高中物理【光电效应 波粒二象性】知识点、规律总结

合集下载

高二物理《波粒二象性》知识点波粒二象性知识点总结

高二物理《波粒二象性》知识点波粒二象性知识点总结

高二物理《波粒二象性》知识点波粒二象性知识点
总结
波粒二象性是指光和物质粒子既可以表现出波动性,也可以表现出粒子性的特征。

光的波动性:
1. 光可以传播并产生干涉、衍射、反射和折射等现象。

2. 光的波长和频率与其能量和颜色有关。

3. 光的波长越短,频率越高,能量越大。

光的粒子性(光子):
1. 光的能量以离散的量子形式存在,称为光子。

2. 光子的能量由其频率确定,E = hf,其中h为普朗克常数。

3. 光子具有动量,p = hf/c,其中c为光速。

4. 光子与物质粒子之间可以发生相互作用。

物质粒子的波动性:
1. 物质粒子(如电子、中子和质子等)具有波动性,其波长由物质粒子的动量确定,λ= h/p。

2. 物质粒子的波长越短,动量越大,能量越高。

物质粒子的粒子性:
1. 物质粒子具有质量和电荷等属性,可在空间中定位并与其他粒子相互作用。

2. 物质粒子的运动具有定向性和速率,可以经历加速、碰撞、反弹和传递动量等过程。

波粒二象性的实验验证:
1. 双缝干涉实验:将光束通过双缝,观察在屏幕上出现的干涉条纹。

2. 非弹性散射实验:通过向物质粒子轰击金属原子等,观察其与原子发生相互作用的现象。

3. 康普顿散射实验:观察到X射线与物质粒子碰撞后发生能量和动量的转移。

波粒二象性的意义:
波粒二象性的发现和理解深化了我们对物质和能量本质的认识。

它为解释光电效应、康普顿散射以及粒子的衍射和干涉等现象提供了理论基础,并在量子力学的发展中起到了重要的作用。

2023年波粒二象性知识点

2023年波粒二象性知识点

波粒二象性知识点总结一:黑体与黑体辐射1.热辐射(1)定义:我们周围旳一切物体都在辐射电磁波,这种辐射与物体旳温度有关,因此叫热辐射。

(2)特点:热辐射强度按波长旳分布状况随物体旳温度而有所不一样。

2.黑体(1)定义:在热辐射旳同步,物体表面还会吸取和反射外界射来旳电磁波。

假如某些物体可以完全吸取投射到其表面旳多种波长旳电磁波而不发生反射,这种物体就是绝对黑体,简称黑体。

(2)黑体辐射特点:黑体辐射电磁波旳强度按波长旳分布只与黑体旳温度有关。

注意:一般物体旳热辐射除与温度有关外,还与材料旳种类及表面状况有关。

二:黑体辐射旳试验规律如图所示,伴随温度旳升高,首先,多种波长旳辐射强度均有增长;另—方面,辐射强度旳极大值向波长较短旳方向移动。

三:能量子1.能量子:带电微粒辐射或吸取能量时,只能是辐射或吸取某个最小能量值旳整数倍,这个不可再分旳最小能量值E叫做能量子。

2.大小:E=hν。

其中ν是电磁波旳频率,h称为普朗克常量,h=6.626x10—34J·s(—般h=6.63x10—34J·s)。

四:拓展:1、对热辐射旳理解(1).在任何温度下,任何物体都会发射电磁波,并且其辐射强度按波长旳分布状况随物体旳温度而有所不一样,这是热辐射旳一种特性。

在室温下,大多数物体辐射不可见旳红外光;但当物体被加热到5000C左右时,开始发出暗红色旳可见光。

伴随温度旳不停上升,辉光逐渐亮起来,并且波长较短旳辐射越来越多,大概在1 5000C时变成明亮旳白炽光。

这阐明同一物体在一定温度下所辐射旳能量在不一样光谱区域旳分布是不均匀旳,并且温度越高光谱中与能量最大旳辐射相对应旳频率也越高。

(2).在一定温度下,不一样物体所辐射旳光谱成分有明显旳不一样。

例如,将钢加热到约800℃时,就可观测到明亮旳红色光,但在同一温度下,熔化旳水晶却不辐射可见光。

(3)热辐射不需要高温,任何温度下物体都会发出一定旳热辐射,只是温度低时辐射弱,温度高时辐射强。

光电效应波粒二象性

光电效应波粒二象性

光电效应波粒二象性【基础回顾】考点一光电效应现象和光电效应方程的应用1.对光电效应的四点提醒(1)能否发生光电效应,不取决于光的强度而取决于光的频率。

(2)光电效应中的“光”不是特指可见光,也包括不可见光。

(3)逸出功的大小由金属本身决定,与入射光无关。

(4)光电子不是光子,而是电子。

2.两条对应关系光强大→光子数目多→发射光电子多→光电流大;光子频率高→光子能量大→光电子的最大初动能大。

3.定量分析时应抓住三个关系式(1)爱因斯坦光电效应方程:E k=hν-W0。

(2)最大初动能与遏止电压的关系:E k=eU c。

(3)逸出功与极限频率的关系:W0=hν0。

考点二对光的波粒二象性、物质波的考查光既具有波动性,又具有粒子性,两者不是孤立的,而是有机的统一体,其表现规律为:(1)个别光子的作用效果往往表现为粒子性;大量光子的作用效果往往表现为波动性。

(2)频率越低波动性越显著,越容易看到光的干涉和衍射现象;频率越高粒子性越显著,越不容易看到光的干涉和衍射现象,而贯穿本领越强。

(3)光在传播过程中往往表现出波动性;在与物质发生作用时,往往表现为粒子性。

【技能方法】1.光电效应的图象分析两条线索(1)通过频率分析:光子频率高→光子能量大→产生光电子的最大初动能大.(2)通过光的强度分析:入射光强度大→光子数目多→产生的光电子多→光电流大【基础达标】1.关于光电效应,下列说法正确的是:()A.光照时间越长光电流越大B.入射光的光强一定时,频率越高,单位时间内逸出的光电子数就越多C.金属钠的每个电子可以吸收一个或一个以上的光子,当它积累的动能最够大时,就能逸出金属D.不同频率的光照射同一种金属时,频率越高,光电子的最大初动能越大【答案】D【解析】在发生光电效应的情况下,入射光的强度越高,单位时间内发出光电子的数目越多,光电流才越大,与光照时间长短无关,故A错误.入射光的光强一定时,频率越高,单位时间内逸出的光电子数就越少.故B错误.每个电子可以吸收一个光子,当它入射光的能量大于逸出功,就能逸出金属.故C错误.根据光电效应方程得E km=hv-W0当频率越高,光电子的最大初动能越大,故D正确.故选D.2.某光源发出的光由不同波长的光组成,不同波长的光的强度如图所示,表中给出了一些材料的极限波长,用该光源发出的光照射表中材料:()A.仅钠能产生光电子B.仅钠、铜能产生光电子C.仅铜、铂能产生光电子D.都能产生光电子【答案】D【解析】根据爱因斯坦光电效应方程可知,只有光源的波长小于某金属的极限波长,就有光电子逸出,该光源发出的光的波长有小于100nm,小于钠、铜、铂三个的极限波长,都能产生光电子,故D正确,A、B、C错误。

高中物理 必备知识(44):第一节 光电效应、波粒二象性-基础过关

高中物理  必备知识(44):第一节 光电效应、波粒二象性-基础过关

必备知识(44):第一节光电效应、波粒二象性-基础过关第一节光电效应、波粒二象性【基本概念规律】一、光电效应1.定义:在光的照射下从物体发射出电子的现象(发射出的电子称为光电子).2.产生条件:入射光的频率大于极限频率.3.光电效应规律(1)存在着饱和电流对于一定颜色的光,入射光越强,单位时间内发射的光电子数越多.(2)存在着遏止电压和截止频率光电子的能量只与入射光的频率有关,而与入射光的强弱无关.当入射光的频率低于截止频率时不发生光电效应.(3)光电效应具有瞬时性当频率超过截止频率时,无论入射光怎样微弱,几乎在照到金属时立即产生光电流,时间不超过10-9 s.二、光电效应方程1.基本物理量(1)光子的能量ε=hν,其中h=6.626×10-34 J·s(称为普朗克常量).(2)逸出功:使电子脱离某种金属所做功的最小值.(3)最大初动能发生光电效应时,金属表面上的电子吸收光子后克服原子核的引力逸出时所具有动能的最大值.2.光电效应方程:E k=hν-W0.三、光的波粒二象性与物质波1.光的波粒二象性(1)光的干涉、衍射、偏振现象证明光具有波动性.(2)光电效应说明光具有粒子性.(3)光既具有波动性,又具有粒子性,称为光的波粒二象性.2.物质波(1)概率波:光的干涉现象是大量光子的运动遵守波动规律的表现,亮条纹是光子到达概率大的地方,暗条纹是光子到达概率小的地方,因此光波又叫概率波.(2)物质波:小到微观粒子大到宏观物体都有一种波与它对应,其波长λ=,p为运动物体的动量,h为普朗克常量.【重要考点归纳】考点一光电效应规律的理解1.放不放光电子,看入射光的最低频率.2.单位时间内放多少光电子,看光的强度.3.光电子的最大初动能大小,看入射光的频率.4.要放光电子,瞬时放.考点二光电效应方程及图象问题1.爱因斯坦光电效应方程E k=hν-W0hν:光电子的能量.W0:逸出功,即从金属表面直接飞出的光电子克服正电荷引力所做的功.E k:光电子的最大初动能.2.图象分析【思想方法与技巧】用统计规律理解光的波粒二象性微观粒子中的粒子性与宏观概念中的粒子性不同,通俗地讲,宏观粒子运动有确定的轨道,能预测,遵守经典物理学理论,而微观粒子运动轨道具有随机性,不能预测,也不遵守经典物理学理论;微观粒子的波动性与机械波也不相同,微观粒子波动性是指粒子到达不同位置的机会不同,遵守统计规律,所以这种波叫概率波.。

高考物理考点一遍过专题波粒二象性光电效应

高考物理考点一遍过专题波粒二象性光电效应

专题56 波粒二象性光电效应一、黑体辐射和量子1.黑体辐射电磁波的强度按波长的分布只与黑体的温度有关。

2.实验规律:随着温度升高,各种波长的电磁波辐射强度都增加,辐射强度的极大值向波长较短的方向移动。

3.普朗克提出黑体辐射强度按波长分布的公式,理论与实验结果相符,但要求满足能量子假设。

4.能量子ε=hν,其中ν为电磁波频率,普朗克常量h=6.63×10–34J·s。

二、光电效应1.实验规律:(1)每种金属都有一个发生光电效应的最小频率,称为截止频率或极限频率(νc)。

(2)入射光的频率不变时,入射光越强,饱和光电流越大。

光电流的强度(单位时间内发射的光电子数)与入射光的强度成正比。

(3)入射光的频率不变时,存在一个使光电流减小到0的反向电压,即遏止电压(U c)。

表明光电子的能量只与入射光的频率有关,而与入射光的强度无关。

(4)光照射到金属表面时,光电子的逸出几乎是瞬时的,精确测量为10–9 s。

2.爱因斯坦光电效应方程:E k=hν–W03.光电流与电压的关系图象(I–U图象)(1)电压范围足够大时,电流的最大值为饱和光电流I m,图线与横轴交点的横坐标的绝对值为遏止电压U c,光电子的最大初动能E k=eU c。

(2)频率相同的入射光,遏止电压相同,饱和光电流与光照强度成正比。

(3)不同频率的入射光,遏止电压不同,入射光频率越大,遏止电压越大。

4.最大初动能与入射光频率的关系图象(E k–ν图象)(1)函数方程为E k =hν–W 0=hν–hνc 。

(2)图线斜率等于普朗克常量h ,横轴截距等于截止频率v c ,纵轴截距绝对值E 等于逸出功W 0=hνc 。

5.遏止电压与入射光频率的关系图象(U c –ν图象)(1)函数方程为U c =h e ν–0W e =h e ν–c h eν。

(2)图线斜率与电子电荷量的乘积等于普朗克常量h ,横轴截距等于截止频率νc ,纵轴截距的绝对值与电子电荷量的乘积等于逸出功。

光电效应波粒二象性

光电效应波粒二象性

第二节 光电效应 波粒二象性[知识要点](一)基本概念(1)光电效应:金属及其化合物在光(包括不可见光)的照射下,释放电子的现象叫做光电效应。

(2)光电子:在光电效应现象中释放出的电子叫做光电子。

(3)光电流:在光电效应现象中释放出的光电子在外电路中运动形成的电流叫做光电流。

(二)光电效应的规律(斯托列托夫)(1)任何一种金属,都有一个极限频率(又叫红限,以0表示),入射光的频率低于这个频率就不能发生光电效应。

(2)光电子的最大初动能(E km =212m mv )跟入射光的强度无关,只随入射光的频率的增大而增大。

(3)从光开始照射,到释放出光电子,整个过程所需时间小于3×10-9s 。

(4)当发生光电效应时,单位时间、单位面积上发射出的光电子数跟入射光的频率无关,跟入射光的强度成正比。

(三)光子说(爱因斯坦)在空间传播的光是不连续的,而是一份一份的,每一份叫做一个光子。

每个光子所具有的能量跟它的频率成正比,写作为E hv =或 cE h λ=式中 ——光的频率;——光的波长;C ——光在真空中的速度;h ——普朗克恒量,等于6.63×10-34J ·S 。

(四)实验和应用(1)如图13-10所示,紫外线(或弧光灯的弧光中的紫外线)照射表面洁净的锌板,使锌板释放电子,从而使锌板、验电器带正电、验电器的指针发生偏转。

(2)光电管。

如图13-11所示,光电管是光电效应在技术上的一种应用。

它可以把光信号转变为电信号。

(五)光的本性的认识(1)光的本性的认识过程。

17世纪的两种对立学说:牛顿的微粒说——光是实物粒子惠更斯的波动说——光是机械波19世纪的两种学说:麦克斯韦(理论上)、赫兹(实验证实)——光是电磁波、光的波动理论。

爱因斯坦(光子说)、密立根(实验证实)——光是光子、光具有粒子性。

(2)光的波粒二象性。

光既具有粒子性又具有波动性,两种相互矛盾的性质在光子身上得到了统一。

波粒二象性知识点总结

一、能量量子化1、量子理论的建立:1900年德国物理学家普朗克提出振动着的带电微粒的能量只能是某个最小能量值ε的整数倍,这个不可再分的能量值ε叫做能量子ε= hνh为普朗克常数(6.63×10-34J.S)2、黑体:如果某种物体能够完全吸收入射的各种波长电磁波而不发生反射,这种物体就是绝对黑体,简称黑体。

3、黑体辐射:黑体辐射的规律为:温度越高各种波长的辐射强度都增加,同时,辐射强度的极大值向波长较短的方向移动。

(普朗克的能量子理论很好的解释了这一现象)二、科学的转折光的粒子性1、光电效应(表明光子具有能量)(1)光的电磁说使光的波动理论发展到相当完美的地步,但是它并不能解释光电效应的现象。

在光(包括不可见光)的照射下从物体发射出电子的现象叫做光电效应,发射出来的电子叫光电子。

(实验图在课本)(2)光电效应的研究结果:新教材:①存在饱和电流,这表明入射光越强,单位时间内发射的光电子数越多;②存在遏止电压:;③截止频率:光电子的能量与入射光的频率有关,而与入射光的强弱无关,当入射光的频率低于截止频率时不能发生光电效应;④效应具有瞬时性:光电子的发射几乎是瞬时的,一般不超过10-9s。

老教材:①任何一种金属,都有一个极限频率,入射光的频率必须大于这个极限频率,才能产生光电效应;低于这个频率的光不能产生光电效应;②光电子的最大初动能与入射光的强度无关,只随着入射光频率的增大而增大;③入射光照到金属上时,光电子的发射几乎是瞬时的,一般不超过10-9s;④当入射光的频率大于极限频率时,光电流的强度与入射光的强度成正比。

(3)光电管的玻璃泡的内半壁涂有碱金属作为阴极K(与电源负极相连),是因为碱金属有较小的逸出功。

2、光子说:光本身就是由一个个不可分割的能量子组成的,频率为ν的光的能量子为hν。

这些能量子被成为光子。

3、光电效应方程:EK = hv- WO(掌握Ek/Uc—ν图象的物理意义)同时,hv截止= WO (Ek是光电子的最大初动能;W是逸出功,即从金属表面直接飞出的光电子克服正电荷引力所做的功。

高中物理第一讲 光电效应 波粒二象性课件


变式4 (20xx·广西桂林、百色和崇左第三次联考)金属在光的照射下产生光电
效应,其遏止电压Uc与入射光频率ν的关系图象如图6所示.那么由图象可知
A.入射光频率越大,该金属的逸出功越大
√B.入射光的频率越大,那么遏止电压越大(ν>ν0)
C.由图可求出普朗克常量h=νU0 D.光电子的最大初动能与入射光的频率成正比
最大初动能Ek与入射 光频率ν物理量
①极限频率:图线与ν轴交点的横坐 标νc ②逸出功:图线与Ek轴交点的纵坐标 的值的绝对值W0=|-E|=E ③普朗克常量:图线的斜率k=h
颜色相同、强度不同 的光,光电流与电压 的关系
颜色不同时,光电流 与电压的关系
①遏止电压Uc:图线与横轴的 交点的横坐标 ②饱和光电流Im:光电流的最 大值 ③最大初动能:Ek=eUc
是荣获诺贝尔奖的重大近代物理实验之一.如图7所示的是该实验装置的简化图,
以下说法正确的选项是
√A.亮条纹是电子到达概率大的地方 √B.该实验说明物质波理论是正确的
C.该实验再次说明光子具有波动性
√D.该实验说明实物粒子具有波动性
图7
变式7 (多项选择)(20xx·甘肃省天水调研)波粒二象性是微观世界的根本特征, 以下说法正确的有
(2)光电子的最大初动能与入射光的 强度 无关,只随入射光频率的增大而 增大 . (3)光电效应的发生几乎是瞬时的,一般不超过10-9 s. (4)当入射光的频率大于极限频率时,饱和光电流的大小与入射光的强度成 正比 .
自测1 教材P36第2题改编 (多项选择)在光电效应实验中,用频率为ν的光照
√ ×108 m·s-1.能使锌产生光电效应的单色光的最低频率约为
×1014 Hz
×1014 Hz

2020年高考一轮复习:第12章 第1讲 光电效应 波粒二象性

第1讲光电效应波粒二象性主干梳理对点激活知识点 光电效应及其规律 Ⅰ1.定义照射到金属表面的光,能使金属中的□01电子从表面逸出的现象。

2.光电子□02光电效应中发射出来的电子。

3.光电效应规律(1)存在饱和光电流:光照条件不变,当正向电压增大时,光电流趋于一个饱和值,即一定的光照条件下单位时间发出的光电子数目是一定的。

实验表明,光的频率一定时,入射光越强,饱和光电流□03越大,单位时间内发射的光电子数□04越多。

(2)存在遏止电压:使光电流减小到0的反向电压U c 称为遏止电压。

遏止电压的存在意味着光电子的初动能有最大值E km =12m e v 2c =eU c ,称为光电子的最大初动能。

实验表明,遏止电压(或光电子的最大初动能)与入射光的□05强度无关,只随入射光频率的增大而□06增大。

(3)存在截止频率:每种金属都有一个极限频率或截止频率νc ,入射光的频率必须□07大于等于这个极限频率才能产生光电效应,低于这个频率的光不能产生光电效应。

(4)光电效应具有瞬时性:当频率超过截止频率νc 时,无论入射光怎样微弱,光电效应的发生几乎是瞬时的,一般不超过10-9s 。

知识点 爱因斯坦光电效应方程 Ⅰ1.光子说在空间传播的光是不连续的,而是一份一份的,每一份叫做一个光的能量子,简称光子,光子的能量ε=□01hν。

其中h =6.63×10-34 J·s(称为普朗克常量)。

2.逸出功W 0使电子脱离某种金属所做功的□02最小值。

3.最大初动能发生光电效应时,金属表面上的□03电子吸收光子后,除了要克服金属的逸出功外,有时还要克服原子的其他束缚而做功,这时光电子的初动能就比较小;当逸出过程只克服金属的逸出功,逸出时光电子的初动能称为最大初动能。

4.爱因斯坦光电效应方程 (1)表达式:E k =□04hν-W 0。

(2)物理意义:金属表面的电子吸收一个光子获得的能量是hν,这些能量的一部分用来克服金属的□05逸出功W 0,剩下的表现为逸出后光电子的最大初动能E k =□0612m e v 2。

高中物理必备知识点 波粒二象性

第十六章波粒二象性一、光电效应1.定义:在光的照射下从物体发射出电子的现象(发射出的电子称为光电子).2.产生条件:入射光的频率大于极限频率.3.光电效应规律(1)每种金属都有一个极限频率,入射光的频率必须大于这个极限频率才能产生光电效应.(2)光电子的最大初动能与入射光的强度无关,只随入射光频率的增大而增大.(3)光电效应的发生几乎是瞬时的,一般不超过10-9 s.(4)当入射光的频率大于极限频率时,光电流的强度与入射光的强度成正比.二、光电效应方程1.基本物理量(1)光子的能量:ε=hν其中h=6.63×10-34 J·s(称为普朗克常量).(2)逸出功:使电子脱离某种金属所做功的最小值.(3)最大初动能发生光电效应时,金属表面上的电子吸收光子后克服原子核的引力逸出时所具有动能的最大值.2.光电效应方程爱因斯坦光电效应方程是根据能量守恒定律推导出来的.描述的是光电子的最大初动能E k跟入射光子的能量hν和逸出功W之间的关系:E k=hν-W三、波粒二象性、物质波1.光的波粒二象性(1)光电效应说明光具有粒子性,同时光还具有波动性,即光具有波粒二象性.(2)大量光子运动的规律表现出光的波动性,单个光子的运动表现出光的粒子性.(3)光的波长越长,波动性越明显,越容易看到光的干涉和衍射现象.光波的频率越高,粒子性越明显,穿透本领越强.2.物质波任何一个运动的物体,小到微观粒子,大到宏观物体,都有一种波与它相对应,其波长等于hmv,也称为德布罗意波、物质波。

特别提示:物质波既不是机械波,也不是电磁波,物质波乃是一种概率波.四、正确理解光电效应规律中的两个关系1.光电子的最大初动能与入射光频率的关系光电子的最大初动能E k,随入射光频率ν的增大而增大;由爱因斯坦光电效应方程知:E k=hν-W.对于某一金属而言,逸出功W是一定值,普朗克常量h是一常数,故从上式可以看出,最大初动能E k与入射光频率ν成一次函数关系,但不是成正比的,函数图象如图15-1-1.当光照射到金属表面上时,能量为E的光子被电子所吸收,电子把这个能量的一部分用来克服金属表面对它的吸引,剩余部分就是电子离开金属表面时的初动能.(1)由爱因斯坦的光电效应方程可知,只有当光子的能量hν≥W时才会有光电效应讲解:极限频率~~金属的逸出功不同,因此不同金属对应的极限频率也不图15-1-1同.(2)电子吸收光子后能量立即增大hν,不需要能量的积累过程.因此光电效应的发射几乎是瞬时的.(3)电子每次只吸收一个光子,从能量守恒可知,光电子的最大初动能E k=hν-W,且E k随频率的增大而增大,与光的强度无关.2.光电流的大小跟入射光强度成正比光电流的大小是由单位时间内从金属表面逸出的光电子数目决定的,而从金属表面逸出的光电子数目由入射光子的数目决定,而与光子的频率无关.[例题1].对光电效应的解释正确的是( )A.金属钠的每个电子可以吸收一个或一个以上的光子,当它积累的动能足够大时,就能逸出金属B.如果入射光子的能量小于金属表面的电子克服原子核的引力而逸出时所需做的最小功,便不能发生光电效应C.发生光电效应时,入射光越强,光子的能量就越大,光电子的最大初动能就越大D.由于不同金属的逸出功是不相同的,因此使不同金属产生光电效应入射光的最低频率也不同解析:选BD.按照爱因斯坦的光子说,光的能量是由光的频率决定的,与光强无关,入射光的频率越大,发生光电效应时产生的光电子的最大初动能越大.但要使电子离开金属须使电子具有足够的动能,而电子增加的动能只能来源于照射光的光子能量,但电子只能吸收一个光子,不能吸收多个光子.电子从金属逸出时只有从金属表面向外逃出的电子克服原子核的引力所做的功最小.五、波动性与粒子性的比较(略)[例题2].关于物质的波粒二象性,下列说法中不正确的是( )A.不仅光子具有波粒二象性,一切运动的微粒都具有波粒二象性B.运动的微观粒子与光子一样,当它们通过一个小孔时,都没有特定的运动轨道C.波动性和粒子性,在宏观现象中是矛盾的、对立的,但在微观高速运动的现象中是统一的D.实物的运动有特定的轨道,所以实物不具有波粒二象性解析:选D.光具有波粒二象性是微观世界具有的特殊规律,大量光子运动的规律表现出光的波动性,而单个光子的运动表现出光的粒子性.光的波长越长,波动性越明显,光的频率越高,粒子性越明显.而宏观物体的德布罗意波的波长太小,实际很难观察到波动性,但不是不具有波粒二象性.D项合题意.六、感知高考(2008年高考江苏卷)下列实验中,深入地揭示了光的粒子性一面的有________.A.X射线被石墨散射后部分波长增大B.锌板被紫外线照射时有电子逸出但被可见光照射时没有电子逸出C.轰击金箔的α粒子中有少数运动方向发生较大偏转D.氢原子发射的光经三棱镜分光后,呈现线状光谱【解析】X射线被石墨散射后部分波长增大(康普顿效应),说明光子具有粒子性,故选项A 对;对于任何一种金属都存在一个“极限频率”,入射光的频率必须大于这个频率,才能产生光电效应,故选项B对;选项C说明原子的核式结构;选项D说明氢原子的能量是不连续的.【答案】AB[例题3]如图15-1-2所示,当电键S断开时,用光子能量为2.5 eV的一束光照射阴极P,发现电流表读数不为零.合上电键,调节滑动变阻器,发现当电压表读数小于0.60 V时,电流表读数仍不为零;当电压表读数大于或等于0.60 V时,电流表读数为零.(1)求此时光电子的最大初动能的大小;(2)求该阴极材料的逸出功.【解析】设用光子能量为2.5 eV的光照射时,光电子的最大初动能为E k,阴极材料逸出功为W0,当反向电压达到U=0.60 V以后,具有最大初动能的光电子也达不到阳极,因此eU=E k由光电效应方程有:E k=hν-W0由以上二式代入数据解得:E k=0.6 eV,W0=1.9 eV.所以此时最大初动能为0.6 eV,该材料的逸出功为1.9 eV.【答案】(1)0.6 eV (2)1.9 eV课时训练1.人类对光的本性认识经历了曲折的过程.下列关于光的本性的陈述正确的是( ) A.牛顿的“微粒说”与爱因斯坦的“光子说”本质上都是一样的B.任何一个运动着的物体,都具有波动性C.麦克斯韦预言了光是一种电磁波D.光波是概率波答案:BCD2.在演示光电效应的实验中,原来不带电的一块锌板与灵敏验电器相连,用弧光灯照射锌板时,验电器的指针就张开一个角度,如图15-1-5所示,这时( )A.锌板带正电,指针带负电B.锌板带正电,指针带正电C.锌板带负电,指针带正电D.锌板带负电,指针带负电解析:选B.验电器的指针张开一个角度说明锌板带电,锌板在弧光灯照射下发生光电效应失去电子而带正电,验电器也带正电.3.某单色光照射某金属时不能产生光电效应,则下述措施中可能使金属产生光电效应的是( )A.延长光照时间B.增大光的强度C.换用波长较短的光照射 D.换用频率较低的光照射解析:选C.对某种金属能否发生光电效应取决于入射光的频率,与入射光的强度和照射时间无关,所以选项A、B错误.没有发生光电效应,说明入射光的频率小于极限频率,所以要使金属发生光电效应,应增大入射光的频率,减小波长,所以选项C正确,D错误.4. 物理学家做了一个有趣的实验:在双缝干涉实验中,在光屏处放上照相底片,若减弱光流的强度,使光子只能一个一个地通过狭缝,实验结果表明,如果曝光时间不太长,底片上只出现一些不规则的点子;如果曝光时间足够长,底片上就会出现规则的干涉条纹,对这个实验结果有下列认识,正确的是( )A .曝光时间不长时,出现不规则的点子,表现出光的波动性B .单个光子通过双缝后的落点无法预测C .干涉条纹中明亮的部分是光子到达机会较多的地方D .只有大量光子的行为才能表现出光的粒子性解析:选BC.由于光波是一种概率波,故B 、C 正确.A 中的现象说明了光的粒子性;个别光子的行为才通常表现出粒子性,故A 、D 错误.5. 光电效应的实验结论是:对于某种金属( )A .无论光强多强,只要光的频率小于极限频率就不能产生光电效应B .无论光的频率多低,只要光照时间足够长就能产生光电效应C .超过极限频率的入射光强度越弱,所产生的光电子的最大初动能就越小D .超过极限频率的入射光频率越高,所产生的光电子的最大初动能就越大解析:选AD.根据光电效应规律可知A 正确,B 、C 错误.根据光电效应方程21mv m 2=h ν-W ,频率ν越高,初动能就越大,D 正确.6.A 和B 两种单色光均垂直照射到同一条直光纤的端面上,A 光穿过光纤的时间比B 光穿过的时间长,现用A 和B 两种光照射同种金属,都能发生光电效应,则下列说法正确的是( )A .光纤对B 光的折射率大B .A 光打出的光电子的最大初动能一定比B 光的大C .A 光在单位时间内打出的电子数一定比B 光的多D .B 光的波动性一定比A 光显著解析:选BD.穿过光纤的时间长的速度小,其折射率较大,频率也较大,波动性弱,粒子性强.所以B 、D 正确.7.已知一束可见光a 是由m 、n 、p 三种单色光组成的.检测发现三种单色光中,n 、p 两种色光的频率都大于m 色光;n 色光能使某金属发生光电效应,而p 色光不能使该金属发生光电效应.那么,光束a 通过三棱镜的情况是下图中的( )图15-1-6解析:选A.n 色光能使某金属发生光电效应,而p 色光不能使该金属发生光电效应,这说明n 色光的频率大于该金属的极限频率,p 色光频率小于该金属的极限频率,即n 色光的频率大于p 色光频率.三种色光的频率按m 、p 、n 的顺序逐渐增大.同一种介质对频率越大的单色光的折射率也越大,所以经棱镜后偏折角度也越大,选A.8.如图15-1-7所示是某金属在光的照射下产生的光电子的最大初动能E k 与入射光频率ν的关系图象.由图象可知( )A .该金属的逸出功等于EB .该金属的逸出功等于h ν0C .入射光的频率为2ν0时,产生的光电子的最大初动能为ED .入射光的频率为ν0/2时,产生的光电子的最大初动能为E /2答案:ABC9.分别用波长为λ和3λ/4的单色光照射同一金属板,发出光电子的最大初动能之比为1∶2,以h 表示普朗克常量,c 表示真空中的光速,则此金属板的逸出功为( )解析:选B.由E k1=h ν1-W ①E k2=h ν2-W ②10.波长为λ=0.17 μm 的紫外线照射至金属筒上能使其发射光电子,光电子在磁感应强度为B 的匀强磁场中,做最大半径为r 的匀速圆周运动,已知r ·B =5.6×10-6 T·m,光电子质量m =9.1×10-31 kg ,电荷量e =1.6×10-19 C ,求:(1)光电子的最大动能;(2)金属筒的逸出功.解析:光电子做半径最大的匀速圆周运动时,它的动能即是最大动能.代入数据得21mv 2≈4.41×10-19 J. (2)由爱因斯坦光电效应方程得W =h ν-21mv 2=h c/λ-21mv 2代入数据得W ≈7.3×10-19 J. 答案:(1)4.41×10-19 J (2)7.3×10-19 J11. 如图15-1-8所示,一伦琴射线管,K 为阴极可产生电子,阴极K 与对阴极A 外加电压U AK =30 kV.设电子离开K 极时速度为零,通过电压加速后而以极大的速度撞到对阴极A 上而产生X 射线,假定电子的全部动能转为X 射线的能量.求:(1)电子到达A 极时的速度是多大?(2)从A 极发出的X 射线的最短波长是多少?(3)若电路中的毫安表的示数为10 mA ,则每秒从A 极最多能辐射出多少个X 光子?(已知电子的质量m e =9.1×10-31 kg ,电子的电荷量e =1.6×10-19 C ,普朗克常量h =6.6×10-34 J·s)解析:电子在电场力作用下的末速度可以由动能定理求出.电子的动能若全部转变成X 射线光子的能量,可根据光子说E =h ν,求出X 光子的频率和波长.每个光子的能量都是由冲向A 极的电子来提供的,即可根据电流值求出每秒到达A 板的电子数,可推知每秒由A 极发射的X 射线的光子数.(1)设电子被加速后的动能为E k ,由动能定理知,E k =eU AK =30000 eV =4.8×10-15 J.由于E k =21m e v 2,所以.答案:(1)1.0×108 m/s (2)4.1×10-11 m (3)6.25×1016个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点三 光的波粒二象性
自主学习
光既有波动性,又有粒子性,两者不是孤立的,而是有机的统一体,其表现规律为:
1.从数量上看:个别光子的作用效果往往表现为粒子性;大量光子的作用效果往
往表现为波动性.
2.从频率上看:频率越低波动性越显著,越容易看到光的干涉和衍射现象;频率
越高粒子性越显著,贯穿本领越强,越不容易看到光的干涉和衍射现象.
3.从传播与作用上看:光在传播过程中往往表现出波动性;在与物质发生作用时
往往表现为粒子性.
4.波动性与粒子性的统一:由光子的能量 E=hν、光子的动量表达式 p=hλ也可以 看出,光的波动性和粒子性并不矛盾:表示粒子性的能量和动量的计算式中都含有表示 波的特征的物理量——频率 ν 和波长 λ.
5.理解光的波粒二象性时不可把光当成宏观概念中的波,也不可把光当成宏观概 念中的粒子.
第 1 讲 光电效应 波粒二象性
一、光电效应
1.光电效应现象:在光的照射下,金属中的电子从金属表面逸出的现象,称为光 电效应,发射出来的电子称为_光__电__子___.
2.光电效应的四个规律 (1)每种金属都有一个_极__限__频__率___. (2)光照射到金属表面时,光电子的发射几乎是_瞬__时___的. (3)光电子的最大初动能与入射光的强度无关,只随入射光的_频__率___增大而增大. (4)光电流的强度与入射光的_强__度___成正比.
3.最大初动能 发生光电效应时,金属表面上的__电__子__吸收光子后克服原子核的引力逸出时所具有 的动能的最大值. 4.爱因斯坦光电效应方程 (1)表达式:Ek=hν-__W_0__. (2)物理意义:金属表面的电子吸收一个光子获得的能量是 hν,这些能量的一部分 用来克服金属的逸出功 W0,剩下的表现为逸出后光电子的最大初动能 Ek自主学习
1.与光电效应有关的五组概念对比
(1)光子与光电子:光子指光在空间传播时的每一份能量,光子不带电;光电子是金
属表面受到光照射时发射出来的电子,其本质是电子.光子是因,光电子是果.
(2)光电子的动能与光电子的最大初动能:只有金属表面的电子直接向外飞出时,只
需克服原子核的引力做功的情况,才具有最大初动能.
(3)光电流和饱和光电流:金属板飞出的光电子到达阳极,回路中便产生光电流,随 着所加正向电压的增大,光电流趋于一个饱和值,这个饱和值是饱和光电流,在一定的 光照条件下,饱和光电流与所加电压大小无关.
(4)入射光强度与光子能量:入射光强度指单位时间内照射到金属表面单位面积上的 总能量.
(5)光的强度与饱和光电流:频率相同的光照射金属产生光电效应,入射光越强,饱 和光电流越大,但不是简单的正比关系.
2.光电效应的研究思路 (1)两条线索:
(2)两条对应关系: 入射光强度大→光子数目多→发射光电子多→光电流大; 光子频率高→光子能量大→光电子的最大初动能大.
考点二 光电效应方程及图象的理解
师生互动
1.三个关系
(1)爱因斯坦光电效应方程 Ek=hν-W0. (2)光电子的最大初动能 Ek 可以利用光电管实验的方法测得,即 Ek=eUc,其中 Uc 是遏止电压.
三、光的波粒二象性 1.波动性:光的干涉、衍射、偏振现象证明光具有_波__动___性. 2.粒子性:光电效应、康普顿效应说明光具有__粒__子__性. 3.光既具有_波__动___性,又具有_粒__子___性,称为光的波粒二象性.
1.光电效应现象可认为是光子把原子最外层的电子撞了出来,是一对一的关系, 而且是瞬时的.
遏止电压 Uc 与入射光 频率 ν 的关系图线
图线形状
读取信息 ①截止频率 νc:横轴截距 ②遏止电压 Uc:随入射光频率的增大 而增大 ③普朗克常量 h:等于图线的斜率与电 子电量的乘积,即 h=ke
图象名称 颜色相同、强度不同的 光,光电流与电压的关 系
颜色不同时,光电流与 电压的关系
图线形状
2.光照强度决定着每秒钟光源发射的光子数,频率决定着每个光子的能量. 3.金属越活跃,逸出功越小,越容易发生光电效应. 4.当入射光的频率大于极限频率时,饱和光电流的强度与入射光的强度成正比. 5.遏止电压 Uc 与入射光频率 ν、逸出功 W0 间的关系式:Uc=heν-We0. 6.截止频率 νc 与逸出功 W0 的关系:hνc-W0=0,据此求出截止频率 νc.
3.遏止电压与截止频率 (1)遏止电压:使光电流减小到零的反向电压 Uc. (2)截止频率:能使某种金属发生光电效应的_最__小___频率叫做该种金属的截止频率 (又叫极限频率).不同的金属对应着不同的极限频率.
二、爱因斯坦光电效应方程 1.光子说 在空间传播的光是不连续的,而是一份一份的,每一份叫做一个光的能量子,简称 光子,光子的能量 ε=__h_ν___.其中 h=6.63×10-34 J·s.(称为普朗克常量) 2.逸出功 W0 使电子脱离某种金属所做功的_最__小__值___.
读取信息 ①遏止电压 Uc:横轴截距 ②饱和光电流 Im:电流的最大值 ③最大初动能:Ekm=eUc ①遏止电压 Uc1、Uc2 ②饱和光电流 ③最大初动能 Ek1=eUc1,Ek2=eUc2
【反思领悟】 应用光电效应方程时的注意事项 (1)每种金属都有一个截止频率,入射光频率不低于这个截止频率时才能发生光电效 应. (2)截止频率对应着光的极限波长和金属的逸出功,即 hνc=hλcc=W0. (3)应用光电效应方程 Ek=hν-W0 时,注意能量单位电子伏和焦耳的换算(1 eV= 1.6×10-19 J).
(3)光电效应方程中的 W0 为逸出功,它与极限频率 νc 的关系是 W0=hνc.
2.四类图象 图象名称
最大初动能 Ek 与入射 光频率 ν 的关系图线
图线形状
读取信息 ①截止频率(极限频率):横轴截距 ②逸出功:纵轴截距的绝对值 W0=| -E|=E ③普朗克常量:图线的斜率 k=h
图象名称
相关文档
最新文档