高中物理连体模型总结
机械能守恒的三类连接体模型

(一)系统机械能守恒的三类连接体模型连接体问题是力学部分的难点,现通过对近几年高考题及各地模拟题的深入研究,总结出以下三类可以利用系统机械能守恒来快速解题的连接体模型。
速率相等的连接体模型1.如图所示的两物体组成的系统,当释放B 而使A 、B 运动的过程中,A 、B 的速度均沿绳子方向,在相等时间内A 、B 运动的路程相等,则A 、B 的速率相等。
2.判断系统的机械能是否守恒不从做功角度判断,而从能量转化的角度判断,即:如果系统中只有动能和势能相互转化,系统的机械能守恒。
这类题目的典型特点是系统不受摩擦力作用。
1.如图所示,可视为质点的小球A 、B 用不可伸长的细软轻线连接,跨过固定在地面上半径为R 的光滑圆柱,A 的质量为B 的两倍。
当B 位于地面时,A 恰与圆柱轴心等高。
将A 由静止释放,B 上升的最大高度是( )A .2RB.5R 3C.4R 3D.2R 32.(多选)(2017·青岛一模)如图所示,固定在水平面上的光滑斜面倾角为30°,质量分别为M 、m 的两个物体通过细绳及轻弹簧连接于光滑轻滑轮两侧,斜面底端有一与斜面垂直的挡板。
开始时用手按住物体M ,此时M 到挡板的距离为s ,滑轮两边的细绳恰好伸直,而没有力的作用。
已知M =2m ,空气阻力不计。
松开手后,关于二者的运动下列说法中正确的是( )A .M 和m 组成的系统机械能守恒B .当M 的速度最大时,m 与地面间的作用力为零C .若M 恰好能到达挡板处,则此时m 的速度为零D .若M 恰好能到达挡板处,则此过程中重力对M 做的功等于弹簧弹性势能的增加量与物体m 的机械能增加量之和3. 如图所示,A 、B 两小球由绕过轻质定滑轮的细线相连,A 放在固定的光滑斜面上,B 、C 两小球在竖直方向上通过劲度系数为k的轻质弹簧相连,C 球放在水平地面上。
现用手控制住A ,并使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线竖直、右侧细线与斜面平行。
高考物理建模之连接体模型

高考物理建模之连接体模型连接体通常指几个物体叠加在一起,或者通过绳子、弹簧连接在一起运动。
连接体是高考物理里常见的模型,解决这类问题常用隔离与整体法配合使用,综合性强,对能力要求较高,也是很多学生头痛问题。
下面,就这类模型展开分析。
连接体特点解决这类问题,抓住题目诸如"最大"、"恰好"、"相对静止"等关键词,意味具有共同运动状态,即具有相同加速度、速度等。
同时,连接体涉及物体间能量转化,往往结合"动量守恒定律"、"能量守恒定律"等知识解题。
隔离法与整体法所谓隔离法,就是根据实际情况,针对连接体中某个物体进行受力研究,受力时需要考虑有哪些物体与之接触,接触时对其施加哪些力?受力顺序:一重(力)二弹(力)三摩(擦力)四其他。
画受力千万不能凭空想象力的存在,必须存在施力物体才行。
诸如所谓的上滑力、下滑力、惯性力等等,这些都不是存在的。
另外,也不能把速度当作力使用。
这些看似基础的东西,很多基础不扎实的同学往往易出错。
整体法所谓整体法,就是当连接体具有共同运动状态时,通常把具有共同运动状态的几个物体视为一个整体。
怎么判断物体是否具有共同运动状态?其实很简单,通常关键词为"一起运动"、"相对静止"等关键词时,即意味运动状态相同。
对其受力分析时,我们只考虑与这个整体接触的有哪些物体,对其施加了哪些力(外力)。
特别注意,整体法受力时,只考虑外力,不考虑整体内部物体间作用力(内力)。
连接体共点力平衡问题通过隔离法、整体法受力,结合共点力平衡条件F合=0求解即可。
关键在于研究对象选择,并能正确受力分析,利用合成法或正交分析法并运用数学知识解题。
经典例题如图所示,两个质量均为m的小球用轻质细杆连接静止于内壁光滑的半球形碗内,杆及碗口平面均水平,碗的半径及两小球之间的距离均为R,不计小球半径,则碗对每个小球的支持力为()解析:B由于两球状态相同(静止),因此可以利用整体法进行受力研究。
2018年高考物理典型物理模型及方法总结

高中典型物理模型及方法总结◆1.连接体模型:是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。
解决这类问题的基本方法是整体法和隔离法。
整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。
连接体的圆周运动:两球有相同的角速度;两球构成的系统机械能守恒(单个球机械能不守恒) F=211221m m (m m g)(m m ++F=122m (m )m (m g +况)F 1>F 2 m 1>m 2 N 1<N 2(为什么)N 5对6=F Mm (m 为第6个以后的质量) 第12对13的作用力 N 12对13=F nm12)m -(n◆2.水流星模型(竖直平面内的圆周运动——是典型的变速圆周运动)(圆周运动实例) ①火车转弯 ②汽车过拱桥、凹桥3③飞机做俯冲运动时,飞行员对座位的压力。
④物体在水平面内的圆周运动(汽车在水平公路转弯,水平转盘上的物体,绳拴着的物体在光滑水平面上绕绳的一端旋转)和物体在竖直平面内的圆周运动(翻滚过山车、水流星、杂技节目中的飞车走壁等)。
⑤万有引力——卫星的运动、库仑力——电子绕核旋转、洛仑兹力——带电粒子在匀强磁场中的偏转、重力与弹力的合力——锥摆、(关健要搞清楚向心力怎样提供的)(1)火车转弯:设火车弯道处内外轨高度差为h ,内外轨间距L ,转弯半径R 。
由于外轨略高于内轨,使得火车所受重力和支持力的合力F 合提供向心力。
为转弯时规定速度)(得由合0020sin tan v LRgh v R v m L hmg mg mg F ===≈=θθR g v ⨯=θtan 0(是内外轨对火车都无摩擦力的临界条件)①当火车行驶速率V 等于V 0时,F 合=F 向,内外轨道对轮缘都没有侧压力 ②当火车行驶V 大于V 0时,F 合<F 向,外轨道对轮缘有侧压力,F 合+N=R 2m v ③当火车行驶速率V 小于V 0时,F 合>F 向,内轨道对轮缘有侧压力,F 合-N'=R 2mv即当火车转弯时行驶速率不等于V 0时,其向心力的变化可由内外轨道对轮缘侧压力自行调节,但调节程度不宜过大,以免损坏轨道。
高中物理必修1连接体模型例题解析总结

高中物理必修1连接体模型例题解析总结连接体是高中物理力学体系中的重要模型,也是高考物理考试中的重难点之一,我们要做好强化复习。
下面是本人给大家带来的高中物理连接体模型例题解析总结,希望对你有帮助。
高中物理连接体模型例题解析高中物理学习方法复习有的同学课后总是急着去完成作业,结果是一边做作业,一边翻课本、笔记。
而在这里我要强调我们首先要做的不是做作业,而应该静下心来将当天课堂上所学的内容进行认真思考、回顾,在此基础上再去完成作业会起到事半功倍的效果。
复习的方法我们可以分成以下两个步骤进行:首先不看课本、笔记,对知识进行尝试回忆,这样可以强化我们对知识的记忆。
之后我们再钻研课本、整理笔记,对知识进行梳理,从而使对知识的掌握形成系统。
作业在复习的基础上,我们再做作业。
在这里,我们要纠正一个错误的概念:完成作业是完成老师布置的任务。
我们在课后安排作业的目的有两个:一是巩固课堂所学的内容;二是运用课上所学来解决一些具体的实际问题。
明确这两点是重要的,这就要求我们在做作业时,一方面应该认真对待,独立完成,另一方面就是要积极思考,看知识是如何运用的,注意对知识进行总结。
我们应时刻记着“我们做题的目的是提高对知识掌握水平”,切忌“为了做题而做题”。
质疑在以上几个环节的学习中,我们必然会产生疑难问题和解题错误。
及时消灭这些“学习中的拦路虎”对我们的学习有着重要的影响。
有的同学不注意及时解决学习过程中的疑难问题,对错误也不及时纠正,其结果是越积越多,形成恶性循环,导致学习无法有效地进行下去。
对于疑难问题,我们应该及时想办法(如请教同学、老师或翻阅资料等)解决,对错题则应该注意分析错误原因,搞清究竟是概念混淆致错还是计算粗心致错,是套用公式致错还是题意理解不清致错等等。
另外,我们还应该通过思考,逐步培养自己善于针对所学发现问题、提出问题。
在这里,我建议每位同学都准备一个“疑难、错题本”,专门记录收集自己的疑难问题和典型错误,这也可以为我们今后对知识进行复习提供有效的素材。
专题04 连接体模型(解析版)-2024届新课标高中物理模型与方法

2024版新课标高中物理模型与方法专题04连接体模型目录【模型一】平衡中的连接体模型 (1)1.轻杆连接体问题 (1)2.轻环穿杆问题 (2)【模型二】绳杆弹簧加速度问题模型 (8)1.悬绳加速度问题 (8)2.类悬绳加速度问题 (9)【模型三】轻绳相连加速度相同的连接体 (24)【模型四】板块加速度相同的连接体模型 (31)【模型五】轻绳绕滑轮加速度相等----“阿特伍德机”模型 (43)【模型六】弹簧木块分离问题模型 (54)【模型七】“关联速度与机械能守恒”连接体模型 (64)1.绳、杆末端速度分解四步 (64)2.绳杆末端速度分解的三种方法 (64)3.轻绳相连的物体系统机械能守恒模型 (65)方法二、力乘力臂法对m1、m2受力分析,三力平衡可构成矢量三角形,根据正弦定理以整体为研究对象,以圆心为转动轴,两圆弧的支持力的力臂均为零,以整体为研究对象,整体受重力和两圆弧的支持力,根据三力平衡必共点,因此整体的重心必过圆心正::根据等腰三角形有:θ1=θ2联立解得m1g sinα=m2g sinβ2=sinβ:sinα轻环穿杆问题F NA.9∶16B.C.3∶4D.根据杠杆原理,由平衡条件得A.需要知道刚性细杆的长度与球面半径的关系C.不需要其他条件,有12:F F=【答案】C分别对小球a 和b 受力分析有11sin sin F G β=根据几何关系有A .2cmB .【答案】C【详解】由于小环是轻质的,故弹簧必将与杆垂直,否则受力不平衡。
对小球受力分析如图所示将各力沿着杆分解,根据平衡条件有解得又弹簧的弹力等于轻绳的拉力,故由胡克定律可得A.定滑轮对钢索的支持力为B.AB段钢索所受到的拉力为C.右臂OB对钢索的支持力为故选A。
【模型演练5】如图所示,竖直放置的光滑圆环,顶端D分别为m1、m2的两小球A、B,两小球用轻绳绕过定滑轮相连,并处于静止状态,且与右侧绳的夹角为θ。
则A、B两小球的质量之比为(A.tanθB.tan【答案】B【解析】对两小球分别受力分析,作出力的矢量三角形,如图所示。
高中物理力学模型和分析

╰α高中物理力学模型及分析1.连接体模型是指运动中几个物体叠放在一起、或并排在一起、或用细绳、细杆联系在一起的物体组。
解决这类问题的基本方法是整体法和隔离法。
整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。
2斜面模型(搞清物体对斜面压力为零的临界条件)斜面固定:物体在斜面上情况由倾角和摩擦因素决定μ=tgθ物体沿斜面匀速下滑或静止μ> tgθ物体静止于斜面μ< tgθ物体沿斜面加速下滑a=g(sinθ一μcosθ)3.轻绳、杆模型绳只能受拉力,杆能沿杆方向的拉、压、横向及任意方向的力。
杆对球的作用力由运动情况决定只有θ=arctg(ga)时才沿杆方向最高点时杆对球的作用力;最低点时的速度?,杆的拉力?若小球带电呢?假设单B下摆,最低点的速度V B=R2g⇐mgR=221Bmv整体下摆2mgR=mg2R+'2B'2Amv21mv21+'A'BV2V=⇒'AV=gR53;'A'BV2V==gR256> V B=R2g所以AB杆对B做正功,AB杆对A做负功若V0<gR,运动情况为先平抛,绳拉直沿绳方向的速度消失即是有能量损失,绳拉紧后沿圆周下落机械能守恒。
而不能够整个过程用机械能守恒。
求水平初速及最低点时绳的拉力?换为绳时:先自由落体,在绳瞬间拉紧(沿绳方向的速度消失)有能量损失(即v1突然消失),再v2下摆机械能守恒例:摆球的质量为m,从偏离水平方向30°的位置由静释放,设绳子为理想轻绳,求:小球运动到最低点A时绳子受到的拉力是多少?4.超重失重模型系统的重心在竖直方向上有向上或向下的加速度(或此方向的分量a y)mL·m2m1FBAF1 F2 B A FF m 向上超重(加速向上或减速向下)F=m(g+a);向下失重(加速向下或减速上升)F=m(g-a)难点:一个物体的运动导致系最高点时杆对球的作用力;最低点时的速度?,杆的拉力? 若小球带电呢?假设单B 下摆,最低点的速度V B =R 2g ⇐mgR=221B mv 整体下摆2mgR=mg2R +'2B '2A mv 21mv 21+ 'A'B V2V = ⇒ 'AV=gR 53; 'A 'B V 2V ==gR 256> V B =R 2g 所以AB 杆对B 做正功,AB 杆对A 做负功若 V 0<gR ,运动情况为先平抛,绳拉直沿绳方向的速度消失即是有能量损失,绳拉紧后沿圆周下落机械能守恒。
高中物理动量十个模型笔记

高中物理动量十个模型笔记
1、连接体模型:指运动中几个物体叠放在一起、或并排在一起、或用细绳、细杆联系在一起的物体组。
解决这类问题的基本方法是整体法和隔离法。
2、斜面模型:用于搞清物体对斜面压力为零的临界条件。
斜面固定,物体在斜面上情况由倾角和摩擦因素决定物体沿斜面匀速下滑或静止。
3、轻绳、杆模型:绳只能受拉力,杆能沿杆方向的拉、压、横向及任意方向的力。
杆对球的作用力由运动情况决定。
4、超重失重模型:系统的重心在竖直方向上有向上或向下的加速度(或此方向的分量ay);向上超重(加速向上或减速向下)F=m(g+a);向下失重(加速向下或减速上升)F=m(g-a)。
5、碰撞模型:动量守恒;碰后的动能不可能比碰前大;对追及碰撞,碰后后面物体的速度不可能大于前面物体的速度。
6、人船模型:一个原来处于静止状态的系统,在系统内发生相对运动的过程中,在此方向遵从动量守恒。
7、弹簧振子模型:F=-Kx(X、F、a、V、A、T、f、E、E:等量的变化规律)水平型和竖直型。
8、单摆模型:T=2T(类单摆),利用单摆测重力加速度。
9、波动模型:传播的是振动形式和能量.介质中各质点只在平衡位置附近振动并不随波迁移。
10、"质心"模型:质心(多种体育运动),集中典型运动规律,力能角度。
高中典型物理模型及解题方法.

高中典型物理模型及方法(精华)◆1.连接体模型:是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。
解决这类问题的基本方法是整体法和隔离法。
整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。
连接体的圆周运动:两球有相同的角速度;两球构成的系统机械能守恒(单个球机械能不0 (20F =就是上面F=21221mm (m m g)(m m ++F=1221m (m )m (m m m g ++m (m )m g +121212N 5对6=F Mm (m 为第6个以后的质量) 第12对13的作用力 N 12对13=F nm12)m -(n◆2.水流星模型(竖直平面内的圆周运动——是典型的变速圆周运动)(圆周运动实例) ①火车转弯②汽车过拱桥、凹桥 3③飞机做俯冲运动时,飞行员对座位的压力。
④物体在水平面内的圆周运动(汽车在水平公路转弯,水平转盘上的物体,绳拴着的物体在光滑水平面上绕绳的一端旋转)和物体在竖直平面内的圆周运动(翻滚过山车、水流星、杂技节目中的飞车走壁等)。
⑤万有引力——卫星的运动、库仑力——电子绕核旋转、洛仑兹力——带电粒子在匀强磁场中的偏转、重力与弹力的合力——锥摆、(关健要搞清楚向心力怎样提供的)(1)火车转弯:设火车弯道处内外轨高度差为h ,内外轨间距L ,转弯半径R 。
由于外轨略高于内轨,使得火车所受重力和支持力的合力F 合提供向心力。
为转弯时规定速度)(得由合0020sin tan v LRgh v R v m L h mg mg mg F ===≈=θθR g v ⨯=θtan 0(是内外轨对火车都无摩擦力的临界条件)①当火车行驶速率V 等于V 0时,F 合=F 向,内外轨道对轮缘都没有侧压力②当火车行驶V 大于V 0时,F 合<F 向,外轨道对轮缘有侧压力,F 合+N=2m v③当火车行驶速率V 小于V 0时,F 合>F 向,内轨道对轮缘有侧压力,F 合-N'=R 2m v即当火车转弯时行驶速率不等于V 0时,其向心力的变化可由内外轨道对轮缘侧压力自行)此时最低点速度:V 低 =gR 2都应看成等效的情况) 2(1)明确研究对象,必要时将它从转动系统中隔离出来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精讲3 牛顿运动定律连体问题
❖在实际问题中,常常会碰到几个物体(连接)在一起在外力作用下运动,求解它们的运动规律及所受外力和相互作用力,这类问题被称为连接体问
题。
常见的连体模型:①用轻绳连接②直接接触
③靠摩擦接触
a
连接体常会处于某种相同的运动状态,如处于平衡态或以相同的加速度运动。
处理方法:整体法与隔离法相结合
整体法:就是把整个系统作为一个研究对象来分析的方法。
不必考虑系统内力的影响,只考虑系统受到的外力,根据牛顿第二定律列方程求解.
例1:如图所示,U形框B放在粗糙斜面上刚好静止。
若将物体A放入放入U形框B内,问B是否静止。
隔离法:是把系统中的各个部分(或某一部分)隔离,作为一个单独的研究对象来分析的方法。
此时系统内部各物体间的作用力(内力)就可能成为研究对象的外力,在分析时要加以注意。
需要求内力时,一般要用隔离法。
例2 如图所示,为研究a与F、m关系的实验装置,已知A、B质量分别为m、M,当一切摩擦力不计时,求绳子拉力。
原来说F约为mg,为什么?
拓展:质量分别为m=2kg和M=3kg的物体A和B,挂在弹簧秤下方的定滑轮上,如图所示,当B加速下落时,弹簧秤的示数是。
(g取10m/s2)
例3:用力F推,质量为M的物块A和质量为m的物块B,使两物体一起在光滑水平面上前进时,求物体M对m的作用力F N。
若两物体与地面摩擦因数均为μ时,相互作用力F N是否改变?为什么?
例4.如图所示,质量为M的木箱放在水平面上,木箱中的立杆上套着一个质量为m的小球。
开始时小球在杆的顶端,由静止释放后,小球沿杆下滑的加速度为重力加速度的一半,则小球在下滑过程中,木箱对地面的压力是多少?
拓展:如图所示,A、B的质量分别为m1和m2,叠放于光滑的水平面上,现用水平力拉A时,A、B一起运动的最大加速度为a1,若用水平力改拉B物体时,A,B一起运动的最大为a2,则a1:a2等于()
A.1:1 B.m1:m2
C.m2:m1D.m12:m22
小结
1.连接体问题,和解决连接体问题的方法,即整体法和隔离法。
2.整体法就是把整个系统作为一个研究对象来分析的方法。
不必考虑系统的内力的影响,只考虑系统受到的外力,依据牛顿第二定律列方程求解 .一般用整体法求加速度.
3.隔离法是把系统中的各个部分(或某一部分)隔离,作为一个单独的研究对象来分析的方法。
需要求内力时,一般要用隔离法。
θ
F
m 1
m 2
精讲训练:
1.如图所示,将两个相同材料做成的物体A 、B 放在光滑的水平面上,用水平力F 拉A ,求A 、B 间绳子的拉力?已知A 、B 两物体的质量分别为m A 和m B .
2.如图所示,质量分别为m 1、m 2的两个物体通过轻弹簧连接,在力F 的作用下一起沿水平方向做匀加速直线运动(m 1在光滑地面上,m 2在空中).已知力F 与水平方向的夹角为 .则m 1的加速度大小为?弹簧的拉力为多少?
3.如图所示,5个质量相同的木块并排放在光滑的水平桌面上,当用水平向右推力F 推木块1,使它们共同向右加速运动时,求第2与第3块木块之间弹力及第4与第5块木块之间的弹力。
4. 如图所示,弹簧秤外壳质量为m 0,弹簧及挂钩的质量忽略不计,挂钩吊着一质量为
m 的重物,现用一方向竖直向上的外力F 拉着弹簧秤,使其向上做匀加速运动,则弹簧
秤的读数为?
5. 在2008年北京残奥会开幕式上,运动员手拉绳索向上攀登,最终点燃了主火炬,体现了残疾运动员坚忍不拔的意志和自强不息的精神。
为了探究上升过程中运动员与绳索和吊椅间的作用,可将过程简化。
一根不可伸缩的轻绳跨过轻质的定滑轮,一端挂一吊椅,另一端被坐在吊椅上的运动员拉住,如图所示。
设运动员的质量为65kg,吊椅的质量为15kg,不计定滑轮与绳子间的摩擦。
重力加速度取2
g=。
当运动员与
10m/s
吊椅一起正以加速度2
1m/s
a=上升时,试求
(1)运动员竖直向下拉绳的力;
(2)运动员对吊椅的压力。
6.如图所示,光滑水平面上放置质量分别为m和2m的四个木块,其中两个质量为m的
木块间用可伸长的轻绳相连,木块间的最大静摩擦力是μmg.现用水平拉力F拉其中一个质量为2m的木块,使四个木块以同一加速度运动,则轻绳对m的最大拉力为( )
A.
5
3mg
μ B.
4
3mg
μ C.
2
3mg
μ D. 3μmg
7.如图示,托盘A托着质量为m的重物B,B挂在劲度系数为k的弹簧下端,弹簧的
上端悬于O点,开始时弹簧竖直且为原长,今让托盘A竖直向下做初速度为零的匀加速度运动,其加速度为a,求经过多长时间,A与B开始分离(a<g )。
8.如图所示,光滑水平桌面上的物体B的质量为
2
m,系一细绳,细绳跨过桌沿的定滑
轮后悬挂物体A(A的质量为
1
m,细绳质量及滑轮摩擦均不计),先用手使B静止。
(1)放手后A、B一起运动中绳上张力T=?
(2)若在B上再叠放一个与B质量相同的物体C,绳上张力就增大到3T/2,则?
:
2
1
=
m
m
m
O
B
A。