Membrane for Separation
水处理专业技术名词解释

名词解释——水处理篇1.生化需氧量(Bio-Chemical Oxygen Demand,简称BOD),表示在有氧条件下(20℃),由于微生物(主要是)的活动,可降解有机物被微生物降解所需的氧量,常以BOD表示,5d生化需氧量BOD5和20d 生化需氧量BOD20。
2.化学需氧量(Chemical Oxygen Demand,简称COD),在酸性条件下,以强氧化剂(我国法定用重铬酸钾)将有机物氧化为CO2和H2O所消耗的氧量,以COD cr 表示。
如采用高锰酸钾为氧化剂,则写作COD Mn,由于高锰酸钾氧化作用较弱,测出的耗氧量值较低,故又称耗氧量,以OC表示。
3.总需氧量(Total Oxygen Demand,简称TOD),有机物主要组成元素是C、H、O、N、S等,被氧化后,分别产生CO2、H2O 、NO2和SO2,所消耗的氧量称为总需氧量。
TOD 以燃烧法测定,仅需几分钟。
4.总有机碳(Total Oxygen Carbon,简称TOC),总有机碳TOC是目前在国内外使用的表示污水被有机物污染的综合指标,它所显示的污水中有机物的总含碳量。
5.富营养化(Eutrophication)在缓慢流动的湖泊、水库、内海等水域,由于生物营养元素的增多,促进了藻类等浮游生物的繁殖。
大量繁殖的藻类会在水面形成密集的“水花”或“红潮”。
藻类的死亡和腐化又会引起水中溶解氧的大量减少,使水质恶化,鱼类死亡,严重时会使水体消亡,这一过程称之为富营养化。
6.水体自净(Water Self-Purification):污染物在进入天然水体后,通过物理、化学和生物因素的共同作用,使污染物的总量减少或浓度降低,层受污染的天然水体部分地或完全地恢复原状,这种现象称为水体自净。
按其作用机制可分为物理净化、化学净化和生物净化。
7.氧垂曲线(Dissolved Oxygen Sag Curves),有机污染物排入水中后,经微生物降解而大量消耗水中溶解氧,使河水亏氧;另一方面,空气中的氧通过河流水面不断地溶入水中,又会使溶解氧得到恢复。
常用的处理废气中VOCs的膜分离工艺

常用的处理废气中VOCs的膜分离工艺采用膜分离技术处理废气中的VOCs,具有流程简单、VOCs 回收率高、能耗低、无二次污染等优点。
近10年来,随着膜材料和膜技术的进一步发展,国外已有许多成功应用的范例。
常用的处理废气中VOCs的膜分离工艺包括:蒸汽渗透(vaporpermeation,VP)、气体膜分离(gas/vapormembraneseparation,GMS/VMP)和膜接触器(membranecontactor)等。
1、VP法80年代末出现的VP工艺是一种气相分离工艺,其分离原理与渗透汽化工艺类似,依靠膜材料对进料组分的选择性来达到分离的目的。
由于没有高温过程和相变的发生,因此VP比渗透汽化更有效、更节能,同时,VOCs不会发生化学结构的变化,便于再利用。
据报道,德国GKSS研究中心开发出了用于回收空气中VOCs的膜。
据报道,当膜的选择性大于10时,用于VOCs的回收具有很好的经济效益,一个膜面积为30m2的组件与冷凝集成系统,VOCs的回收率可达到99%。
VP过程常常与冷凝或压缩过程集成。
从反应器中出来的含VOCs的废气通过冷凝或压缩,回收部分VOCs返回到反应器中,余下的气体进入膜组件回收剩余的VOCs。
VP法回收废气中的VOCs,常用的膜材料是VOCs优先透过的硅橡胶膜。
M.Leemann等采用聚二甲基硅氧烷(PDMS)中空纤维半渗透膜分离空气中VOCs,发现二甲苯、甲苯及丙烯酸等的通量是空气的100倍以上,而涂有硅橡胶皮层的膜,对VOCs的选择性却有所下降。
同时,根据试验结果进行的经济可行性分析,发现在较高VOCs浓度和较低通量下,VP工艺比传统工艺有较大的经济可行性。
2、气体膜分离法膜法气体分离的基本原理是,根据混合气体中各组分在压力推动下透过膜的传质速率不同而达到分离的目的。
目前,气体膜分离技术已经被广泛应用于空气中富氧、浓氮以及天然气的分离等工业中。
近年来,GKSS、日东电工以及MTR公司已经开发出多套用于VOCs回收的气体分离膜。
膜分离技术

• 分离原理
a、水和盐水两种渗透压不同的溶液被半透膜隔开,那么水会自发地从水侧
通过半透膜扩散到盐水侧,使盐水侧液位提高,直到膜两侧的液位压差与膜 两侧的渗透压差相等(Δp =Δπ )时停止。 b、盐水侧施加压力小于渗透压(Δp < Δπ ),水依然从水侧扩散到盐水侧。 c、在盐水侧施加压力克服渗透压(Δp >Δπ )使得水从盐水侧扩散到水侧。
4 、正向渗透膜分离( Forward Osmosis FO)
• 正向渗透膜分离技术( FO )和反渗透分离( RO )类似 , 是利用膜两侧溶液的渗透压差 , (以水为例)使水透过选 择性半透膜从水化学位高的区域(低渗透压侧)自发地传 递到水化学位低的区域(高渗透压侧)的新型膜分离技术。 与超滤( UF )、微滤( MF )和反渗透( RO )等常用膜 分离技术相比,其不需要外加压力作为分离驱动力(或者 在较低的外加压力下即可运行),而是靠溶液自身的渗透 压差推动正渗透分离过程。 即采用高浓度的汲取液来产生高的渗透压,以汲取低浓度 原料液侧的水透过半渗透膜,然后再将被稀释的汲取液中 的水进行分离,最终可获得纯净的水。
• 浓差极化
采用渗透压差为驱动力计算的正渗透的实际水通量要远远小于 理论水通量,这是由于FO过程中产生的浓差极化(CP)现象造 成的。 外浓差极化(External CP,ECP):当用致密对称膜进行渗透 分离时,原料侧由于水透过膜的传递使溶质被膜截留而造成膜 表面浓度升高 ,导致浓缩的外浓差极化 ( concentrative ECP ),这类似于压力驱动膜技术中的浓差极化。同时,汲取 液侧的溶液在膜表面被渗透水稀释,导致稀释的外浓差极化 (dilutive ECP)。
废水和垃圾渗出液的处理
将正渗透技术引入膜生物反应器,将活性污泥处理和FO 膜分离以及RO 后处理结合起 来,形成了渗透膜生物反应器(OsMBR),利用正渗透过程的抗污染性能,使用FO 膜取代微滤/超滤膜进行污染物的分离,水透过膜稀释驱动溶液,稀释的驱动溶液通过 RO 单元进行浓缩并循环使用。
(最新整理)MOF膜综述

(完整)MOF膜综述编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)MOF膜综述)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)MOF膜综述的全部内容。
金属有机骨架(MOFs)膜的在气体分离方面的研究进展摘要:在过去几年中,对金属有机骨架(MOFs)和其他晶体配位的兴趣网络从其非常高的孔隙率扩展到其他引人注目的性质,例如作为金属中心(有时是配体)之间的电子和磁耦合。
为了探索和利用这些性质,这些框架必须沉积在固体表面上,如电极,SiO2、Al2O3等[1]。
在这一基础上讨论了支撑在各种基底上的金属有机骨架的薄膜涂层的应用和潜力。
因为制造这种多孔涂层的需求是相当明显的,在过去几年中已经开发了几种用于制备薄多孔MOF膜的合成方法。
本文将介绍几个主要且常用的制备方法。
关键词:金属有机骨架;MOF;纳米;基底;沉积;SAMResearch progress of metal organic frameworks (MOFs) membranes forgas separationabstract:In the last years, metal—organic frameworks (MOFs) and other crystals with networksof interest from its very high porosity to other interesting properties, such as metal (sometimes ligand) between electronic and magnetic coupling. In order to explore and take advantage of these properties, these frameworks must be deposited on a solid surface, such as electrodes, SiO2,Al2O3, and so on。
膜分离

42 wt%乙醇 乙醇
350 kcal/l
93 wt%乙醇 乙醇 透 水 膜
130 kcal/l (~90 % ES)
99.8 wt%乙醇 乙醇
1380 kcal/l
实现连 续生产, 续生产,降 低操作成本
膜
60 wt%乙醇 乙醇
99.8 wt%乙醇 乙醇
常见的膜分离过程
过程 微滤 MF 超滤 UF 反渗透 RO 电渗析 ED 气体分离 GS 渗透汽化 PVAP 膜蒸馏 MD 膜类型 多孔膜 非对称膜 非对称膜 复合膜 离子交换 膜 均质膜 复合膜 非对称膜 均质膜 复合膜 非对称膜 微孔膜 推动力 压力差 (~0.1MPa) ) 压力差 (0.1~1MPa) ) 压力差 (2~10MPa) ) 电位差 压力差 (1~15MPa) ~ ) 浓度差 分压差 由于温度差而 产生的蒸汽压 差 传递机理 筛分 筛分 溶剂的溶解-扩 溶剂的溶解 扩 散 离子在电场中 的传递 透过物 水、溶剂、 溶剂、 溶解物 截留物 悬浮物各种 微粒
膜分离技术存在的问题: 膜分离技术存在的问题:
1.在操作中膜面会发生污染,使膜性能降低,应采用与 在操作中膜面会发生污染,使膜性能降低, 在操作中膜面会发生污染 工艺相适应的膜面清洗方法; 工艺相适应的膜面清洗方法
2.从目前获得的膜性能来看,其耐压性、耐热性、 2.从目前获得的膜性能来看,其耐压性、耐热性、耐溶 从目前获得的膜性能来看 剂能力都是有限的,故使用范围受限 剂能力都是有限的,故使用范围受限;
气体分离
气体分离是依据混合气体中各组分在膜中渗透性的差异而 实现的膜分离过程。 实现的膜分离过程。
特点:能耗低、操作简单、装置紧凑并可按处理量改变等。 特点:能耗低、操作简单、装置紧凑并可按处理量改变等。
基于PI微球复合型全热交换膜的制备与性能

化工进展Chemical Industry and Engineering Progress2023 年第 42 卷第 12 期基于PI 微球复合型全热交换膜的制备与性能罗伶萍1,王慧敏1,朱泰忠1,张良1,刘梦娇1,黄菲1,薛立新1,2(1 浙江工业大学化工学院膜分离与水科学技术中心,浙江 杭州 310014;2 温州大学化学与材料工程学院,浙江 温州 325035)摘要:聚酰亚胺(PI )是一类具备高热稳定性和化学稳定性的聚合物材料,已被广泛用于气体分离膜的制备。
然而,当前将其作为新型有机填料的研究甚少,更没有应用在全热交换、新风系统领域的相关报道。
因此,本文采用对苯二胺(pPDA )和3,3′,4,4′-二苯酮四甲酸二酐(BTDA )作为单体原料,通过溶剂热聚合法成功制备了具有片层结构的PI 微球颗粒。
通过界面聚合过程将所制备的PI 微球引入聚酰胺(PA )分离层中,构建出一系列基于PI 微球的PA 复合型全热交换膜材料。
深入探究了PI 微球的添加方式(制膜工艺)和掺杂量对膜形貌、水接触角、表面粗糙度、CO 2及水蒸气透过率、全热交换效率等的影响规律。
研究结果表明,采用将PI 微球均匀分散于均苯三甲酰氯(TMC )油相溶液中的制膜方法可确保粒子的负载与界面聚合反应同步进行,有效避免了颗粒堆叠和界面缺陷的问题。
所制备的PI-PA-IV-2复合膜具有优异的透湿阻气性能,水蒸气渗透率从原膜的1763.45g/(m 2·24h)提升至1949.51g/(m 2·24h),CO 2透过率从21.04GPU 降至3.64GPU 。
与此同时,该膜拥有与商业纸膜相当的热交换效率(97.47%)和焓交换效率(71.41%),为新型高效全热交换膜的制备提供了可行方案。
关键词:聚酰亚胺;分离;膜;界面;阻气;全热交换效率中图分类号:TQ028 文献标志码:A 文章编号:1000-6613(2023)12-6478-12Preparation and properties of composite total heat exchange membranesbased on polyimide microspheresLUO Lingping 1,WANG Huimin 1,ZHU Taizhong 1,ZHANG Liang 1,LIU Mengjiao 1,HUANG Fei 1,XUE Lixin 1,2(1 Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China; 2 College of Chemistry and Materials Engineering, Wenzhou University,Wenzhou 325035, Zhejiang, China)Abstract: Polyimide (PI) is a highly stable class of polymeric materials widely used in gas separationapplications. However, research on new organic fillers for PI is limited with few reports on their application in total heat exchange and fresh air systems. In this study, the flower-like PI microspheres with a lamellar structure were synthesized using 1,4-phenylenediamine (pPDA) and benzophenone-3,3′,4,4′-tetracarboxylic dianhydride (BTDA) as monomers via a solvothermal process polymerization. By introducing PImicrospheres into the polyamide (PA) separation layer via interfacial polymerization (IP), a series of PI-研究开发DOI :10.16085/j.issn.1000-6613.2023-0101收稿日期:2023-01-29;修改稿日期:2023-03-04。
HJ 579-2010 膜分离法污水处理工程技术规范

HJ 中华人民共和国国家环境保护标准HJ 579-2010膜分离法污水处理工程技术规范Technical Specifications for Membrane Separation Processin wastewater treatment本电子版为发布稿。
请以中国环境科学出版社出版的正式标准文本为准。
2010-10-12 批准 2011-01-01 实施环境保护部发布目 次目 次 (I)前 言 (II)1适用范围 (1)2 规范性引用文件 (1)3 术语和定义 (1)4 设计水质与膜单元适宜性 (2)5 预处理 (3)6 膜分离法污水处理系统设计 (4)7 系统安装与调试 (8)8 工程验收 (9)9 运行管理 (10)附录A(资料性附录)原水分析表 (11)附录B(资料性附录)系统设计资料 (12)附录C(资料性附录)膜元件污染与化学清洗 (13)前 言为贯彻《中华人民共和国环境保护法》和《中华人民共和国水污染防治法》,规范膜分离法污水处理工程建设与运行管理,防治环境污染,保护环境和人体健康,制定本标准。
本标准规定了膜分离法污水处理工程的设计参数、系统安装与调试、工程验收、运行管理以及预处理、后处理工艺的选择。
本标准由环境保护部科技标准司组织制订。
本标准主要起草单位:江西金达莱环保研发中心有限公司、华中科技大学、北京市环境保护科学研究院。
本标准环境保护部2010年10月12日批准。
本标准自2011年1月1日起实施。
本标准由环境保护部解释。
膜分离法污水处理工程技术规范1适用范围本标准规定了膜分离法污水处理工程的设计参数、系统安装与调试、工程验收、运行管理,以及预处理、后处理工艺的选择。
本标准适用于以膜分离法进行污水处理及深度处理回用的工程,可作为环境影响评价、环境保护设施设计与施工、建设项目竣工环境保护验收及建成后运行与管理的技术依据。
本标准所指膜分离法为:微滤、超滤、纳滤及反渗透膜分离技术。
超滤膜分离技术

超滤膜分离技术超滤膜分离技术(ultrafiltration membrane separation technology)是一种利用超滤膜实现分离和浓缩溶液中不同分子量物质的技术。
它是一种有效、环保的分离方法,广泛应用于各个领域的液体处理和废水处理中。
超滤膜是一种微孔过滤膜,其孔径通常介于1 nm至100 nm之间。
与传统的过滤膜相比,超滤膜的孔径更小,可以有效地去除大分子物质,如细菌、病毒、大分子蛋白质等,而保留小分子物质,如溶解盐、小分子有机物等。
因此,超滤膜分离技术被广泛应用于饮用水处理、工业废水处理、食品加工和生物制药等领域。
超滤膜分离技术的优点之一是分离效果好。
由于超滤膜具有高通量和高截留率的特点,可以实现对物质的精确分离和浓缩。
另外,超滤膜还具有可控性强、稳定性好的特点,可以根据具体的分离要求选择不同孔径的膜,从而实现对不同分子量物质的分离和浓缩。
超滤膜分离技术的另一个优点是操作简单。
相对于其他分离技术,超滤膜分离技术不需要添加任何化学试剂,只需要通过气压或压差作用,将待处理液体通过膜分离设备,即可实现对物质的分离和浓缩。
这种操作方式不仅能够提高工作效率,还能够降低操作成本。
在实际应用中,超滤膜分离技术被广泛应用于饮用水处理中。
水是生命之源,保障饮用水的安全和卫生对人们的生活至关重要。
而超滤膜可以有效地去除水中的细菌、病毒、藻类等有害物质,保证饮用水的安全和卫生。
另外,超滤膜分离技术还可以应用于废水处理中。
废水中含有大量的有机物和悬浮物,经过超滤膜的分离,可以将水中的有害物质去除,从而达到净化水环境的目的。
除此之外,超滤膜分离技术还被广泛应用于食品加工和生物制药领域。
在食品加工中,超滤膜可以实现对蛋白质、果汁、乳制品等物质的分离和浓缩,提高产品的品质和降低生产成本。
在生物制药中,超滤膜可以用于蛋白质、抗体等生物大分子的纯化和浓缩,提高生物制药产品的纯度和有效成分的浓度。
总之,超滤膜分离技术作为一种高效、环保的分离方法,被广泛应用于各个领域的液体处理和废水处理中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Membrane separation technology is called the
21st century water technologies"
"
1, reduce the hardness of groundwater 2, removal organic matter concentration in surface water 3, oil-water separation 4, ethylene glycol recovery 5, copper sulfate recovery 6, organic-inorganic liquid separation and enrichment 7, concentration, purification, desalination of dyes 8, separation and enrichment of natural medication 9, concentration of the fermented liquid
Then why so ???
The Principle of the“ Smart Membrane for Separation” The raw materials pass through the membrane selectively in the absence of a driving force ,such as the concentration difference、 the pressure difference 、or the potential difference. The membrane plays as a must exist separation medium, to achieve the purpose of separation and purification during this process .
The Principle of the“ Smart Membrane for Separation”
Let’s make a metaphor, The smart membrane is a gate , some particle is smaller than the gate in size ,while the other is much larger than it.
The “smart membrane for separation” is the kind of tailored artificial membrane with the selective permeability, which means that something could gets through it , while others couldn’t on the user`s purpose .
Application of ultrafiltration
For 0.1-0.01 microns in diameter
widely used in such as the preparation of drinking Surface Water Treatment, water, food industry, Sterile liquid food manufacturing, pharmaceutical industry, industrial wastewater treatment, metal processing, Ultrafiltration purification biological products, oil paint processing and other fields.
The comparison between Electrodialysis、Reverse Osmosis、Ultrafiltration、Microfiltration、Nanofiltration
Membrane Electrodialysis Revelication of Nanofiltration
With these superior characteristics, the NF shows broad application prospects in
Pharmaceutical,
Bio-chemical,
Food industry
Microfiltration is widely used in
the ultrapure water terminal filter of microelectronics industry, Also used to detect tiny impurities in Biomedical Science and Sophisticated technologies, is an important tool in scientific experiments.
Reverse osmosis membrane: the membrane used during the reverse osmosis
Application of Reverse osmosis
Applications include power plant cooling water and sewage treatment、 Widely used to remove water soluble salts、colloids、 organics、 seawater desalination、 bacteria、microorganisms and brackish water other impurities, desalination、 with low energy consumption large municipal and and pollution、advanced industrial wastewater technology、easy operation and treatment. maintenance
Electrodialysis : the phenomenon that the charged solute particles transport through the membrane under the electric field. Electrodialysis membrane: the membrane used during the electrodialysis process.
Reverse osmosis membrane
The opposite process of osmosis : a pressure greater than the osmotic pressure is imposed on the concentrated solution, causing water flowing through the membrane from concentrated solution to the dilute one ,as a result , the concentration of the concentrated solution is greater.
electrodialysis
originally used for seawater desalination Now,widely used in chemical industry, light industry, metallurgy, papermaking, pharmaceutical industry.
Electrodialysis、
the Classification of the Membrane for Separation
Reverse Osmosis、
Nanofiltration、 Microfiltration、 Ultrafiltration
Electrodialysis membrane
Reverse osmosis technology is the most advanced and efficient separation technology .
Nanofiltration
The interception scale of nanofiltration membrane separation technology is in the Molecular mass range of 80~1000,which is at Nanometer Level, so it`s called Nanofiltration Filter. The ability to remove antibiotics, hormones, pesticides, heavy metals, oil, detergent, algal toxins and other chemical pollutants , and effectively to retain the useful minerals。
Preparation of pure water and waste treatment in
environmental protection , such as
alkali recovery, electroplating wastewater treatment , and recovery of valuable substances from industrial wastewater
ultrafiltration
Ultrafiltration
is used to retain particles of colloidal size under pressure , while water and small molecule solutes is permitted to get through the membrane.