有限)和无限群(元素的数目无限).在无限群中,连续群可以用一个或多个实参数来标记群的元素.另一种对群的分类方式,是按照群的乘法是否可以交换位置.定义2(Abel 群)G 是群,并且满足∀a ,b ∈G ,ab =ba ,(1.1.1)则称群G 是Abel 群.Abel 群的乘法一般又称为加法.例1实数的集合按数值加法运算(R ,+)构成Abel 群.例2非零实数的数值乘法(R \{0},*)构成Abel 群.例3n -维非奇异复矩阵按矩阵乘法构成非Abel 群GL(n,C ).§1.1.2群的乘法有限群的乘法规则可以用乘法表来表示.一元群{e }的乘法规则为ee =e .对于二元群G ={e ,a },有ee =e ,ea =a ,ae =a .a 2def=aa 有两种可能,•a 2=e ;•a 2=a ,两边同时乘以a −1,得a =e .于是可得乘法表1.1.三元群G ={e ,a ,b }的乘法规则同样可以用定义群的四个条件确定.其中a 2有三种可能,您可以阅读、打印,但不可以拷贝本您可以阅读、打印,但不可以拷贝本您可以阅读、打印,但不可以拷贝本您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文e e a aae表1.1:二元群的乘法表a ab e bbe a表1.2:三元群的乘法表–ab =e b =a −1=a , ;–ab =a b =e , ;–ab =b a =e , .•a 2=a a =e , .•a 2=b ,ab =e ,ba =e ,b 2=a . 所以三元群只有一种,其乘法表列于表1.2中.很明显,以这种方式来确定乘法表非常不方便.后面讲述的一系列定理将帮助我们有效地研究群的性质.从刚才的乘法表中可以看出,群的各个元素在每一行都出现了一次,在每一列中也出现了一次.这是一个普遍性质,定理1(重排定理)群G 的乘法表的每一行(或列)都含有所有元素,只是排列顺序改变了:a ∈G , aG =G ,Ga =G .(1.1.2)证明G 封闭⇐⇒∀g ∈G ,ag ∈G ⇐⇒aG ⊆G .同样可得a −1∈G ,a −1G ⊆G ,G ⊆aG .故aG =G .重排定理1.1.2对所有的群都成立,包括无限群.连续群的乘法无法列表,例如U (1)def= g (θ)|g (θ)def =e i θ,θ∈[0,2π](1.1.3)其乘法规则为g (θ3)=g (θ1)g (θ2),(1.1.4)θ3=θ1+θ2(1.1.5)其中ϕ(θ1,θ2)=θ1+θ2(1.1.6)称为连续群的结合函数,对应有限群的乘法表.§1.1.3群的生成元先来看一种特殊的有限群.定义3(循环群)C n def={e ,g ,g 2,···,g n −1|g n =1}.(1.1.7)您可以阅读、打印,但不可以拷贝本您可以阅读、打印,但不可以拷贝本您可以阅读、打印,但不可以拷贝本您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文§1.1基本概念·3·其中g k 表示k 个g 相乘.循环群的所有元素都可以由g 自乘得到,所以我们把它称为循环群的生成元,并记成C n = g |g n =e .(1.1.8)一般的群可能有多个生成元,这些生成元的集合称为群的生成元组.例如G = p ,q |p 3=e ,q 2=e ,(qp )2=e(1.1.9)有2个生成元,生成元的乘法满足如下的“对易关系”,(qp )2=q (pq )p =e pq =q −1p −1=qp 2,(1.1.10)于是,生成元的任意乘积可以写成标准的形式q m p n ,从而|G |=6.群的乘法见表1.3.e p p 2q qp qp 2ee p p 2q qp qp 2p p p 2e qp 2q qp p 2p 2e p qp qp 2q q q qp qp 2e p p 2qp qp qp 2q p 2e p qp 2qp 2qqppp 2e表1.3: p ,q 群的乘法表e a b c df e e a b c d f a a e d f b c b b f e d c a c c d f e a b d d c a b f e ffbcaed表1.4:D 3群的乘法表对有限群,必有∀g ∈G ,∃n ,m ∈N ,n >m ,g n =g m .(1.1.11)记k def=n −m ∈N ,那么g k =e ,(1.1.12)称使上式满足的最小自然数k 为元素g 的阶.有限群的生成元的数目是有限的,其中最小的数目称为有限群的秩.§1.1.4更多例子例4(正三角形的对称群)D 3={e ,a ,b ,c ,d ,f },如图1.1所示,乘法规则列于表1.4中.例5(四元群)除了循环群C 4外,还有一个四元群–反演群(Klein 群)V 4,其乘法规则如表1.5所示.其中P 表示空间反射,T 表示时间反演,PT =T P .V 4是Lorentz 群的分立子群.1P T PT 11P T PT P P 1PT T T T PT 1P PTPT T P 1表1.5:反演群的乘法表例6(二维Euclid 群)二维空间的转动及平移变换g (θ,a ,b ) x 1x 2def =cos θsin θ−sin θcos θ x 1x 2 + ab (1.1.13)您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文·4·第1章群论基础e 不动,a 绕1轴转180◦,b 绕2轴转180◦,c 绕3轴转180◦,d 绕z 轴逆时针转120◦,f绕z 轴逆时针转240◦.x图1.1:例7(仿射群)群元素g (α,β)对实数的作用定义为x def=g (α,β)x ≡αx +β,(1.1.14)这是一个2参数的非Abel 群.例8(SL(2,C )){A 2×2|A jk ∈C ,det A =1}.在矩阵乘法下构成群.§1.1.5半群,环和域*定义4(半群)如果一个集合S 上定义了二元运算“·”,且二元运算满足封闭性和结合率,则称代数结构(S ,·)为半群.定义5(环)在集合R 上定义两个二元运算加法“+”和乘法“·”,并且满足•(R ,+)是Abel 群(其单位元记为0);•(R ,·)是半群;•满足分配率,∀a ,b ,c ∈R ,a (b +c )=ab +ac ,(b +c )a =ba +ca ,(1.1.15)则称代数结构(R ,+,·)为环.如果环的乘法满足交换率则称为交换环;如果环的乘法有单位元素则称为含幺环.例9(多项式环)自变量x 的实系数多项式在加法和乘法构成含幺交换环.定义6(体和域)如果含幺环的非零元素都有逆,则称为体.如果含幺交换环的非零元素都有逆,则称为域.例10(四元数体)实四元数a +b i +c j +d k 构成体.例11有理数域Q ,实数域R 和复数域C .§1.2群的分拆研究群的方法和高等数学中的方法不同.一个基本的方法是把群“切开”来研究.您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不文您可以阅读、打印,但不文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印但不可您可以阅读、打印,但不可您可以阅读、打印,但不可您可以阅读、打印,但不可您可以阅读、打印,但不可您可以阅读、打印,但不可您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文您可以阅读、打印,但不可以拷贝本文§1.2群的分拆·5·§1.2.1集合的分拆群是集合,所以我们回顾一下在集合论中怎样把集合分开.定义7(关系)集合A ×A 的一个子集又称为集合A 上的关系.设在集合A 上定义了关系R ,则a ,b ∈A 有R 关系⇐⇒(a ,b )∈R ⇐⇒a ∼b .(1.2.1)定义8(等价关系)集合A 上满足以下三个条件的关系称为等价关系:∀a ∈A ,a ∼a ;(自反)(1.2.2)a ∼b ⇒b ∼a ;(对称)(1.2.3)a ∼b ,b ∼c ⇒a ∼c .(传递)(1.2.4)例12在人际关系中,“认识”、“朋友”不是等价关系;“同学”、“同民族”是等价关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
式中 y 称为 x 在B 上的象,而 x 称为 y 在 A 上的原象。
对应规则:与函数的比较
群论-群论基础-集合与运算
满射 单射 一一映射 逆映射: f -1 恒等映射:e
变换: 体系A 的一个自身映射f 称为A 的一个变换 若f 是一一映射,则称为对称变换 一一变换有性质:
物理学中的群论
—— 群论基础
主讲 翦知渐
群论
教材与参考书
教材: 自编
参考书:群论及其在固体物理中的应用 (徐婉棠)
物理学中的群论 (马中骐)
物理学中的群论基础 (约什)
群论
物理学中的群论
第一章 群论基础 第二章 晶体对称群 第三章 群表示理论 第四章 三维转动群 第五章 群论在量子力学中的应用
群论-群论基础
二元运算一般也称为“乘法”—— 数值加法 数值乘法 对称操作……
集合的所有代数性质都由其乘法结果决定
群论-群论基础-集合与运算
乘法表:有限集
A
l
m
O
D3
e
a
b
B
k
l
k
m
C
ee
a
b
k
l
m
aa
b
e
m
k
l
bb
e
a
l
m
k
kk
l
m
e
a
b
ll
m
k
b
e
a
mm
k
l
a
b
e
4 同态与同构
群论-群论基础-集合与运算
设 A 和 B 是两个不同集合,其中分别定义了乘法 ·和 ×; 若有满射 f ,使得对于 yi = f ( xi ), yj = f ( xj )来说有
第一章 群论基础
群的基本概念和基本性质
§1.1 集合与运算 §1.2 群的定义和基本性质 §1.3 子群及其陪集 §1.4 群的共轭元素类 §1.5 正规子群和商群 §1.6 直积和半直积 §1.7 对称群 §1.8 置换群
§0 绪论
群论-群论基础-集合与运算
群论的发展历史 群论在数学中的作用 我们为什么要学习群1.1 集合与运算
抽象代数的基本概念
1 集合
集合:抽象代数研究的对象 集合的势
集合的乘积: 直积 内积
2 映射
群论-群论基础-集合与运算
定义:设 A 与 B 是两个集合,若有一种规则 f ,使得A的每 一个元素在 B 上都有唯一的元素与之对应,这种对应规则f 就称为 A 到 B 的一个映射,记为
f ( xi ·xj ) = f ( xi ) ×f ( xj ) ——即像的乘积=乘积的像 则称 f 为 A到 B的同态,记为 A ~ B
群论-群论基础-集合与运算
同态映射若是一一映射 → 同构:A=B
同构:乘法表完全一样的结构,只是换了记录的符号 数学上,同构即是同一
→1:1
例如:G = { e= a4, a, a2, a3 } → G' = { 1, i, -1, -i } 物理上,同构的集合有分别:
G = { e, c2} 和 G' = {e, ci }
f f -1 = f -1f = e
3 二元运算
群论-群论基础-集合与运算
定义:若对 A 上的每一对有序元(a, b ) ,在 A 上有唯一确定的 c 与之对应,即有一规则 R 使得 A×A → A,则 R 称为 A上的一 个二元运算,记为 R:A×A → A, 或 R:(a, b ) → c = R(a, b ) 一般记为c = a·b,或c = ab 。