组蛋白修饰与癌症
组蛋白修饰与肿瘤发生的关系

组蛋白修饰与肿瘤发生的关系肿瘤是一种极为复杂的疾病,它的产生和演化涉及到多种因素,而其中一个比较重要的因素就是基因组的变化。
研究表明,基因组变化是肿瘤发生的重要驱动力,而组蛋白修饰在这一过程中扮演了重要的角色。
本文将重点讨论组蛋白修饰与肿瘤发生的关系。
组蛋白修饰是指对组蛋白分子上的特定位置进行化学修饰,从而影响其结构和功能。
组蛋白是一种重要的蛋白质,在细胞核中起着支持染色质结构、DNA复制、转录和DNA修复等功能。
组蛋白可以被分为多种类型,其中最为重要的是核心组蛋白(histone)。
核心组蛋白由H2A、H2B、H3和H4四个亚基组成。
核心组蛋白的N端可通过甲基化、乙酰化、磷酸化、泛素化等化学修饰,从而影响其在染色质中的位置和结构,进而影响基因的转录。
组蛋白修饰也包括了非核心组蛋白的化学修饰,比如翻译后修饰,如在乳腺癌细胞中,乙酰化酪氨酸酶P300被启动,通过翻译后修饰使得肿瘤细胞生长并转移。
研究发现,许多与肿瘤相关的基因与组蛋白修饰有密切的关系。
一些肿瘤细胞中的组蛋白修饰失调,从而导致基因表达的改变,甚至改变基因的结构和功能。
比如,一些组蛋白甲基转移酶和乙酰化酶的过度表达或丧失会直接导致肿瘤的发生和进展。
此外,一些肿瘤细胞中的组蛋白修饰也可以影响免疫系统,从而使得肿瘤更难被免疫系统杀死。
特别地,研究发现,H3K27me3和H3K9me3两种特定的组蛋白甲基化修饰在肿瘤发生中起着重要的作用。
H3K27me3的过度沉积被发现与胃癌、黑色素瘤、上皮卵巢癌和肾透明细胞癌等多种癌症相关。
与此类似,H3K9me3的沉积过度被发现与乳腺癌、大肠癌、甲状腺癌和骨髓瘤等癌症相关。
这些发现提示,组蛋白修饰可以作为潜在的肿瘤生物标志物,因为肿瘤细胞中特定的组蛋白修饰模式是与健康细胞不同的。
此外,最近的研究表明,组蛋白甲基化修饰也与肿瘤免疫治疗的效果相关。
近年来,免疫治疗已经成为了治疗某些类型的肿瘤的新方法。
然而,一些肿瘤细胞可以通过减少H3K27me3的甲基化水平来逃避免疫细胞攻击,从而降低了免疫治疗的有效性。
组蛋白修饰及其在疾病发生中的作用

组蛋白修饰及其在疾病发生中的作用组蛋白修饰是细胞核内发生的一种化学修饰,主要通过对组蛋白蛋白质的翻译发生改变,调控基因表达,进而影响细胞的生命活动,具有广泛的生物学功能。
本文主要介绍组蛋白修饰的种类及其在疾病中的作用。
组蛋白修饰包括甲基化、乙酰化、泛素化等多种方式。
其中甲基化是目前最广泛研究的一种组蛋白修饰,主要发生在组蛋白H3和H4上。
甲基转移酶和脱甲基化酶可以向组蛋白蛋白质上添加或删除甲基基团,从而改变组蛋白的电荷性质和结构稳定性,使其对染色质的构象、紧致程度等产生影响,进而调控基因表达。
乙酰化是另一种常见的组蛋白修饰方式,主要发生在组蛋白H3和H4上。
组蛋白去乙酰化酶和组蛋白乙酰化酶分别通过去除或添加乙酰基团来影响组蛋白的结构和功能。
乙酰化降低组蛋白与DNA的亲和性,使得染色质更容易被转录因子等蛋白质识别和结合,从而调控基因表达。
泛素化是一种较少研究的组蛋白修饰方式,主要发生在组蛋白H2B上。
泛素化可以使组蛋白H2B在染色质上的分布更加均匀,同时也影响其对转录因子的结合和调控作用。
组蛋白修饰在多种疾病中都发挥着重要的作用。
例如,癌症发生中,某些基因的表达被组蛋白H3或H4的甲基化失去了正常的调控,从而导致恶性转化。
另外,组蛋白乙酰化的异常也与多种癌症发生相关。
例如,胃癌患者中组蛋白H3和H4的乙酰化水平显著升高,与肿瘤的分化程度和淋巴结转移有关。
除癌症外,组蛋白修饰还与其他多种疾病的发生相关。
例如,神经退行性疾病的发生与组蛋白H3K9甲基化水平的下降有关。
自闭症患者的脑组织中,组蛋白H3K4三甲基化水平显著下降。
此外,组蛋白甲基化的异常可能还与一些先天性疾病的发生有关。
总之,组蛋白修饰是一种广泛存在于生物体内的细胞核内化学反应,通过改变组蛋白的电荷性质和结构稳定性,调控基因表达和影响细胞的生命活动。
该修饰方式在多种疾病的发生中起着重要的作用,对于疾病的预防和治疗具有重要的理论和实际意义。
表观遗传学在癌症中的作用

表观遗传学在癌症中的作用癌症是一类严重的疾病,它可发生在身体各个部位,引起重大的生命威胁。
这种疾病的起因很多,其中表观遗传学在癌症中发挥了重要的作用。
表观遗传学是指生命过程中发生的外在改变,包括DNA甲基化、组蛋白修饰、非编码RNA以及染色质构象的变化。
这些变化不会改变DNA序列,但它们会影响基因的表达和功能。
近年来,许多研究表明,表观遗传学在癌症的产生和发展中扮演着重要的角色。
DNA甲基化是表观遗传学的一个重要方面,它是指DNA上甲基基团的添加。
这个过程可以导致基因的关闭和基因沉默,从而影响细胞的生长和分化。
研究表明,在很多癌症中,DNA甲基化情况异常。
例如,癌细胞中的DNA甲基化往往比正常细胞更高。
此外,组蛋白修饰也与癌症的发生和发展有关。
组蛋白修饰是指在组蛋白上添加或去除化学标记的过程。
这可以影响基因表达,并调节细胞周期和细胞凋亡等重要的细胞过程。
如果这些调控失衡,就可能导致癌症的产生和发展。
一些调节基因表达的组蛋白修饰已确定与癌症相关。
例如,在白血病和淋巴瘤等血液肿瘤中,组蛋白修饰发生了改变。
非编码RNA也是表观遗传学中一个重要领域。
这些RNA不编码蛋白质,但它们参与了许多基因表达调节的过程。
有些非编码RNA被发现在癌症中发挥了潜在的重要作用。
例如,一些微小RNA可以影响癌症细胞的增殖和分化。
最后,染色质构象也是表观遗传学非常重要的方面。
它包括染色质的打包方式以及淘汰和激活基因的区域。
染色质构象的改变可以影响基因的表达,并引起癌症的发生。
例如,在肝癌中,染色质的构象异常,导致某些抑癌基因的失活。
综上所述,表观遗传学在癌症中发挥了重要的作用。
它以不改变DNA序列的方式影响了基因的表达和功能,使得癌症细胞能够增殖和蔓延。
对表观遗传学的深入研究可以帮助我们更好地理解癌症的发生和发展,并为癌症的治疗提供新的思路和方法。
组蛋白修饰与癌症发生的关系

组蛋白修饰与癌症发生的关系组蛋白修饰是指对组蛋白分子进行化学改变,从而改变基因表达和染色体结构的一种调节机制。
组蛋白分子是核糖体的主要构成成分之一,是DNA最主要的包装蛋白。
组蛋白分子包裹着基因组成的DNA序列,从而使得基因在一定的调节范围内进行转录和表达。
组蛋白修饰包括乙酰化、甲基化、丝氨酸磷酸化、泛素化等多种类型,它们可以调节基因表达和染色体结构,反过来影响细胞分化、增殖和凋亡等生物学过程。
因此,不同类型的组蛋白修饰对癌症发生有着不同的影响。
组蛋白乙酰化是最常见的修饰方式之一,它可以提高某些基因的表达量,从而推动癌症的发生和发展。
乙酰化可以被乙酰化酶催化,通常情况下是与组蛋白解乙酰化酶(HDAC)相对抗衡的。
研究表明,癌症细胞的细胞核内存在着HDAC蛋白质的缺失或突变,从而导致对组蛋白乙酰化的抑制减弱,促使一些受乙酰化修饰的基因过度表达,从而造成与肿瘤相关的突变或表达异常等。
因此,HDAC已成为癌症治疗的重要靶点之一。
除了乙酰化以外,组蛋白甲基化也是癌症发生的重要机制之一。
甲基化指的是在组蛋白分子N末端的赖氨酸残基上发生取代反应,最终将神经氨酸残基转化为甲基化的赖氨酸,从而调节基因的表达和细胞分化。
一些研究表明,某些癌症患者的细胞内组蛋白是过度甲基化的,从而导致肿瘤相关基因的表达异常。
此外,甲基化还涉及了DNA甲基化改变,在这种情况下,一些基因的甲基化程度也会发生改变,从而导致肿瘤的发生。
丝氨酸磷酸化指的是在组蛋白分子链接的丝氨酸残基上发生磷酸化反应,从而改变其电荷性质,进而影响细胞信号传导、基因表达等生物过程。
研究表明,在肿瘤细胞内丝氨酸磷酸化的异常增强与癌细胞增殖、迁移、侵袭等现象密切相关。
特别是抑癌基因中的P53蛋白质在受到磷酸化修饰后,会导致其抵抗力下降,从而容易造成肿瘤的发生。
泛素化指的是泛素蛋白和它的底物之间的共价结合。
泛素蛋白是一种小分子蛋白,通过共价连接,可以将目标蛋白标记成特定的废旧蛋白或可移动蛋白,从而促使被标记蛋白的降解或重新定位。
组蛋白乙酰化与癌症

骨髓发育异常病人中, 0’11 或 $3& 与 NOO( M=RES <=>E8IE <E;TEM=8)相融合,融合蛋白产生了异常的
日益增多的实验表明,染色质和核小体构型的 改变在转录起始中发挥着重要的调节作用 & 核小体 结构以及 *.(/组蛋白相互作用使转录因子不能结 合到 *.( 的调节区,因此不能激活基因 & 核心组 蛋白的 . 端尾部( ./01234567 06478)可以活跃地与 *.( 及其他蛋白质发生相互作用,在调整核小体 以及染色质结构中起重要作用 & 核心组蛋白 . 端 尾部区域的赖氨酸残基可进行可逆的乙酰化修饰 & 组蛋白乙酰化中和了其氨基端赖氨酸残基的正电 荷,削弱组蛋白与 *.( 的接触;组蛋白乙酰化也 可能作为一种信号,改变相邻核小体上组蛋白与组 蛋白间的作用,以及组蛋白和转录因子间的作用 & 这其中任何一种改变均可能影响核小体的结构,产 生一个更加开放的染色质环境,有利于转录因子的
! ! 通讯联系人 &
)17:#%"!/?$C@-CA, D/3647: <E65:FGH 515E& 1IE& ;5 收稿日期:$##$/#-/#",接受日期:$##$/#A/#!
・ F’Q ・
生物化学与生物物理进展
:).;< =,.*(%>< =,.4(?-<
=BB?;@A(F)
!"# 在细胞质内,催化的乙酰化事件与新合成的组 蛋白 !$ 从 胞 质 转 运 到 核 内,并 沉 积 在 新 复 制 的
!
组蛋白乙酰转移酶和组蛋白去乙酰化酶
根据组蛋白乙酰转移酶( ’())的来源和功能
将其分为两类: ( 类和 > 类 ’()& ( 类 ’() 位于 [?] 核内,其催化的乙酰化事件与 转 录 相 关 ;> 类
组蛋白修饰在细胞分化和肿瘤发生中的作用

组蛋白修饰在细胞分化和肿瘤发生中的作用细胞分化是一种复杂的生物学过程,通过该过程,未分化的原始细胞逐步向不同的方向分化为特定结构和功能的成熟细胞。
组蛋白修饰在细胞分化和肿瘤发生中发挥着非常重要的作用。
组蛋白是核内的主要蛋白质成分,它们不仅在染色体结构和功能上起支撑作用,在细胞核内还有重要的信号转导功能。
组蛋白修饰是指组蛋白N-末端及其周围氨基酸残基的共价修饰。
这些修饰如乙酰化、甲基化、磷酸化、泛素化等,会改变染色质的构象和功能,从而调节基因表达和DNA复制。
这些修饰多由修饰酶家族完成,在一定程度上也决定了细胞内基因表达的模式。
组蛋白乙酰化是最早被研究的组蛋白修饰之一,它在调节基因表达、细胞周期和细胞分化方面的作用非常重要。
研究表明,组蛋白乙酰化通过改变组蛋白高尔基序列的电荷状态,减少核小体的亲和力,从而使得DNA更容易被转录因子和其他调控因子所识别。
同时,组蛋白乙酰化也可以促进一个细胞状态向另一个细胞状态的转化。
举个例子,当未分化的细胞向特定方向分化时,组蛋白乙酰化会增加,促进基因的表达和特定转录因子的活性。
此外,组蛋白乙酰化还可以减少DNA损伤的检测和修复过程,从而促进细胞的增殖和分化。
组蛋白甲基化则主要是指组蛋白赖氨酸上的甲基化修饰。
它在基因转录、DNA复制、细胞周期、细胞分化等方面都扮演着重要角色。
研究表明,组蛋白甲基化调控了许多关键基因在细胞分化、增殖和凋亡中的表达。
此外,甲基化还可以影响DNA的方法被调控因子所识别,从而影响基因表达。
一些研究还发现,组蛋白甲基化还与肿瘤发生和治疗反应相关。
肿瘤细胞中一些关键基因的组蛋白甲基化发生异常,从而抑制了这些基因的表达,影响了肿瘤的发生和发展。
磷酸化也是组蛋白修饰中非常重要的一种。
磷酸化通常是在DNA受损时发生的,由此启动细胞凋亡和DNA修复途径。
磷酸化还能影响细胞周期和凋亡过程,与肿瘤发生有着密切关系。
许多研究发现,与肿瘤相关的磷酸化修饰不仅在肿瘤的发生和发展中起着作用,而且还可以用作预测肿瘤复发和预测肿瘤对化疗的敏感性的重要的分子标记。
DNA甲基化和组蛋白修饰在癌症发生中的作用

DNA甲基化和组蛋白修饰在癌症发生中的作用癌症是一种疾病,它让人们感到恐惧。
虽然人们付出了很多努力来探究癌症的成因和治疗方法,但癌症仍然是一个难以解决的问题。
目前认为,癌症的发生和发展是由多种因素共同作用的结果,包括基因变异、表观遗传学变化等。
其中,DNA甲基化和组蛋白修饰对于癌症的发生和发展有很重要的作用。
DNA甲基化是指在DNA分子中加入甲基基团,从而改变基因的表达。
DNA甲基化可以在基因启动子区域发生,导致基因的沉默。
这种机制称为甲基化失活。
甲基化失活在许多癌症中都非常普遍,如大肠癌和胃癌。
研究表明,某些癌症的发生也与DNA甲基化的增加有关,这可能与某些基因的过度表达和突变有关。
除了DNA甲基化,组蛋白修饰也是一种影响基因表达的表观遗传学变化。
组蛋白修饰是指在组蛋白分子上添加分子,如乙酰化、甲基化和泛素化。
这些修饰可以改变某些基因的表达,从而影响细胞生物学功能。
研究表明,组蛋白修饰与某些癌症的发生和发展密切相关,如乳腺癌和结肠癌。
例如,组蛋白去乙酰化酶拮抗剂是一种治疗乳腺癌的新颖方法。
DNA甲基化和组蛋白修饰相互作用,协同地影响基因表达。
例如,组蛋白修饰可以影响甲基转移酶和甲基化酶的选择性,从而调节DNA甲基化。
此外,一些组蛋白修饰酶也可以与DNA甲基转移酶合作,在基因启动子区域进行共同作用。
DNA甲基化和组蛋白修饰在癌症的早期诊断和治疗中也具有重要作用。
目前,通过检测癌症细胞中的甲基化水平和组蛋白修饰可以帮助诊断癌症。
此外,针对DNA甲基化和组蛋白修饰的治疗是癌症治疗的新方向。
例如,DNA甲基化抑制剂和不同类别的组蛋白修饰抑制剂已经进入临床试验。
总之,DNA甲基化和组蛋白修饰在癌症的发生和发展中扮演着重要角色。
这些表观遗传学变化可以影响基因表达,导致细胞功能异常,从而促进癌症的发生。
同时,他们也是癌症早期诊断和治疗的重要标志和靶点。
未来的研究应该继续深入探索DNA甲基化和组蛋白修饰对于癌症发生发展的作用,以及如何针对这些变化开发更有效的治疗方法。
组蛋白修饰及其在癌症中的作用

组蛋白修饰及其在癌症中的作用癌症是人类健康的一个重大问题,因为目前为止,尽管科技发展了快速地发展,但癌症治疗的成功率仍然较低,许多癌症患者最终还是必须接受化疗或手术来延长生命。
这个问题在很大程度上是由癌症细胞的生长和扩散导致的。
而我们是否能够找到一种新的治疗方法呢?正是如此,组蛋白修饰的出现成为了癌症治疗问题的一个新突破点。
组蛋白是一种存在于细胞核里的蛋白质,它是DNA的包装材料。
在细胞分裂时,DNA需要被复制,以便每一个新的细胞都具有准确的遗传信息。
组蛋白结构稳定而柔韧,使得DNA可以紧密地缠绕在它周围,从而避免受到外界的化学或物理损伤。
这同时也防止了DNA随机地扩散或过度暴露在某些恶劣的环境中,例如紫外线或辐射。
在组蛋白附近还有一种酶,称为蛋白质去乙酰化酶(HDACs),它可以去除组蛋白上的乙酰基,从而紧密地缠绕DNA,使得DNA几乎无法移动或表达。
然而,在癌细胞中,HDACs水平高于正常细胞,也就是说,它们可以阻止DNA的结构紧密地绕在组蛋白周围而独立存在。
然而,组蛋白修饰这种治疗方式,可以破坏这种状态,使得组蛋白表现出新的特性。
组蛋白修饰是一种特殊的化学改变过程,使得无法结合的组蛋白重组成一个新的状态,称为可逆性的醋酸化。
同时,一种叫做修饰酶(该酶可以减少组蛋白和DNA之间的紧密程度)的活性也显著增加了。
在进行组蛋白修饰治疗时,首先需要通知储存在细胞中的修饰酶来对DNA进行醋酸化。
这种醋酸化过程特别重要,因为醋酸化的组蛋白会发生一系列的结构改变,从而使得修饰酶能够更容易地将DNA从组蛋白分离出来,让DNA更加活跃,也更容易被药物靶向。
这种结构改变还可以使得一些靶向细胞生长的药物更容易地穿透或到达之前被组蛋白阻碍的细胞。
组蛋白修饰治疗的优点不仅仅在于它们可以减少癌细胞分裂或扩散,更重要的是,它们具有极高的选择性,可以针对肿瘤细胞进行靶向治疗,同时对正常细胞几乎没有任何损害,因为正常细胞中HDACs的水平较低。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要:表观遗传调节异常逐渐被认为是癌症的标志。
尤其是翻译后的组蛋白修修饰,被认为在癌症发展过程中起到关键作用。
后翻译组蛋白修饰参与致癌作用的各个阶段。
组蛋白修饰也被探索为疾病发生发展的可能标志物。
这篇文章讨论了组蛋白修饰在癌症生物学中扮演的角色以及探索他们预后的可能性。
癌症一直被公认为多效性和多方面的疾病,和发展的起始,是由无数的因素的影响。
由于其显著的错综复杂性,癌症的概念作为表观遗传疾病,以及遗传,改变已经获得了相当大的势头,在科学界,[ 1 ]。
表观遗传学是研究遗传的表型,这是不是由DNA序列编码[ 2,3 ]。
对于癌症,“表观遗传学”通常是指在DNA 甲基化变化微小,组蛋白翻译后修饰,和其他染色质元素,可以改变基因的表达。
组蛋白修饰和癌症组蛋白是高度保守的碱性蛋白质,可以成为氨基酸残基位于N-末端 C-末端的翻译后修饰。
有四个核心组蛋白:蛋白2个(H2A),B组蛋白2(H2B)、组蛋白3(H3),和组蛋白4(H4),和一个连接组蛋白,组蛋白1(H1)。
约146个碱基对的DNA缠绕在组蛋白八聚物,组成每个核心组蛋白的两个副本,在左手超螺旋圈。
H1,这是不包括在核小体的“珠”,作为一个连接有助于安全的DNA缠绕在核小体。
组蛋白残基磷酸化,乙酰化,甲基化可以成为,,sumolyated,泛素化和ADP-核糖基化。
不像其他的修饰。
氨基酸的甲基化,如赖氨酸和精氨酸,可以改变量。
赖氨酸残基(K)可以是单,双,或三甲基化,而精氨酸残基(R)可以是单甲基化和对称或不对称的二甲基化。
值得注意的是,无论是乙酰化(AC)和精确的(me)的赖氨酸甲基化(即单-,二-,和三甲基化)都可以影响染色质的活性和失活的状态和随后的基因的转录状态。
浓缩的乙酰化组蛋白尾巴是具有代表性的与转录激活有关的基因。
而甲基化的功能性结果取决于甲基基团的数目,残基本身,其位置在组蛋白尾部。
例如,组蛋白3赖氨酸4二和三甲基化(H3K4me2和H3K4me3)和组蛋白3赖氨酸9(H3K9me1)化与开放的染色质和活性相关的基因表达,而组蛋白3赖氨酸27二和三甲基化(H3K27me2和H3K27me3)和组蛋白3赖氨酸9二和三甲基化(H3K9me2和H3K9me3)与活性染色质和基因表达的激活有关。
此外,一些标志,如组蛋白3赖氨酸4单甲基化(H3K4me1)和组蛋白乙酰化赖氨酸27(3 H3K27ac)在基因增强子中被发现,甚至远距离影响基因表达。
活性剂富含H3K27ac,而那些只有H3K4me1的活性增强剂准备响应一个刺激激活。
从组蛋白的尾部添加或去除翻译后修饰是动态的,是由多个不同的组蛋白修饰酶进行的。
该酶参与所谓的“写作”和“擦除”这些可逆的标志包括组蛋白乙酰转移酶(HATs)和组蛋白去乙酰化酶(HDAC),组蛋白甲基转移酶(HMTs),组蛋白去甲基化酶(HDMS),组蛋白泛素化酶以及去泛素化酶,可以是具体的(即组蛋白甲基转移酶和demethylses)或一般(即HATs和HDACs)他们都可以识别和改变组蛋白尾部的氨基酸残基。
应该指出的是,例如组蛋白去甲基化酶在2006年被第一次发现,这些酶以及组蛋白的甲基化都可以修饰组蛋白以外的蛋白。
由于组蛋白修饰在基因调控和表达的基本作用,所以在癌症中发现组蛋白标志物的异常模式不是令人惊讶的。
在高通量测序技术的进步已经发现在肿瘤发生过程中出现染色质变化的全基因组的映射。
据报道,癌细胞失去了组蛋白乙酰化和甲基化,主要发生在乙酰化和三甲基化的组蛋白H4 Lys16 Lys20残基。
这些损失也与DNA重复序列的甲基化有关,癌细胞的一个显著的特征。
组蛋白修饰酶不恰当的修饰,如HDACs,HATs,HMTS和HDMS,通常负责异常的组蛋白修饰。
例如组蛋白去乙酰化酶,经常被认为在前列腺癌和胃癌是过度表达。
HDAC1被证明与视网膜母细胞瘤蛋白(Rb)的抑制有关,与Rb共同抑制与编码细胞周期蛋白cyclin E相关的转录因子E2F调控的启动子。
同时,融合蛋白的异常结构是通过HAT和与HAT相关的基因的染色体易位而发生的,是在白血病中被发现的。
在肿瘤细胞中的组蛋白甲基转移酶和去甲基化酶的异常也会导致异常的组蛋白修饰方式。
删除一个特定的甲基转移酶EZH2、,与小鼠体内自发的T细胞白血病发生高频率相关。
此外,EZH2基因被发现在前列腺癌和乳腺癌中高表达。
Histone modification and cancer prognosis癌症是一种多样化的疾病。
对于每个人来说经常会产生不同的临床结果(即前列腺癌或乳腺癌)。
临床结果可能被评估,但不限于,原发肿瘤的提取,转移,和治疗药物的程度都与肿瘤的复发有关。
根据癌症临床行为来确定最合适的治疗措施是必不可少的。
考虑到癌症的多样性以及癌症的临床表现也是因人而异。
大量努力被投资在发现癌症的分子标志物。
这些分子标记物在诊断前,诊断中和诊断后都扮演重要角色,包括单核苷酸多态性,染色体易位,基因突变,基因组的表达模式,特定基因启动子的甲基化状态,以及组蛋白的后翻译修饰。
虽然翻译后蛋白修饰尚未正式进入临床癌症生物标志物的大厅,大量研究表明,组蛋白修饰可以预测各种癌症的预后(表1)。
本节将简要概述的癌症包括:肺、前列腺、乳腺、白血病、肾脏、肝脏、胰腺、食管和胃癌肺癌在美国,肺癌和支气管癌的死亡率比任何其他癌症都要高。
美国癌症协会估计,2012、男性和女性的肺癌和支气管肺癌死亡人数分别占29%和26%。
原发性非小细胞肺癌(NSCLC)是亚洲和西方人群恶性肿瘤相关死亡的主要原因。
临床病理学分析结果表明,非小细胞肺癌组织低水平的H3K9ac,H3K9me3和H4K16ac和肿瘤复发呈正相关关系。
然而根据患者的组蛋白修饰模式发现乙酰化占主导地位组具有较好的预后,但甲基化占主导地位组与不良预后相关。
此外,患有大细胞或鳞状细胞癌的非小细胞肺癌患者,其肿瘤高水平H3K4me2表达和腺癌较低水平的H3K9ac增加了的I期病人生存率。
H4组蛋白修饰也显示在肺癌组织中的异常模式,在早期的癌前病变可以观察到,H4K5 , H4K8 的乙酰化,H4K12 H4K16 的去乙酰化和H4K20me3的低表达。
H4K20me3经常在细胞癌和癌症早期病变时被发现,H4K20me3的表达量随着疾病进展而下降。
H4K20me3表达量下降在腺癌中是不常见的,但I期腺癌患者一旦被观察到其表达量下降就意味着生存率的下降。
H3K4me2和H3K18ac水平降低也与腺癌的低生存概率例相关乳腺癌乳腺癌是一种异质性的疾病,从癌变前的增生到具有浸润性和转移性的癌症是导致女性死亡的第二大杀手。
检查人乳腺癌的特点显示,组蛋白修饰状态,肿瘤生物标志物的表型和临床结果有高度显着的相关性。
在腔样乳腺肿瘤中检测到全组蛋白乙酰化和甲基化水平升高与良好预后相关。
同时,中等水平低的h4k12ac H3K18ac、和,以及H3K4me2,H4K20me3,和H4R3Me2与较差的预后相关包括基底癌HER-2阳性肿瘤。
此外,该分析还显示大多数乳腺癌病例中表达量低或缺失H4K16ac,可能是乳腺癌的一个早期迹象。
除了在全球范围内的组蛋白修饰的改变,乳腺癌也表现出特定的基因特异性组蛋白改变。
乳腺癌组织的染色质免疫共沉淀(ChIP)分析表明,着丝粒卫星(SAT2)随着H3K9me3的水平上调,这是转录抑制的标志。
组蛋白修饰酶的异常表达与乳腺癌的预后有关。
EZH2的过表达,被证明与乳腺癌的侵袭性和患者较差的预后相关。
LSD1,或kdm1a也在雌激素受体(ER)高阴性肿瘤被发现。
此外,患者的肿瘤具有组蛋白去乙酰化酶6(HDAC6),高表达是一种晚期反应雌激素诱导上调表达的基因,有一个较低的水平,这种酶的预后较好,在无病生存期白血病美国癌症协会估计,2012年将有47150个新的白血病患者。
白血病是骨髓和血液的一种癌症,根据细胞类型和生长为四个主要群体速率分类:急性淋巴细胞(ALL)、慢性淋巴细胞性(CLL)、急性髓系白血病(AML),及慢性粒细胞白血病(CML)。
几乎90%的白血病病例诊断成人AML患者和慢性淋巴细胞性白血病。
芯片分析AML患者样本显示,上百个启动子区域与H3K9me3水平下降有关,H3K9突变信号改善,染色体核型、年龄都与预后预测有关。
芯片分析还表明,在AML患者中组蛋白去乙酰化酶1(HDAC1)和许多的HDAC1的结合改变了参与造血基因的启动子从而调控转录和信号转导是一种常见的特征。
此外,HDAC1的结合模式也与患者生存率相关。
胃癌和食管癌胃癌是一种常见的侵袭性恶性肿瘤,其预后较差。
2012年GC发生在美国估计有21300例新病例,估计10540人死亡。
胃腺癌的免疫组织化学分析表明,H3K9甲基化水平(H3K9me3)与肿瘤分期,淋巴管浸润,肿瘤复发呈正相关。
此外,基因组分析表明,高表达的H3K9me3与低生存率呈正相关,这是转录抑制的标志。
芯片分析显示128个基因的H3K27me3水平差异显著,有119个基因处于高水平表达(即MMP15、UNC5B,和SHH)的标记和9个处于低水平表达(即Rb1和aff3)食管癌的发生占美国所有癌症1-3%,据估计,2012年大约有12000人将死于食管癌。
从恢复的食管癌患者样本进行临床病理分析食管鳞状细胞癌(ESCC)显示肿瘤的分化和H3K18ac H4R3Me2 H3K27me3水平呈正相关。
早期阶段H3K18ac和H3K27me3低表达与更好的预后相关。
食管鳞状细胞癌的H3K18ac 和H4R3Me2表达也与无复发生存率(RFS)相关。
食管癌患者也表现出EZH2基因的异常表达,这是与浸润深度更大,远处转移,与较短的无病生存时间显著相关。
肾脏,肝脏,胰腺癌症在2012年,大约有65000例新发病例,13540例(肾)癌死亡。
肾细胞癌可分为3类:肾细胞癌(RCC)(92%),肾盂癌(RPC)(7%),肾母细胞瘤(1%)(儿童癌症,通常发生在5岁之前)。
当组蛋白H3赖氨酸4(H3K4)单,二和三甲基化水平在RCC样本发现H3K4me3染色更加强烈,而H3K4me1和H3K4me2在不同肾癌中表达相似。
H3K4甲基化的联合修饰是RFS的独立预测因子。
在RCC患者的不良预后也与较低水平的H3K9me1相关。
2012年预计有28720例新发的肝癌(包括肝内胆管癌),其中80%以上为肝细胞癌(肝癌)。
肝癌是全世界癌症死亡的主要原因,尽管改进外科技术和化疗长期预后仍然不佳。
免疫组织化学分析显示高表达的H3K4me3与HCC患者预后呈负相关。
H3K27me3的高表达水平也预示着HCC患者较差的预后。
相关分析表明,H3K27me3在肝癌高表达与肿瘤体积大小,多样性,分化差显著相关。