刚架梁柱平面内的整体稳定验算
(整理)钢梁稳定性计算步骤

钢梁整体稳定性验算步骤1. 根据《钢结构设计规范》(GB 50017-2003)4.2.1条,判断是否可不计算梁的整体稳定性。
2. 如需要计算2.1 等截面焊接工字形和轧制H 型钢简支梁xyxy(a)双轴对称焊接工字形截面(b)加强受压翼缘的单轴对称焊接工字形截面y (c)加强受拉翼缘的单轴对称焊接工字形截面y (d)轧制H 型钢截面1)根据表B.1注1,求ξ。
ξl 1——H 型钢或等截面工字形简支梁受压翼缘的自由长度,对跨中无侧向支承点的梁,l 1为其跨度;对跨中有侧向支撑点的梁,l 1为受压翼缘侧向支承点间的距离(梁的支座处视为有侧身支承)。
b 1——截面宽度。
2)根据表B.1,求βb。
3)根据公式B.1-1注,求I1和I2,求αb。
如果αb>0.8,根据表B.1注6,调整βb。
4)根据公式B.1-1注,计算ηb。
5)根据公式B.1-1,计算φb。
6)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。
7)根据公式4.2.2,验算稳定性。
2.2 轧制普通工字钢简支梁1)根据表B.2选取φb。
2)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。
3)根据公式4.2.2,验算稳定性。
2.3 轧制槽钢简支梁1)根据公式B.3,计算φb。
2)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。
3)根据公式4.2.2,验算稳定性。
2.4 双轴对称工字形等截面(含H型钢)悬臂梁1)根据表B.1注1,求ξ。
ξl1——悬臂梁的悬伸长度。
b1——截面宽度。
2)根据表B.4,求βb。
3)根据公式B.1-1,计算φb。
4)如果φb>0.6,根据公式B.1-2,采用φ’b代替φb。
5)根据公式4.2.2,验算稳定性。
2.5 受弯构件整体稳定系数的近似计算(均匀弯曲,)2.5.1 工字形截面(含H型钢)双轴对称1)根据公式B.5-1,计算φb,当φb>0.6时,不必根据公式B.1-2,采用φ’b 代替φb,当φb>1.0,取φb=1.0。
钢结构梁柱估算

钢结构梁柱估算梁的设计:1.型钢梁设计由梁的荷载和支承情况根据内力计算得到梁的最大弯矩,根据选用的型钢材料确定其抗弯强度设计值,由此求得所需要的梁净截面抵抗矩,然后在型钢规格表中选择型钢的型号。
最后对选定的型钢梁截面进行强度、刚度和整体稳定验算。
2.组合梁设计梁的截面选择步骤为:估算梁的高度(一般用经济高度)、确定腹板的厚度和翼缘尺寸,然后验算梁的强度、稳定和刚度。
柱的设计:1.实腹柱设计截面选择的步骤如下:(1)假定柱的长细比,一般在50―90范围之内,轴力大而长度小时,长细比取小值,反之取大值;(2)根据已假定的长细比,查得轴心受压稳定系数。
然后根据已知轴向力和钢材抗压强度设计值求得所需截面积;(3)求出截面两个主轴方向所需的回转半径(根据已知的两个方向的计算长度和长细比);(4)由此计算出截面轮廓尺寸的高和宽;(5)通过求得的截面面积和宽以及高,再根据构造要求、钢材规格等条件,选择柱的截面形式和确定实际尺寸;(6)验算实腹柱的截面强度、刚度,整稳和局稳;2.格构柱设计截面选择的步骤如下:(1)假定长细比,一般在50―90之间;(2)计算柱绕实轴整体稳定,用与实腹柱相同的方法和步骤选出肢件的截面规格。
根据假定的长细比,查稳定系数,最后确定所需的截面面积;(3)计算所需回转半径;(4)算出截面轮廓尺寸宽度和高度;(5)计算虚轴长细比;通过求得的面积、高度和宽度以及考虑到钢材规格及构造要求选择柱的截面形式和确定实际尺寸。
(6)强度、刚度和整稳验算;(7)缀条设计和缀板设计;回转半径就是惯性半径。
定义:任意形状截面的面积为A,则图形对y轴和z轴的惯性半径分别为iy=sqrt(Iy/A),iz=sqrt(Iz/A).特征:惯性半径是对某一坐标轴定义的;惯性半径的量纲为长度的一次方,单位为M;惯性半径的值恒为正。
用处:1,惯性矩Ix,回转半径ix=sqrt(Ix/A),长细比λx=lox/ix,截面验算:局部稳定b/t=(10+0.1λ)sqrt(235/fy);h0/tw=(25+0.5λ)sqrt(235/fy).2,知道了柱子的轴力和计算长度-假定长细比初步估计截面-选定截面计算长细比,回转半径惯性矩等-截面验算。
格构柱整体稳定验算2015.6.11

π2EA/(1.1λ2x)=
6428514.86
N'Ex=
π2EA/(1.1λ2x)=
5279795.67
N/φx+(βmx*Mx/WX(1-φx*N/N'Ex))+(βty*Mx/ Wy)=
153.98 ≤f
满足设计要求
56200 mm
长细比λx= 52.72 长细比λy= 58.17
截面类型为b类 由钢规表C-2查得 截面类型为b类 由钢规表C-2查得
稳定系数φx 0.842 稳定系数φy 0.818
格构柱内力计算
恒载标准值= 229
活载标准值= 145 风荷载标准值= 1.04 风荷载下格构柱MX 格构柱整体稳定计算
f=
215 mm2
极惯性矩Ip= 惯性矩Iy=
回转半径iy= 截面模量Wy=
面积距Sy=
20007508508 mm4 9022271600 mm4
966.0895 9022271.6 mm3 4665744.2 mm3
格构柱计算长度计算
稳定系数计算
柱高H=
计算长度系数μ= 计算高度H0
28100 mm 2
KN KN KN 410.5972 KN·m
恒载设计值= 320.6
活载设计值= 203 风荷载设计值=1.46 风荷载下格构柱My
KN KN KN 410.5972 KN·m
由钢规表5.2.2计算得 由钢规表5.2.2计算得
N'Ex=
平面内等效弯矩系数βmx= 1 平面内等效弯矩系数βty= 1
构件编号 设计假定
格构柱整体稳定性计算
ZJ-2 假定格构柱上端自由,下 端与基础刚接
格构柱截面特征值
钢结构柱稳定性分析与设计

钢结构柱稳定性分析与设计钢结构的应用已经广泛应用于工业、民用、桥梁等各个领域。
其中,钢结构柱作为承载重要纵向荷载的主要构件之一,在结构设计中起着至关重要的作用。
本文将对钢结构柱的稳定性进行分析与设计,以确保其在使用过程中的安全可靠性。
1. 稳定性分析在进行钢结构柱的稳定性分析之前,首先需要了解柱的受力情况和设计参数。
柱的受力主要包括压力、弯矩和轴向力三个方面。
同时,还需要确定柱的几何参数,如截面形状、截面尺寸、材料等。
基于这些基本参数,可以进行稳定性分析。
1.1 基本理论:稳定系数与屈曲强度稳定性分析的核心理论是稳定系数和屈曲强度。
稳定系数是指柱在受力情况下的稳定性能,通常以稳定性安全系数来衡量,数值一般大于1。
屈曲强度是指柱在受力超过一定临界值时,发生屈曲破坏的承载能力。
1.2 欧拉公式欧拉公式是钢结构柱稳定性分析中最常用的公式之一,公式表达如下:Pcr = (π² × E × I) / L²其中,Pcr为柱的临界压力,E为钢材的弹性模量,I为截面二阶矩,L为柱的长度。
1.3 弯扭和细长柱对于弯扭和细长钢结构柱,需要引入额外的参数进行分析。
弯扭柱的主要特点是在受力过程中不仅产生弯曲,还会发生扭转变形。
细长柱则是指其长径比较大,易产生扭转屈曲失稳。
针对这两种特殊情况,需要进行详细的计算和分析。
2. 柱的设计在进行钢结构柱的设计时,需要根据结构的实际需求和使用条件,综合考虑稳定性、经济性和施工性等因素。
2.1 确定截面形状和尺寸根据实际情况和设计要求,选择合适的截面形状和尺寸。
常见的截面形状包括矩形、圆形、H型等,不同形状有其各自的优缺点。
同时,根据受力情况和设计参数,确定截面的尺寸。
2.2 材料选择钢结构柱的材料选择与整个结构的设计息息相关。
常见的钢材种类包括普通碳素钢、低合金高强度钢等,根据实际的使用情况和设计要求,选用合适的材料。
2.3 考虑稳定性安全系数在设计过程中,需要合理考虑稳定性安全系数的取值。
脚手架的抗倾覆验算与稳定性计算

脚手架的抗倾覆验算与稳定性计算[摘要]当模板支架、施工用操作架等脚手架不设连墙杆时,必须首先对脚手架进行抗倾覆验算,然后才是强度、刚度和稳定性计算。
而现行的国家标准中没有倾覆验算和稳定性验算内容。
根据国家有关标准导出了脚手架倾覆验算公式,并有2个算例辅以说明。
最后指出脚手架高宽比与脚手架的倾覆有关,与脚手架稳定性承载能力无关。
[关键词]脚手架;倾覆;稳定性;验算结构设计中,“倾覆”与“稳定”这两个含义是不相同的,设计时都应考虑。
《建筑结构可靠度设计统一标准》gb50068-2001第3.0.2条第一款规定承载能力极限状态包括:“①整个结构或结构的一部分作为刚体失去平衡(如倾覆等)……。
④结构或结构构件丧失稳定(如压屈等)”。
可见它们同属于承载能力极限状态,但应分别考虑。
《建筑结构设计术语和符号标准》gb/t 50083-97,对“倾覆”和“稳定”分别作出了定义,并称“倾覆验算”和“稳定计算”。
《建筑地基基础设计规范》gb50007-2002,关于地基稳定性计算就是防止地基整体(刚体)滑动的计算。
《砌体结构设计规范》gb50003-2001对悬挑梁及雨篷的倾覆验算都有专门规定。
施工现场的起重机械在起吊重物时也要做倾覆验算。
对于脚手架,由于浮搁在地基上,更应该做倾覆验算。
《建筑施工扣件式钢管脚手架安全技术规范》jgj130-2001及《建筑施工门式钢管脚手架安全技术规范》jgj128-2000中都没有倾覆验算的内容,这是因为这两本规范规定的脚手架都设置了“连墙杆”,倾覆力矩由墙体抵抗,因此就免去了倾覆验算。
如果不设连墙杆,则脚手架的倾覆验算在这两本规范中就成为不可缺少的内容了。
所以,对于模板支架、施工用的操作架等无连墙杆的脚手架,首先应保证脚手架不倾覆而进行倾覆验算,然后才是强度、刚度和稳定性计算。
如果需要,还可进行正常使用极限状态计算。
1脚手架的倾覆验算1.1通用的验算公式推导无连墙杆的脚手架,作为一个刚体应按如下表达式进行倾覆验算: (1)式中:γg1、cg1、g1 k分别为起有利作用的永久荷载的分项系数、效应系数、荷载标准值;γg2、cg2、g2 k分别为起不利作用的永久荷载的荷载分项系数、效应系数、荷载标准值;cq1、q1 k分别为第一个可变荷载的荷载效应系数、荷载标准值;cqi、qik分别为第i个可变荷载的荷载效应系数、荷载标准值;ψci为第i个可变荷载的组合值系数。
钢平台柱肢的强度与稳定性验算

钢平台柱肢的强度与稳定性验算
对应格构柱的轴压与压弯受力状态,稳定性验算也应分别按轴压构件的稳定性、压弯构件的稳定性两种情况验算,其中压弯构件的稳定性应考虑平面内和平面外两种稳定状态,稳定性验算根据文献2中的相关公式处理。
柱肢的强度与稳定性验算
进行柱肢强度与稳定性验算的主要目的是保证单肢不先于整体破坏。
在进行柱肢的强度与稳定性验算时,首先要确定作用的柱肢的内力,假设组合式钢中的格构柱的各柱肢截面均相等,则轴力和弯矩平均分布在相应柱肢上,以此确定单柱肢的内力大小;柱肢的强度与稳定性,根据柱肢的截面形状参照文献2中的单轴对称开口截面的相关公式验算;在稳定性验算时,柱肢的计算长度依据上文中关于计算长度的相关处理和计算。
此外,应注意保证格构柱的缀条或缀板应具有足够的强度与刚度,可一次性对某型产品进行定型设计和验算,并通过限值要求以确定选型时是否进行再验证,现行规范是通过保证缀材的受剪承载力来满足上述要求的,验算公式参见文献2,格构柱构件的局部稳定性是通过采用有效净截面来实现的,因此在稳定性验算过程中,必须要注意对构件有效截面的核算,为提高手工规划设计钢平台结构的有效性,对次重要构件多采用过量设计,并规定在大于柱片某设计承载时才重点验算部分结构件。
门式刚架梁柱连接节点域刚度验算

门式刚架梁柱连接节点域刚度验算全文共四篇示例,供读者参考第一篇示例:门式刚架是一种常用于建筑结构中的支撑结构,其由梁、柱和连接节点构成。
在门式刚架结构中,连接节点是连接梁和柱的重要部分,其刚度对整个结构的稳定性和承载能力起着关键作用。
对门式刚架连接节点域的刚度进行验算是非常重要的。
门式刚架连接节点通常分为节点板式连接和焊接连接两种方式。
节点板式连接通过节点板将梁和柱连接在一起,通过螺栓或焊接进行固定。
焊接连接则是直接通过焊接将梁和柱连接在一起。
在验算门式刚架连接节点域的刚度时,需要考虑节点板的刚度、焊接连接的强度以及节点板或焊接处的应力分布情况等因素。
对于节点板式连接,其刚度主要取决于节点板的几何形状和材料性质。
节点板的刚度可以通过有限元分析等方法进行计算,以确定节点板在承担荷载时的受力情况和变形情况。
在验算节点板式连接时,需要考虑节点板的弯矩和剪力传递能力,以确保连接节点域的刚度满足设计要求。
在门式刚架连接节点域的刚度验算中,还需要考虑整个结构的整体稳定性和承载能力。
门式刚架连接节点域的刚度应满足整个结构在受力时的要求,以确保结构可以稳定地承受外部荷载。
通过对门式刚架连接节点域的刚度进行验算,并根据验算结果进行调整和优化,可以有效提高结构的稳定性和承载能力。
第二篇示例:门式刚架是一种常见的结构形式,通常用于工业建筑和大跨度建筑的梁柱连接节点域刚度验算对于保证建筑结构的稳定性和安全性具有重要意义。
在进行梁柱连接节点域刚度验算时,需要考虑多方面因素,包括节点的受力情况、连接方式、构件形式等。
下文将对门式刚架梁柱连接节点域刚度验算进行详细介绍。
我们需要了解门式刚架的结构特点。
门式刚架由上下承受荷载的梁柱构件组成,梁柱连接节点域是其最重要的部分之一。
节点域的刚度直接影响整个门式刚架结构的受力情况和承载能力。
在验算门式刚架梁柱连接节点域的刚度时,需要考虑节点处的受力情况,包括节点受到的剪力、弯矩和轴力等。
整体稳定性验算方法

5.4.3 整体稳定性的验算方法1.计算公式由求得的临界弯矩可求得临界应力:(5.4.2)式中:为按受压纤维确定的梁毛截面抵抗矩。
保证梁整体稳定的条件是:(5.4.3)或:(5.4.4)式中:M x——绕强轴作用的最大弯矩;——梁的整体稳定系数。
双轴对称工字型截面简支梁受纯弯曲荷载作用时:(5.4.5)式中:——梁在侧向支承点间对截面弱轴(y轴)的长细比;——受压翼缘的自由长度;——梁的毛截面对y轴的截面回转半径;——梁的毛截面面积;——梁的截面高度和受压翼缘厚度(见图5-4-2)。
对于单轴对称工字型截面(图5-4-2b、c),应考虑截面不对称影响系数,对于其它种类的荷载和荷载的不同作用位置,还应乘以修正系数,从而可得通式为:(5.4.6)图5-4-2 焊接工字形截面式中:——等效弯矩系数,参见[表5-4-4];——截面不对称影响系数,双轴对称工字型截面,=0;加强受压翼缘的工字型截面,(图5-4-2b);加强受拉翼缘的工字型截面,(图5-4-2c);和分别为受压翼缘和受拉翼缘对y轴的惯性矩。
上述公式是按弹性工作阶段给出的,当时,已超出了弹性范围,应按下式修正或查[表5-4-1],用代替。
表(5-4-1)整体稳定系数值(5.4.7)对于轧制普通工字钢简支梁的整体稳定系数,同样应以代替。
在两个主平面内受弯曲作用的工字型截面构件,应按下式计算整体稳定性:(5.4.8) 2. 计算梁的整体稳定系数的简化方法Ⅰ热轧普通工字钢简支梁,可直接查[表5-4-2]。
Ⅱ轧制槽钢简支梁的整体稳定系数,均按下式计算:(5.4.9)式中:h﹑b﹑t——分别为槽钢截面的高度﹑翼缘宽度和平均厚度。
3. 不必计算整体稳定性的情况当梁的整体稳定性系数=1.0时,梁就不可能丧失整体稳定性,也不必计算梁的整体稳定性,具体条件如下:Ⅰ有铺板(各种钢筋混凝土板和钢板)密铺在梁的受压翼缘上并与其牢固相连接,能阻止梁受压翼缘的侧向位移时;Ⅱ工字型截面简支梁受压翼缘的自由长度与其宽度b1之比不超过[表5-4-3]所规定的数值时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
国第家级8精讲品课程变—截钢结面构设刚计 架梁、柱的整体稳定、斜梁及隅 撑
隅撑设计: 隅撑构造:隅撑与刚架构件、檩条或墙梁的连接 应采用螺栓连接,每端通常采用单个螺栓。
0.75 ( N
N
' Ex0
)2
对两端弯应力基本相等的区段:
t 1.0
第2章 轻型门式刚架结构设计
国第家级8精讲品课程变—截钢结面构设刚计 架梁、柱的整体稳定、斜梁及隅 撑
整体稳定计算: (2) 平面外的整体稳定验算:
1)弹性设计
N0 tM1 f y Ae0 bWe1
第2章 轻型门式刚架结构设计
国第家级8精讲品课程变—截钢结面构设刚计 架梁、柱的整体稳定、斜梁及隅 撑
整体稳定计算:
(1) 刚架梁、柱平面内的整体稳定验算: 1)弹性设计
大头, M1 ,We1
小头,N0 ,A0,j
第2章 轻型门式刚架结构设计
国第家级8精讲品课程变—截钢结面构设刚计 架梁、柱的整体稳定、斜梁及隅 撑
整体稳定计算:
整体稳定计算:
(2)变截面柱在刚架平面外的整体稳定计算 1)弹性设计:应分段按下式计算:
N0 tM1 f y Ae0 bWe1
y -轴心受压构件弯矩作用平面外的稳定系数,以小头为
准,计算长度取侧向支撑点间的距离。
t -等效弯矩系数;
弯矩为零的区段:
t 1 N
N
' Ex0
y -轴心受压构件弯矩作用平面外的稳定系数,
以小头为准,计算长度取侧向支撑点间的距离。
t -等效弯矩系数;
弯矩为零的区段:
t 1 N
N
' Ex0
0.75 ( N
N
' Ex0
)
2
对两端弯应力基本相等的区段:
b -均匀弯曲楔形受弯构件的整体稳定系数。
b
4320
2 y0
A0h0 Wx0
第2章 轻型门式刚架结构设计
国第家级8精讲品课程变—截钢结面构设刚计 架梁、柱的整体稳定、斜梁及隅 撑
斜梁的设计
实腹式刚架斜梁在平面内和平面外均应按压弯构件计算强 度和稳定,当屋面坡度≤1:5时,由于轴力很小可按压弯构 件计算其强度和刚架平面外的稳定,不计算平面内稳定。
变截面实腹式刚架斜梁的平面内计算长度可取竖向支撑 点间距离。 实腹式刚架斜梁的平面外计算长度,取侧向支承点的间距。 斜梁不需要计算整体稳定性的侧向支承点间最大长度,可 取斜梁受压翼缘宽度的16 235/ fy 倍。
(1) 刚架平面内的整体稳定验算:
1)弹性设计:采用弹性设计,变截面柱在刚架平面内整体 稳定性计算:
N0
mxM1
f
x Ae0 1 N0 N E x0 x We1
N0 -小头的轴线压力设计值; M1 -大头的弯矩设计值; Ae0 -小头的有效截面面积; We1-大头有效截面最大受压纤维的截面模量;
第2章 轻型门式刚架结构设计
国第家级8精讲品课程变—截钢结面构设刚计 架梁、柱的整体稳定、斜梁及隅 撑
隅撑设计:
实腹式刚架斜梁的下翼缘受压时,为保证刚架斜梁平面外的稳 定性,须在受压翼缘布置隅撑作为侧向支承,隅撑的一端连在受 压翼缘上,另一端与檩条连接。
檩条
隅撑
屋面梁
隅撑连接详图
隅撑作用:防止刚架斜梁受压下翼缘发生失稳。
( s )4 ( y0t0 )2 ( 235)
w
4.4h0 f y
当b 0.6 时
b'
1.07
0.282
b
1.0
与GB50017规范中压弯构件在弯矩作用平面外的稳定计
算公式的不同点:
① 截面几何特性按有效截面计算;
② 考虑楔形柱的受力特点,轴力(N0)取小头截面,
弯矩(M1)取大头截面。
第2章 轻型门式刚架结构设计
国第家级8精讲品课程变—截钢结面构设刚计 架梁、柱的整体稳定、斜梁及隅 撑
整体稳定计算:
(2) 平面外的整体稳定验算: 1)弹性设计
实腹式刚架斜梁在计算平面外稳定时,按压弯构件考虑。 计算长度取侧向支承点间的距离,即隅撑的设置位置 (通常为2倍的檩条间距);当斜梁两翼缘侧向支承点间 的距离不等时,应取最大受压翼缘侧向支承点间的距离。
xy -杆件的轴心受压稳定系数,按楔形柱确定其计算长度,取小
头截面回转半径;
国第家级8精讲品课程变—截钢结面构设刚计 架梁、柱的整体稳定、斜梁及隅 撑
屋面檩条提供侧向支撑
整体稳定计算: (1) 刚架平面内的整体稳定验算:
1)弹性设计
当实腹式刚架斜梁侧向支承点间的最大距离L1小于 斜梁受压翼缘宽度的16 235 fy 倍时,刚架斜梁可不用计 算平面内的整体稳定性。
L1 < 16b 235 f y
第2章 轻型门式刚架结构设计
国第家级8精讲品课程变—截钢结面构设刚计 架梁、柱的整体稳定、斜梁及隅 撑
整体稳定计算: (1) 刚架平面内的整体稳定验算:
2)塑性设计
门式刚架等截面柱采用塑性设计方法进行刚架平面内整体稳定计算。
N
x A
1
mx M x
0.8(N NEx ) Wpx
第2章 轻型门式刚架结构设计
国第家级8精讲品课程变—截钢结面构设刚计 架梁、柱的整体稳定、斜梁及隅 撑
整体稳定计算: (2) 平面外的整体稳定验算:
2)塑性设计 当门式刚架柱采用等截面时,可以采用塑性设计方法 进行刚架平面内的整体稳定计算。
N txM x ≤ f y A bWpx
φy — 弯矩作用平面外轴心受压构件的稳定系数; φ b — 均匀弯曲的受弯构件的整体稳定系数。 βtx — 等效弯矩系数,根据两相邻支承点间构件段内 的荷载和内截面轴压力设计值;
A — 刚架柱有效截面面积; Mx — 构件截面的最大弯矩设计值; Wpx— 构件截面对x轴的毛截面塑性抵抗矩; φ x— 弯矩作用平面内轴心受压构件稳定系数; NEx— 欧拉临界力; λ x— 刚架柱对截面强轴的长细比。
第2章 轻型门式刚架结构设计
国第家级8精讲品课程变—截钢结面构设刚计 架梁、柱的整体稳定、斜梁及隅 撑
第2章 轻型门式刚架结构设计
国第家级8精讲品课程变—截钢结面构设刚计 架梁、柱的整体稳定、斜梁及隅 撑
隅撑设计:
隅撑 刚架梁
吊车梁
隅撑
刚架柱
第2章 轻型门式刚架结构设计
国第家级8精讲品课程变—截钢结面构设刚计 架梁、柱的整体稳定、斜梁及隅 撑
隅撑设计:
受弯构件失稳--弯扭失稳。
M
M
第2章 轻型门式刚架结构设计