材料力学论文

合集下载

土木工程材料力学论文

土木工程材料力学论文

滠水一桥总结报告1工程概况滠水一桥主桥采用变截面预应力混凝土连续刚构,桥跨布置为30+50+50+30=160m,采用R=5000米的竖曲线。

城关侧一桥为(3+4+4)×20m 预应力混凝土先简支后结构连续空心板+1×40m预应力混凝土简支T梁+3×30m预应力混凝土先简支后结构连续T梁,鲁台侧引桥为3×30m预应力混凝土先简支后结构连续T梁,总长600m。

跨河段:0.25m(栏杆)+2.25m(人行道)+19m(行车道)+2.25m(人行道)+0.25m(栏杆),全宽24m;城关引桥段:0.5m (栏杆)+19m(行车道)+0.5m(栏杆),全宽20m。

(照片)2先简支后连续梁桥国内外发展状况及优缺点2.1先简支后连续梁桥国内外发展状况为了解决城市桥梁建设速度问题,并保证其良好的力学性能,出现了“先简支后连续”施工法,由此形成先简支后连续梁桥结构体系。

国内约在20世纪80年代开始建造该类结构体系桥梁,90年代以后广为采用[5~6]。

国外具有代表性的先简支后连续梁桥是美国的内布拉斯加州林肯市第十街的人行天桥及第V号街天桥。

国内外对这种桥梁结构体系的理论、试验研究有以下几个阶段[7~10]:20世纪60年代的研究以波特兰混凝土协会(简称PCA)为代表。

他们对预制梁通过现浇桥面板和连续横隔板连续的方法进行了研究,并考虑不同的钢筋连接方式。

20世纪70年代,哥伦比亚大学研究了将钢绞线延伸到连接横隔板内部以形成正弯矩连接的可行性, 并进行了三种钢绞线配置的足尺模型试验。

20世纪80年代,美国施工技术试验室(简称为CTL)对此类先简支后连续梁桥进行了分析研究,并开发了程序(BridgeRM)以预测与时间相关的限制矩。

20世纪90年代早期,美国学者Rabbad和Aswad回顾了在田纳西州和其它地方采用的连续横隔板的一些标准细节(在PCA法的基础上发展而来)。

AlanR.Phipps和Q.DSpruilJr.(1990年)强调了后连续施工方法的特点。

材料力学小论文 竹竿性能分析

材料力学小论文 竹竿性能分析

竹子外形和截面性能的力学分析选课序号100 姓名杨建成学号2220133836摘要:略约200字一引言在日常生活中,随处可见竹子,竹竿可视为上细下粗、横截面为空心圆形的杆件。

这样的形状赋予了竹子很强的抗弯强度。

二力学分析材料力学的任务是在满足强度、刚度和稳定性的要求下,以最经济的代价为构件确定合理的形状和尺寸,选择适宜的材料,为构件设计提供必要的理论基础的计算方法。

换句话说,材料力学是解决构件的安全与经济问题。

所谓安全是指构件在外力作用下要有足够的承载能力,即构件要满足强度、刚度和稳定性的要求。

所谓经济是指节省材料,节约资金,降低成本。

当然构件安全是第一位的,降低经济成本是在构件安全的前提下而言的。

实际工程问题中,构件都应有足够的强度、刚度和稳定性。

本文以竹子为研究对象,其简化力学模型如下图所示。

竹子体轻,质地却非常坚硬,强度比较高,竹子的顺纹抗拉强度170Pa,顺纹抗压强度达80Pa 单位质量的抗拉强度大概是普通钢材的两倍。

根据材料力学,弯曲正应力是控制强度的主要因素,自然界的竹子经常受到来自风的力,主要是弯矩,主要是弯曲正应力。

从公式可以看出,当弯矩一定的时候,正应力与惯性矩正反比。

截面为实心圆的对中性轴的惯性矩,大部分树木都是这种结构。

(假设实心和空心竹子的横截面)2.1 竹子的弯曲强度分析根据材料力学的弯曲强度理论, 弯曲正应力是控制强度的主要因素, 弯曲强度条件为maxmax []zM W σσ=≤ (1)横截面如上图所示。

实心圆截面和空心圆截面的抗弯截面模量分别为:332W d π=实 (2)341132()()D W D Dπαα=-=空 (3) 式中,d 是实心杆横截面直径,D 和D 1分别是空心杆横截面外径和内径,1D Dα=为空心杆内外径之比。

当空心杆和实心杆的两横截面的面积相同时222144(=)D d D ππ- (4)可得 2222211((=))D D d D α-=- (5)2=1-d D α(6)把上式代入式(2),得34232322(1-11-W 321W 11-)32空实()D D απααπ==> (7)空心圆截面的抗弯截面模量比等截面积的实心圆截面的抗弯截面模量大,并且空心圆截面杆的内、外直径的比值α越大,其抗弯截面模量越大,杆的抗弯强度越高。

复合材料力学论文

复合材料力学论文

纤维增强复合材料力学性能研究现状文献综述鹏中北大学理学院工程力学学科部030051中国摘要:纤维增强复合材料(Fiber Reinforced Plastic,简称FRP)是由增强纤维材料,如玻璃纤维,碳纤维,芳纶纤维等,与基体材料经过缠绕,模压或拉挤等成型工艺而形成的复合材料。

根据增强材料的不同,常见的纤维增强复合材料分为玻璃纤维增强复合材料(GFRP),碳纤维增强复合材料(CFRP)以与芳纶纤维增强复合材料(AFRP)。

由于纤维增强复合材料的材料特性,因此它越来越广泛地应用于各种民用建筑、桥梁、公路、海洋、水工结构以与地下结构等领域中。

本文将综述近年来国外的学者对它的力学性能的研究现状。

关键词:纤维增强;复合材料;力学性能;材料特性;应用Composite Research Status literature review of fiber reinforced mechanical properties of materialsCUI PengCollege of Engineering Department of Mechanical Discipline North University ofChinaTaiyuan, China 030051Abstract:Fiber-reinforced composite material (Fiber Reinforced Plastic, referred FRP) is a reinforcing fiber material, such as glass fiber, carbon fiber, aramid fiber, and composite matrix material after winding, pultrusion molded or formed by molding process. Depending on the reinforcing material, a common fiber-reinforced composite material into glass fiber reinforced Plastic (GFRP), carbon fiber reinforced Plastic (CFRP) and aramid fiber reinforced Plastic (AFRP). Since the material properties of the fiber-reinforced composite materials, so it is increasingly widely used in various areas of civil construction, bridges, highways, marine, hydraulic structures and underground structures like. This paper will present research scholars at home and abroad in recent years, its mechanical properties. Keywords:Fiber reinforced; Composites;Mechanical Properties;Material properties;application1.引言复合材料是将两种或两种以上不同品质的材料通过专门的成型工艺和制造方法复合而成的一种高性能新材料,按使用要求可分为结构复合材料和功能复合材料到目前为止,主要的发展方向是结构复合材料,但现在也正在发展集结构和功能一体化的复合材料。

材料力学专业相关毕业论文范文

材料力学专业相关毕业论文范文

材料力学专业相关毕业论文范文材料力学是土木工程专业的一门重要力学基础课,学习好材料力学能更进一步打好工程专业的基础。

下面是店铺为大家整理的材料力学论文,供大家参考。

材料力学论文篇文一:《浅谈土木工程专业材料力学改革》【摘要】结合土木工程专业材料力学课程教学中存在的问题,从卓越工程师的培养目标出发,把CDIO教学理念引入到材料力学教学体系中,从教学内容、教学手段和方法、考核评价等方面提出来了有效的教学改革措施,建立了基于CDIO理念的材料力学教学模式。

该教学模式对于提高学生的学习热情,培养学生的综合实践和创新能力有积极意义,是解决目前土木工程专业在力学教学中遇到问题的一个很好的借鉴途径。

【关键词】CDIO教育理念;材料力学;教学改革;课程考核体系0引言材料力学是土木工程专业的技术基础课,是研究各类工程结构中普遍存在的受力和变形现象的学科,着重培养学生的逻辑思维、分析能力和解决实际问题能力。

一直以来,我国大学中所讲授的力学课程内容大多由前苏联引进的内容,内容陈旧、枯燥、抽象、重理论轻实践。

教学方法多采用灌输式教学,造成课堂气氛死板,有时甚至枯燥无味,大大降低了学生的学习热情。

这些问题不但加剧了学生的学习惰性,也影响到其它课程的学习状况。

针对以上问题,如何为实际工程提供合格的力学人才;如何在材料力学教学中充分调动学生的主动性和积极性;在目前有限的课时下,如何对旧有材料力学课程体系进行合并、筛选等工作已经成为教学改革工作不可回避的事实。

CDIO工程教育理念提倡在实践中学习,在学习中实践,这为该问题的解决提供了一种思路。

1CDIO工程教育模式CDIO模式以产品研发到产品运行的生命周期为载体,让学生以主动的、实践的、课程之间有机联系的方式学习工程。

CDIO模式强调与社会大环境相协调的综合的创新能力,同时更关注工程实践,加强培养学生的实践能力,因此CDIO工程教育模式是提高大学生的创新和动手能力、推进产学研结合、加强实践教学环节以及加强学生参与交流与合作能力的有效途径。

新型材料力学性能论文

新型材料力学性能论文

新型材料力学性能研究摘要:构件的强度、刚度与稳定性,不仅与构件的形状、尺寸及所受外力有关,而且与材料的力学性能有关,本文先简要介绍了材料的结构,主要研究新型材料的力学性能,并重点研究了多晶体材料力学性能特点。

关键词:材料力学性能刚度强度1 材料的结构材料的结构指的是材料的组成单元(原子或分子)之间互相吸引和互相排斥作用达到平衡时的空间分布,从宏观到微观可分为不同的层次,即宏观组织结构、显微组织结构、微观结构。

宏观组织结构是用肉眼或放大镜观察到的晶粒、相的集合状态。

显微组织结构或称为亚微观结构是借助光学显微镜、电子显微镜可观察到的晶粒、相的集合状态或材料内部的微区结构,其尺寸约为10-7~10-4m。

比显微组织结构更细的一层结构即微观结构包括原子及分子结构以及原子和分子的排列结构。

因为一般的分子尺寸很小,故把分子结构排列列为微观结构。

但对于高分子化合物,大分子本身的尺寸可达到亚微观的范围。

金属材料也可以看作是由晶体的聚集体构成的。

对纯金属一般认为是微细晶粒的聚集体;对合金可看作母相金属原子的晶体与加入的合金晶体等聚合而成的聚集体。

晶粒间的结合力要比晶粒内部的结合力要小。

软钢、铜、金、铝等之所以能够承受较大的塑性变形,是由于在发生滑移变形的同时,原子相互间的位置依次错开又形成了新的键,从整体看,是由于原子间的键难于断开的缘故。

晶粒晶界上的结合是机械结合,即金属由高温熔体凝固析晶时,相互啮合牢固地结合在一起。

晶粒间的接触面越大,结合力也越大。

2 材料的力学性能2.1 材料受牵伸时的力学性能材料断裂时均具有较大的残余变形,即均属于塑性材料。

不同的是,有些材料不存在明显的屈服阶段。

对于不存在明显屈服阶段的塑性材料,工程中通常以卸载后产生数值为0.2%的残余应变的应力作为屈服应力,称为屈服强度。

至于脆性材料,例如灰口铸铁与陶瓷等,从开始受力直至断裂,变形始终很小,既不存在屈服阶段,也无缩颈现象。

2.2 材料受压缩时的力学性能材料受压时的力学性能由压缩试验测定,一般细长试样压缩时容易失稳,因此在金属压缩试验中,通常采用短粗圆柱形试样。

材料力学论文

材料力学论文

如何理解生物软组织力学特性中的滞后环,应力松弛以及蠕变现象摘要:软组织主要有皮肤、浅层与深层筋膜、韧带、滑膜、软骨盘和关节软骨,以及肌肉肌腱。

滑膜、软骨盘和关节软骨在关节生物力学中已经提及,这里主要讨论韧带和肌腱的生物力学特性。

生物软组织受力,产生脱离虎克定律的应力一应变曲线,即具有非线性变形。

在非线性变形中,又分为材料非线性与几何形状非线性两类。

形状、尺寸有显著变化时,是形状非线性。

在固体力学中,弹性板和弹性壳的大挠度及屈曲后的变形在解析上只考虑形状非线性即可。

然而对生物软组织的变形,在许多情况下,必需考虑两者。

皮肤覆盖于体表,是人体最大的器官,具有多种生理功能,其中许多功能的实现有赖于其生物力学特性,如粘弹性、张力、抗压力等,因此人体皮肤生物力学特性的研究有其重要意义。

皮肤是软组织,与其它生物软组织在力学特性上是相似的,如动脉、血管、心脏瓣膜和肌肉等,它们都有应力-应变关系、应力松弛、蠕变、滞后、各向异性等性质,以及需要预调。

关键字:软组织,应力一应变曲线,特性,性质软组织的主要特点是具有大量结缔组织纤维,结缔组织起源于胚胎时期的间充质,具有连接、支持、养、保护等功能。

其细胞少而排列稀疏,细胞间质非常发达。

与人体运动有关的致密结缔组织多为规则结缔组织与不规则结缔组织。

软组织的基质具有支持和固着细胞的功能,营养物质及代谢产物可自由地通过这层基质在毛细血管和细胞之间进行交换,基质的主要成分是纤维性细胞间质,间质中的纤维是由成纤维细胞合成的,它们对组织能起到支持和加固的作用,包括胶原纤维、弹性纤维。

一、软组织的滞后环:应力-应变曲线滞后:应力-应变曲线滞后指对物体作周期性加载和卸载,加载和卸载时的应力-应变曲线不重合的特性。

在同样负载下,卸载曲线的拉长比值(受载下的长度与原来长度的比值)要比加载过程中的大,只有在卸载较多负荷情况下才能恢复到原有载荷状态下的变形。

即应力-应变曲线的上升曲线与下降曲线不相重合。

材料力学论文

材料力学论文

吊车梁强度和梁的立柱偏心压缩的研究姓名:白志同学号:201031020指导教师:王博摘要:吊车系统是工业厂房和实验室中重要的受力结构,其中包含大量的弯曲强度和稳定性的问题,我通过对吊车梁主要部位(连接部位和焊接部位等)的应力和对厂房中支撑梁的立柱偏心压缩的研究来研究吊车梁的安全性问题,并以此应用来解决提高吊车梁的强度问题,提出了几个方案。

关键词:弯曲强度,偏心压缩,连接部,截面核心,解决方案。

一、前言举一个实例,某实验室为跨长24米的工字型截面简支梁,材料为Q235钢,翼缘由多层钢板叠置组合而成,腹板为单层钢板,连接方式为铆钉连接和焊接,如果将将吊车的吨位从250t 升级至350t。

则需要对此实验室的吊车系统重新进行研究并提出提高吊车梁强度的方案。

经过资料搜集发现吊车梁的破坏有以下几个方面1、连接破坏。

2、疲劳破坏。

3、强度破坏。

4、梁的立柱的破坏。

由于本人目前为止知识水平的限制,许多方面可能会忽略掉。

如在网上搜集到吊车梁的受力特点有:①承受的吊车荷载是重复荷载,吊车荷载具有冲击和振动作用,要考虑荷载的动力特性。

②吊车荷载的偏心影响产生扭矩,要考虑扭矩的影响,制动系统与柱的连续破坏(包括制动梁与柱连接焊缝开裂,制动梁与柱连接的预埋件与柱剪切破坏等)以及制动系统本身杆件破坏。

这些方面我可能会忽略掉,在此做出提示。

二、简要分析1、本人先从简单方面入手,先进行对吊车梁的立柱强度进行计算,看是否满足其强度要求。

这里有一张实验室吊车系统图。

可以看见这个吊车系统的柱子,在材料力学书偏心拉压的课中也有此力学模型,如图(a)可看出一般力作用于F1所指的位置。

整体力学模型如图:我们知道吊车荷载是通过吊车桥架两侧的轮子分别传递到两边的吊车梁上。

在满负荷条件下,吊车的最大轮压取决于吊车主钩的位置,一般为了能简单计算我以主钩在中间位置进行计算。

并且补充一下通过原先知识了解:在工程中,对于偏心拉压问题,有时要求截面上只有一种应力,如建筑中的砖柱和石柱,要求截面上不出现拉应力。

工程材料力学性能论文毕业论文

工程材料力学性能论文毕业论文
工 程 材 料 力 学 性 能 论 文
11042102 2014
化学与化ቤተ መጻሕፍቲ ባይዱ工程系 2011 级金属材料工程 1 班
焦通
年 06 月 18 日
材料力学在非工程方面的应用
一、材料力学知识简介 材料力学是研究材料在各种外力作用下产生的应变、应力、强度、刚度、稳
定和导致各种材料破坏的极限。材料力学与理论力学、结构力学并称三大力学。 1. 研究材料在外力作用下破坏的规律; 2. 为受力构件提供强度,刚度和稳定性计算的理论基础条件; 3. 解决结构设计安全可靠与经济合理的材料力学基本假设; a) 连续性假设——组成固体的物质内毫无空隙地充满了固体的体积 b) 均匀性假设——在固体内任何部分力学性能完全一样 c) 各向同性假设——材料沿各个不同方向力学性能均相同 d) 小变形假设——变形远小于构件尺寸, 便于用变形前的尺寸和几何形状进
就要发生振动; 若传动轴的弯曲变形过大, 不仅会使齿轮很好地啮合, 还会使轴 颈与轴承产生不均匀的磨损; 输送管道的弯曲变形过大, 会影响管道内物料的正 常输送,还会出现积液、沉淀和法兰结合不密等现象;造纸机的轧辊,若弯曲变 形过大, 会生产出来的纸张薄厚不均匀, 称为废品。 另一类是要求构件能产生足 够大的变形。 例如车辆钢板弹簧, 变形大可减缓车辆所受到的冲击; 又如继电器 中的簧片, 为了有效地接通和断开电源, 在电磁力作用下必须保证触电处有足够 大的位移。 三、材料力学在生活建筑学的运用
随着高层建筑在我国的迅速发展 , 建筑高度的不断增加 , 建筑类型与功能愈 来愈复杂 , 结构体系更加多样化 , 高层建筑结构设计也越来越成为结构工程师设 计工作的重点和难点之所在。 多层和高层建筑结构都要抵抗竖向及水平荷载作用 , 但是在高层建筑中 , 要使用更多的材料来抵抗水平作用 , 抗侧力成为高层建筑结 构设计的主要问题。 在地震区 , 地震作用对高层建筑的威胁更大 , 地震灾害将会给 人民的生命财产造成巨大损失 , 所以抗震设计必须更加重视。在高层建筑结构抗 震理论和设计方法的发展过程中 , 存在着结构刚与柔的争议 , 有的认为结构柔性 一些好 , 因为场地确定后 , 结构愈柔性 , 自振周期愈长 , 地震影响系数越小 , 结构所 受到的地震作用就愈小 , 因此在结构抗震设计时 , 可将结构设计得柔性一些 , 以减 小作用于结构上的地震力 , 从而可以用较少的材料 , 抗御较强的地震 , 既合理又经 济。但有的则认为地震区的高层建筑结构应该刚性一些 , 使结构具有较大的承载 能力 , 可以抵抗较强的地震 , 而且非结构部件的连接构造简单 , 又不易破坏。从过 去的地震经验也可以看出 , 对于一般构造的高层建筑结构 , 刚性比柔性好 , 刚性结 构破坏较轻 , 而且由于地震时的结构变形小 , 隔墙、围护墙及装饰等非结构部件将 得到保护 , 破坏也会减轻。对于柔性结构 , 由于地震时将产生较大的层间侧移 , 不 但主体结构破坏较重 , 非结构部件也将大量遭到破坏 , 造成很大经济损失 , 甚至有 时还会危及人身安全 , 所以高层建筑结构应采用刚度较大的。 四、材料力学在生活桥梁学的运用
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料力学在生活建筑学的运用摘要:近年来随着建筑高度的不断增加,建筑类型与功能愈来愈复杂,结构体系更加多样化,高层建筑结构设计也越来越成为结构工程师设计工作的重点和难点之所在。

现就高层建筑结构的设计要点谈谈材料力学在建筑学中的应用。

关键词:高层建筑;材料力学;结构体系;结构分析一:材料力学知识简介与生活中的运用材料力学是研究材料在各种外力作用下产生的应变、应力、强度、刚度、稳定和导致各种材料破坏的极限。

材料力学是所有工科学生必修的学科,是设计工业设施必须掌握的知识。

学习材料力学一般要求学生先修高等数学和理论力学。

材料力学与理论力学、结构力学并称三大力学。

研究材料在外力作用下破坏的规律;为受力构件提供强度,刚度和稳定性计算的理论基础条件;解决结构设计安全可靠与经济合理的材料力学基本假设;人们运用材料进行建筑、工业生产的过程中,需要对材料的实际承受能力和内部变化进行研究,这就催生了材料力学。

运用材料力学知识可以分析材料的强度、刚度和稳定性。

材料力学还用于机械设计使材料在相同的强度下可以减少材料用量,优化机构设计,以达到降低成本、减轻重量等目的。

在材料力学中,将研究对象被看作均匀、连续且具有各向同性的线性弹性体。

但在实际研究中不可能会有符合这些条件的材料,所以需要各种理论与实际方法对材料进行实验比较。

材料在机构中会受到拉伸或压缩、弯曲、剪切、扭转及其组合等变形。

根据胡克定律,在弹性限度内,物体的应力与应变成线性关系。

材料力学是现代科学科学技术迅速发展的理论事实基础,20世纪以前推动近代科学技术与社会进步的工具。

蒸汽机、内燃机、铁路、桥梁、船舶、兵器等都是材料力学知识的累积应用和完善的基础上逐渐形成和发展起来的。

20世纪产生的诸多高新技术,如高层建筑,大型桥梁海洋石油钻井平台,精密仪器,航空航天器材,机器人,高速列车以及大型水利工程等许多的重要工程更是在材料力学指导下得以实现并不断发展完善的。

20世纪产生的另一些高新技术,如核反应堆工程、电子工程、计算机工程学。

虽然是在其它基础学科指导下产生和发展起来的,但对材料力学都提出了各式各样的,大大小小的问题。

材料力学知识的广泛运用,使生活中各行业得到迅速发展。

如冶金行业、物料运输行业、珠宝鉴定行业、工程设计行业、科研行业、技术研究与开发行业、交通质量安全检测行业等多个领域,材料力学知识的广泛运用,使现实世界发展迅速并使各个行业得到提升。

尤其是在生活建筑学方面得到了广泛地运用和发展,并得到了人们的深刻认识和体会。

人们逐渐认识到材料力学知识在生活中的重要性。

材料力学在生活建筑学的运用就是一个很好地体现。

下面就仔细谈谈材料力学在生活建筑学的运用和对人们日常生活的影响。

二:生活中高层建筑的结构设计特点结构内力与变形随着建筑物高度的增加,水平荷载作用下的结构侧向变形迅速增大,结构顶点侧移与建筑物高度的四次方成正比。

所以对于高层建筑,结构侧移已成为设计中的关键因素,这是因为:高层建筑的使用功能和安全与结构侧移的大小密切相关。

结构在阵风作用下的振动加速度超过0.015g时,就会影响楼房内使用人员的正常工作与生活,而振动加速度的大小与侧移幅值的大小有关。

过大的侧向变形会使高层建筑的隔墙、围护墙以及饰面材料开裂或损坏。

高楼的重心位置较高,过大的侧移会使P-△效应产生较大的附加应力,甚至因侧移与应力的恶性循环而导致建筑物破坏。

由此可见,在高层建筑结构设计时,不仅要求结构具有足够的强度,还要求结构具有足够的抗拉刚度,使结构在水平、荷载作用下产生的侧移被控制在要求的限度之内。

在高层建筑中,由于层数多、荷载大,柱的轴向变形也大,而在各柱间产生差异轴向变形,将使梁中的弯矩增大,因此在结构分析时必须考虑柱的轴向变形,这也是与一般建筑结构分析的不同之处。

高层建筑结构的刚性与柔性多层和高层建筑结构都要抵抗竖向及水平荷载作用,但是在高层建筑中,要使用更多的材料来抵抗水平作用,抗侧力成为高层建筑结构设计的主要问题。

在地震区,地震作用对高层建筑的威胁更大,地震灾害将会给人民的生命财产造成巨大损失,所以抗震设计必须更加重视。

在高层建筑结构抗震理论和设计方法的发展过程中,存在着结构刚与柔的争议,有的认为结构柔性一些好,因为从抗震规范规定的地震反应谱曲线可以清楚地看出,场地确定后,结构愈柔性,自振周期愈长,地震影响系数α越小,结构所受到的地震作用就愈小,因此在结构抗震设计时,可将结构设计得柔性一些,以减小作用于结构上的地震力,从而可以用较少的材料,抗御较强的地震,既合理又经济。

但有的则认为地震区的高层建筑结构应该刚性一些,使结构具有较大的承载能力,可以抵抗较强的地震,而且非结构部件的连接构造简单,又不易破坏。

从过去的地震经验也可以看出,对于一般构造的高层建筑结构,刚性比柔性好,刚性结构破坏较轻,而且由于地震时的结构变形小,隔墙、围护墙及装饰等非结构部件将得到保护,破坏也会减轻。

对于柔性结构,由于地震时将产生较大的层间侧移,不但主体结构破坏较重,非结构部件也将大量遭到破坏,造成很大经济损失,甚至有时还会危及人身安全,所以高层建筑结构应采用刚度较大的抗。

三:生活中高层建筑的结构体系剪力墙体系当受力主体结构全部由平面剪力墙构件组成时,即形成剪力墙体系。

在剪力墙体系中,单片剪力墙承受了全部的垂直荷载和水平力。

剪力墙体系属刚性结构,其位移曲线呈弯曲型。

剪力墙体系的强度和刚度都比较高,有一定的延性,传力均匀,整体性好,抗倒塌能力强,是一种良好的结构体系,能建高度大于框架或框架—剪力墙体系。

2.框架—剪力墙体系当框架体系的强度和刚度不能满足要求时,往往需要在建筑平面的适当位置设置较大的剪力墙来代替部分框架,便形成了框架—剪力墙体系。

在承受水平力时,框架和剪力墙通过有足够刚度的楼板和连梁组成协同工作的结构体系。

在体系中框架体系主要承受垂直荷载,剪力墙主要承受水平剪力。

框架—剪力墙体系的位移曲线呈弯剪型。

剪力墙的设置,增大了结构的侧向刚度,使建筑物的水平位移减小,同时框架承受的水平剪力显著降低且内力沿竖向的分布趋于均匀,所以框架—剪力墙体系的能建高度要大于框架体系。

3.简体体系凡采用简体为抗侧力构件的结构体系统称为简体体系,包括单简体、简体-框架、筒中筒、多束筒等多种型式。

简体是一种空间受力构件,分实腹筒和空腹筒两种类型。

实腹筒是由平面或曲面墙围成的三维竖向结构单体,空腹筒是由密排柱和窗裙梁或开孔钢筋混凝土外墙构成的空间受力构件。

简体体系具有很大的刚度和强度,各构件受力比较合理,抗风、抗震能力很强,往往应用于大跨度、大空间或超高层建筑。

四:生活中高层建筑结构设计经常注意的问题(从材料力学知识方面考虑)结构的规则性问题新旧规范在这方面的内容出现了较大的变动,新规范在这方面增添了相当多的限制条件,例如:平面规则性信息、嵌固端上下层刚度比信息等,而且,新规范采用强制性条文明确规定“建筑不应采用严重不规则的设计方案。

”因此,结构工程师在遵循新规范的这些限制条件上必须严格注意,以避免后期施工图设计阶段工作的被动。

结构的超高问题在抗震规范与高规中,对结构的总高度都有严格的限制,尤其是新规范中针对以前的超高问题,除了将原来的限制高度设定为A级高度的建筑外,增加了B级高度的建筑,因此,必须对结构的该项控制因素严格注意,一旦结构为B级高度建筑或超过了B级高度,其设计方法和处理措施将有较大的变化。

在实际工程设计中,出现过由于结构类型的变更而忽略该问题,导致施工图审查时未予通过,必须重新进行设计或需要开专家会议进行论证等工作的情况,对工程工期、造价等整体规划的影响相当巨大。

嵌固端的设置问题由于高层建筑一般都带有二层或二层以上的地下室和人防,嵌固端有可能设置在地下室顶板,也有可能设置在人防顶板等位置,因此,在这个问题上,结构设计工程师往往忽视了由嵌固端的设置带来的一系列需要注意的方面,如:嵌固端楼板的设计、嵌固端上下层刚度比的限制、嵌固端上下层抗震等级的一致性、在结构整体计算时嵌固端的设置、结构抗震缝设置与嵌固端位置的协调等等问题,而忽略其中任何一个方面都有可能导致后期设计工作的大量修改或埋下安全隐患。

短肢剪力墙的设置问题在新规范中,对墙肢截面高厚比为5~8的墙定义为短肢剪力墙,且根据实验数据和实际经验,对短肢剪力墙在高层建筑中的应用增加了相当多的限制,因此,在高层建筑设计中,结构工程师应尽可能少采用或不用短肢剪力墙,以避免给后期设计工作增加不必要的麻烦。

五:材料力学的四种假设在高层建筑结构分析方面的体现。

材料力学的四种假设:一是连续性假设,二是均与性假设,三是各向同性假设,四是小变形假设。

下面就谈谈材料力学这四种经典假设在高层建筑中的运用。

弹性假定目前工程上实用的高层建筑结构分析方法均采用弹性的计算方法。

在垂直荷载或一般风力作用下,结构通常处于弹性工作阶段,这一假定基本符合结构的实际工作状况。

但是在遭受地震或强台风作用时,高层建筑结构往往会产生较大的位移,出现裂缝,进入到弹塑性工作阶段。

此时仍按弹性方法计算内力和位移时不能反映结构的真实工作状态的,应按弹塑性动力分析方法进行设计。

小变形假定小变形假定也是各种方法普遍采用的基本假定。

但有不少人对几何非线性问题(P-△效应)进行了一些研究。

一般认为,当顶点水平位移与建筑物高度H的比值△/H>1/500时,P-△效应的影响就不能忽视了。

刚性楼板假定许多高层建筑结构的分析方法均假定楼板在自身平面内的刚度无限大,而平面外的刚度则忽略不计。

这一假定大大减少了结构位移的自由度,简化了计算方法。

并为采用空间薄壁杆件理论计算简体结构提供了条件。

一般来说,对框架体系和剪力墙体系采用这一假定是完全可以的。

六:材料力学在生活建筑学中的运用在人类社会的发展过程中,材料力学的知识涉及人类发展的诸多领域。

在建造房屋时,人们要考虑到各种梁、柱的受力及所用材料所能承载的负载大小的问题;在制造飞机、轮船时,人们要运用流体力学和材料力学方面的知识,以在增大运输工具载重量的同时减少发生危险的机率;而在资源采集的过程中,也少不了力学方面的知识,利用渗透力学可以提高地层中石油的开采率,地质力学则与石油、天然气的运移有着密不可分的关系;在与每个人的生命息息相关的生物医学方面,也涉及到很多力学问题,骨骼的强度和刚度、关节软骨中的应力是骨力学的内容,血液在血管里面流动则是流体力学的发展应用。

材料力学与其他力学知识的综合运用,使各种事情变得便利,同时给人们的生活提供了很大的帮助,尤其在建筑学方面做出了极大的贡献,如材料强度的鉴定,稳定性的探究,刚度的鉴定,材料型号的选取,材料许用应力的确定,材料延性、材料塑性的判定、符合高分子材料在现实生活中的具体运用形式和运用领域等。

材料力学的知识极富,在生活的各方面运用广泛,使各个行业迅速发展,同时也对科学研究与技术开发也提供了必要的了理论基础。

相关文档
最新文档