人教版初二数学等边三角形教案
人教版八年级数学上册13.3.2等边三角形教学设计

-提问:“这些三角形有什么特别之处?它们的边长有什么关系?”
-学生思考后回答:“这些三角形的边长都相等。”
3.教师揭示课题:今天我们要学习的等边三角形,就是具有三边相等的特殊三角形。
(二)讲授新知,500字
1.教师通过几何画板动态展示等边三角形的性质,让学生直观感受等边三角形的特征。
作业布置要求:
1.作业量适中,确保学生能在规定时间内完成;
2.注重作业质量,培养学生认真、严谨的学习态度;
3.鼓励学生主动思考、积极探索,提高解决问题的能力;
4.教师及时批改作业,给予学生反馈,指导他们改进学习方法,提高学习效果。
-教师适时引导,补充讲解,确保学生准确掌握等边三角形的性质。
3.案例分析,实际应用
-通过典型例题,引导学生运用等边三角形的性质解决问题,巩固所学知识;
-设计实际应用题,让学生体会数学与生活的联系,提高解决实际问题的能力。
4.巩固练习,分层指导
-设计有针对性的练习题,巩固学生对等边三角形性质的理解和应用;
(五)总结归纳,500字
1.教师引导学生回顾本节课所学内容,总结等边三角形的性质、判定方法及在实际中的应用。
2.学生分享自己在学习等边三角形过程中的收获和感悟。
3.教师强调本节课的重点知识,布置课后作业,为下一节课的学习做好铺垫。
4.教师鼓励学生在生活中观察、发现等边三角形的应用,激发他们学习数学的兴趣。
-根据学生的认知水平,进行分层指导,确保每个学生都能在原有基础上得到提高。
5.总结反思,拓展延伸
-引导学生总结本节课的学习内容,形成知识结构;
-布置拓展性思考题,激发学生的思维,为下一节课的学习做好铺垫。
人教版八年级上册数学13.3.2等边三角形教学设计

3.学生在解决等边三角形相关问题时的策略和方法有待提高,教师应引导学生运用所学知识,培养学生的几何解题技巧。
4.学生在学习过程中可能存在合作意识不强、自主学习能力不足等问题,教师应注重培养学生的团队协作能力和自主学习能力。
b.面积:底乘以高,或(周长^2)/12。
(三)学生小组讨论
1.教师组织学生进行小组讨论,让学生在讨论中进一步理解等边三角形的性质。
2.小组任务:
a.探讨等边三角形的性质,并用自己的语言进行描述。
b.举例说明等边三角形在生活中的应用。
c.对比等边三角形与等腰三角形的性质,总结它们的联系与区别。
3.教师巡回指导,解答学生在讨论过程中遇到的问题。
d.等边三角形具有轴对称性,对称轴为中线、高线、角平分线。
3.等边三角形与等腰三角形的联系与区别:
a.联系:等边三角形是特殊的等腰三角形,等腰三角形的两边相等,等边三角形的三边相等。
b.区别:等边三角形的三个角相等,等腰三角形的顶角和底角不一定相等。
4.等边三角形的周长、面积计算方法:
a.周长:三边之和。
(四)课堂练习
1.设计具有代表性的练习题,让学生独立完成,巩固所学知识。
2.练习题类型:
a.判断题:判断哪些图形是等边三角形。
b.选择题:选择正确的等边三角形性质。
c.计算题:计算给定等边三角形的周长和面积。
d.应用题:运用等边三角形的性质解决实际问题。
3.教师对学生的解答进行点评,指出错误原因,指导解题方法。
3.设计丰富的教学活动,如小组讨论、自主探究、课堂讲解等,让学生在活动中掌握等边三角形的性质和应用。
人教版数学八年级上册12.3.2《等边三角形》教学设计

人教版数学八年级上册12.3.2《等边三角形》教学设计一. 教材分析等边三角形是初中数学的重要内容,它既有三角形的普遍性质,又有自己独特的性质。
人教版数学八年级上册12.3.2《等边三角形》一节,主要让学生掌握等边三角形的定义、性质和判定方法,以及了解等边三角形在实际生活中的应用。
通过学习,学生能进一步理解三角形的性质,提高解决问题的能力。
二. 学情分析学生在学习等边三角形之前,已经学习了三角形的分类、三角形的性质等知识,具备了一定的图形观念和空间想象力。
但部分学生对三角形的性质理解不深,对等边三角形的认识可能仅停留在表面。
因此,在教学过程中,需要关注学生的知识基础,引导学生深入理解等边三角形的性质。
三. 教学目标1.知识与技能:掌握等边三角形的定义、性质和判定方法,能运用等边三角形的性质解决实际问题。
2.过程与方法:通过观察、操作、猜想、验证等方法,培养学生的空间想象能力和推理能力。
3.情感态度与价值观:培养学生对数学的兴趣,增强学生对几何图形的审美观念。
四. 教学重难点1.重点:等边三角形的定义、性质和判定方法。
2.难点:等边三角形性质的证明和应用。
五. 教学方法1.情境教学法:通过生活实例引入等边三角形,激发学生的学习兴趣。
2.启发式教学法:引导学生观察、操作、猜想、验证等边三角形的性质,培养学生的思维能力。
3.小组合作学习:让学生在小组内讨论、分享学习心得,提高学生的合作能力。
六. 教学准备1.教学课件:制作课件,展示等边三角形的图片、性质和判定方法。
2.教学素材:准备一些等边三角形的实物模型,如三角形纸片、塑料三角形等。
3.教学工具:准备黑板、粉笔、直尺、圆规等。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的等边三角形图片,如金字塔、自行车的三角形架等,引导学生关注等边三角形。
提问:你们知道这些图形有什么共同的特点吗?让学生思考并回答,从而引出等边三角形的定义。
2.呈现(10分钟)展示等边三角形的性质和判定方法。
八年级数学上册《等边三角形的性质》教案、教学设计

(1)请学生完成教材第页的练习题,重点加强对等边三角形性质的记忆和理解。
(2)运用等边三角形的性质,计算给定等边三角形的面积和周长,并简要说明计算过程。
2.提高拓展题:
(1)探索等边三角形内角平分线、中线、高之间的关系,并运用这些性质解决பைடு நூலகம்际问题。
(2)在等边三角形中,若以一个顶点为圆心,边长为半径画圆,求圆内接三角形的其他顶点与该顶点的距离。
4.通过对等边三角形的性质的学习,让学生掌握几何图形的对称美和简洁美,提高他们对数学美的欣赏能力。
(二)过程与方法
1.采用问题驱动的教学方法,引导学生通过观察、猜想、验证等过程,自主发现等边三角形的性质。
2.利用几何画板等教学工具,让学生直观感受等边三角形的性质,提高他们对几何图形的理解能力。
3.通过小组合作、讨论交流等形式,培养学生合作学习的能力,提高他们解决问题的效率。
四、教学内容与过程
(一)导入新课
1.引入实例:展示一幅美丽的等边三角形图案,如古代建筑中的窗花、艺术品等,引发学生对等边三角形的关注。
2.提出问题:请学生观察图案,思考等边三角形具有哪些特点?它们之间有何联系?
3.创设悬念:通过问题引导学生思考,为新课的学习做好铺垫,激发学生的探究欲望。
(二)讲授新知
6.课后作业,拓展延伸:布置具有挑战性的课后作业,使学生在课后继续巩固所学知识,同时培养他们的拓展思维能力。
7.教学评价,关注成长:在教学过程中,教师应关注学生的成长,采用多元化评价方式,如课堂表现、作业完成情况、小组合作表现等,全面评价学生的学习效果。
8.情感教育,培养兴趣:在教学过程中,注重激发学生对等边三角形性质的兴趣,引导学生体验数学发现的乐趣,培养他们热爱数学的情感。
人教版八年级数学上册13.3.2《等边三角形(1)》教学设计

人教版八年级数学上册13.3.2《等边三角形(1)》教学设计一. 教材分析等边三角形是八年级数学上册的教学内容,它是三角形的一种特殊形式,具有三条边相等、三个角相等的性质。
本节课的教学内容主要包括等边三角形的定义、性质和判定。
教材通过引入等边三角形的概念,让学生了解等边三角形的基本性质,并通过实例演示等边三角形的判定方法。
通过本节课的学习,学生能够掌握等边三角形的基本性质,并能够运用这些性质解决相关问题。
二. 学情分析学生在学习本节课之前,已经掌握了三角形的基本概念和性质,具备了一定的观察和推理能力。
然而,对于等边三角形的特殊性质和判定方法,学生可能较为陌生。
因此,在教学过程中,需要注重引导学生通过观察和推理来发现等边三角形的性质,并通过实例来巩固和应用这些性质。
三. 教学目标1.知识与技能:理解等边三角形的定义,掌握等边三角形的基本性质,学会判定一个三角形是否为等边三角形。
2.过程与方法:通过观察、推理和举例,培养学生的逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.重点:等边三角形的定义和性质。
2.难点:等边三角形的判定方法。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动参与课堂讨论。
2.引导发现法:通过提问和引导,让学生自主发现等边三角形的性质,培养学生的推理能力。
3.实例教学法:通过举实例,让学生更好地理解等边三角形的性质和判定方法。
六. 教学准备1.教学课件:制作课件,展示等边三角形的图片和实例。
2.教学道具:准备一些等边三角形的模型或图片,用于展示和操作。
3.练习题:准备一些有关等边三角形的练习题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)通过展示一些等边三角形的图片,引导学生观察和思考:这些三角形有什么特殊的性质?你能否找出它们之间的共同点?2.呈现(10分钟)向学生介绍等边三角形的定义和性质,并通过举例来展示等边三角形的判定方法。
人教版数学八年级上册1332等边三角形教学设计

(4)应用拓展:设计具有实际背景的问题,让学生运用所学知识解决,培养学生的实践能力;
(5)总结反思:通过课堂小结,让学生回顾本节课所学内容,巩固知识体系。
3.教学评价:
(1)关注学生在课堂上的参与程度,评价学生的合作交流能力;
(3)利用问题驱动的教学方法,引导学生主动探究、合作交流,突破教学难点;
(4)实施分层教学,针对不同学生的学习需求,设计梯度性问题,使每个学生都能在原有基础上得到提高。
2.教学过程:
(1)导入新课:通过展示生活中的等边三角形实例,引导学生发现等边三角形的特征,为新课学习奠定基础;
(2)探究性质:组织学生进行画图、测量、折叠等操作,探究等边三角形的性质,培养学生的几何思维;
(二)讲授新知,500字
1.教师给出等边三角形的定义,强调等边三角形的三条边相等、三个角相等的特点。
2.引导学生通过画图、测量、折叠等操作,探究等边三角形的性质,如:内角都是60度,中线、高线、角平分线重合等。
3.讲解等边三角形的判定定理,如:三边相等的三角形是等边三角形、有两边相等且夹角是60度的三角形是等边三角形等。
5.预习下一节课内容,了解等边三角形在几何证明中的应用,为课堂学习做好准备。
作业布置要求:
1.作业量适中,难度分层,使不同层次的学生都能得到有效训练。
2.鼓励学生自主完成作业,培养独立思考和解决问题的能力。
3.作业批改要及时,针对学生的错误,给出具体指导和反馈。
4.激励学生在完成作业过程中,积极与同学交流讨论,提高合作学习能力。
1.学生对等边三角形的概念已有初步了解,但对其判定和应用方面的知识掌握不足。
人教版数学八年级上册 13 3 2等边三角形 教案

第十三章轴对称13.3.2等边三角形(第一课时)教学目标知识与技能1.探索等边三角形的性质和判定;2.能运用等边三角形的性质和判定解决实际问题.过程与方法1.经历运用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象思维;2.经历观察、实验、猜想、证明的数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点.情感与态度学生积极参与数学学习活动,增强对数学的好奇心和求知欲;并通过在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.重点等边三角形性质定理与判定定理的发现与证明.难点 1.等边三角形判定定理的发现与证明;2.引导学生全面、周到地思考问题.教法操作、演示、讲解学法观察、操作、合作学习教学设计教学环节教学内容师生活动设计意图一、情境引入对于同一类型的几何图像的研究,我们常常按照从一般到特殊的思路进行,比如我们在第十一章研究了一般三角形后,在上节课就研究了把一般三角形边特殊化后的等腰三角形,那如果我们再把等腰三角形的边特殊化,大家想想会得到什么样三角形呢?追问1:满足什么条件的三角形是等边三角形?三条边都相等的三角形是等边三角形.教师提问并引导学生思考回答问题.通过情境引入课题,体会等腰三角形与等边三角形的联系与区别,类比等腰三角形的性质和判定为本节课所学知识做好铺垫.二、观察探究提问:等腰三角形与等边三角形有什么区别和联系?联系:等边三角形是特殊的等腰三角形;区别:等边三角形有三条相等的边,而等腰三角形只有两条.追问1:等腰三角形有哪些特殊的性质呢?等边对等角.三线合一思考:将等腰三角形的性质用于等边三角形,你能得到什么结论?结合等腰三角形的性质,你能填出等边三角形的性质与判定吗?学生填表,并小组讨论,班内交流.引导学生探究等边三角形的性质.追问:对“等边三角形的三个内角都相等,并且每一个角都等于60°”这一结论进行证明.归纳:等边三角形的性质:等边三角形的三个内角都相等,并且每一个角都等于60°.符号语言:∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°.等腰三角形等边三角形图形定义性质判定学生证明,师板演.师生共同归纳.学生操作后,小组进行探究,班内汇报,师生共同总结.学生证明,师板演.对所得命题进行证明,来说明猜想的正确性.明确等边三角形的性质,并规范符号语言的表达形式.引导学生探究等边三角形的判定方法.明确等边三角形的判定定理,并规范符号语言的表达形式.思考:将等腰三角形的判定用于等边三角形,你能得到什么结论?结合等腰三角形的判定,你能填出等边三角形的判定吗?思考1:一个三角形的三个内角满足什么条件是等边三角形?思考2:一个等腰三角形满足什么条件是等边三角形?结论:三个角都相等的三角形或者一个角为60°的等腰三角形.请你将得到的这两个命题进行证明.归纳:等边三角形的判定定理:定理1:三个角都相等的三角形是等边三角形.符号语言:在△ABC 中,∵∠A=∠B =∠C ,∴△ABC 是等边三角形.定理2:有一个角为60°的等腰三角形是等边三角形.符号语言:在△ABC 中,∵BC =AC,∠A =60°,∴△ABC 是等边三角形.三、例题讲解例:如图,△ABC 是等边三角形,DE∥BC, 分别交AB,AC 于点D,E.求证:△ADE 是等边三角形.追问:本题还有其他证法吗?学生尝试练习.小组讨论,班内交流对等边三角形的性质与判定进行简单的综合运用.开拓学生的思维.四、巩固练习例1:已知:△ABC是等边三角形,D,E,F分别是各边上的一点,且AD = BE = CF.求证:△DEF是等边三角形.例2:如图,△ABC为等边三角形,点D,E分别在BC,AC 边上,且AE=CD,AD 与BE 相交于点F.(1)求证:△ABE ≌△CAD;(2)求∠BFD 的度数.学生练习后全班交流,师讲评.对学习本节课所学知识进行巩固应用.五、课堂测试1.下面给出的几种三角形:①有两个角是60°的三角形;②一边上的高也是这边上的中线的三角形; ③有一个外角120°的等腰三角形.其中一定是等边三角形的是 _____.2.如图,△ABC 的边BC上有D、E 两点,且学生思考并回答,师讲评.对学习本节课所学知识进行巩固应用.BD =DE =EC = AD= AE,则∠BAC =_____.3.如图,在△ABC 中,∠BAC =120°,AD平分∠BAC,DE∥AB,AD=3,CE=5,则AC 的长为_____.六、课堂小结谈谈你的收获和体会(1)本节课学习了等边三角形的性质和判定;(2)等边三角形与等腰三角形相比有哪些特殊的性质?共有几种判定等边三角形的方法?(3)结合本节课的学习,谈谈研究三角形的方法.师引导学生归纳总结.旨在让学生学会归纳总结,梳理知识,提高认识.七、实践延伸课本:P80页练习题1,2 检测学生对本节知识的掌握情况.教学反思:本节课主要研究等边三角形的性质及判定,由于等边三角形是特殊的等腰三角形,学生对等边三角形的性质及判定的探究可类比等腰三角形来完成,学生参与的好,讨论热烈,在对其性质及判定的应用上,文字语言符号转化为符号语言时,有部分学生应用的不好,今后要注意性质的应用.。
《等边三角形》教案(最终五篇)

《等边三角形》教案(最终五篇)第一篇:《等边三角形》教案等边三角形一、教学目标(1)知识与技能:掌握等边三角形的性质和判定方法,并能运用等边三角形的性质和判定方法解决有关数学问题.(2)过程与方法:通过讨论,发现和归纳等边三角形的判定方法,并用演绎推理的方法进行证实.(3)情感态度与价值观:通过对等边三角形有关知识的学习,感悟数学思想在现实生活中的应用,并从中感受图形的魅力之处。
二、教学重难点(1)教学重点:等边三角形的性质及判定及其应用。
(2)教学难点:探索等边三角形性质及判定的过程。
三、教学策略:(1)教学方法:运用小组合作学习,独立思考与小组合作相结合,发挥学生之间的相互合作、相互帮助的精神。
(2教学手段:课上运用多媒体课件激发学生的学习兴趣。
四、教学过程:1、旧识回顾,导入新课与学生一起回顾等腰三角形的定义、性质以及判定。
师:等腰三角形与等边三角形有什么样的关系呢? 生:等边三角形是特殊的等腰三角形,所以等边三角形具有等腰三角形的所有性质。
设计意图:复习知识为本节课新知类比学习做准备,引导学生自己探究等腰三角形与等边三角形的关系。
2、创设情景,探究新知1.创设问题:根据等边三角形的定义结合等腰三角形的性质,你能得出等边三角形有什么性质?并进行证明。
设计意图:让学生在已有知识的基础上,启发学生运用类比的思想得出等边三角形的性质。
2.归纳总结等边三角形的性质。
设计意图:让学生对等边三角形的性质由系统的认识。
进一步让学生体会定义既是性质又是判定。
3.创设问题情境:猜想一个三角形满足什么条件就是等边三角形?一个等腰三角形满足什么条件就是等边三角形?以小组为单位先猜想,再进行讨论探究,在已有知识结论的基础上验证自己的猜想。
设计意图:采用分类讨论的方法,即从边与角两方面来考虑,使学生能从中领悟数学分类讨论思想。
4.归纳总结等边三角形的判定方法。
设计意图:让学生对等边三角形的的判定方法有系统认识。
强化在应用中的思维技巧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等边三角形(一)活动1:回顾:什么是等边三角形?它与以前学过的等腰三角形有何关系?三条边都相等的三角形叫做等边三角形,它是一种特殊的等腰三角形。
活动2:复习等腰三角形的性质,探究等边三角形的性质完成表格,得出性质:活动3:1、复习等腰三角形常用的判定方法(1)两条边相等的三角形是等腰三角形。
(2)等角对等边。
2一般三角形等边三角形等腰三角形小结等边三角形常用的判定方法:边:三边相等的三角形是等边三角形角:三角相等的三角形是等边三角形边角:有一个角等于60°的等腰三角形是等边三角形活动4:例题:如图,△ABC是等边三角形,若点D、E分别在AB、AC上,当点D、E满足什么条件时,△ADE是等边三角形?请说明理由。
延伸:(1)当DE∥BC时,若点D、E分别在AB、AC的延长线上,结论依然成立吗?(2)当DE∥BC时,若点D、E分别在AB、AC的反向延长线上,结论依然成立吗?活动5:问题:等边三角形的三条中线一定交于一点吗?探究:等边三角形三条中线相交于一点,画出图形,找出图中所有的全等三角形,并证明它们全等。
A等边三角形(二)一、猜测:问题:在直角三角形中,如果一个锐角等于30°那么它所对的直角边与斜边数量上有怎样的关系?二、探究:如图,将两个含有30°角的三角板放在一起,你能借助这个图形,找到Rt△ABD的直角边BD与斜边AB之间的数量关系吗?理由如下:∵△ABD 与△ADC 关于AD 轴对称 ∴AB =AC△ABC 是等边三角形又∵AD ⊥BC ∴BD =DC =1/2AB总结:在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半.几何语言:在Rt △ABC 中( ∠C =90°)∵∠A =30°∴AC =2BC (BC=1/2AC)三,练一练(1)在Rt △ABC 中, 如果 ∠B CA= 90° , ∠A = 30 ° AB=4,求BC 之长。
(2)在Rt △ABC 中, 如果 ∠B CA= 90° , ∠B = 60 ° AB=4,求BC 之长。
(3)在Rt △ABC 中, 如果 ∠B CA= 90° , ∠B = 60 ° BC=4,求AB 之长。
(4).在Rt △ABC 中, ∠B CA = 90°,∠B = 2 ∠A,问∠B 、∠A 各是多少度? AB=4,求BC 的长。
四.例题下图是屋架设计图的一部分,点D 是斜梁AB 的中点,立柱BC 、DE 垂直于横梁AC ,AB=7.4m ,∠A=30°,立柱BD 、DE 要多长?分析:观察图形可以发现在Rt △AED 与Rt △ACB 中,由于∠A=30°,所以DE=12AD ,BC=12AB ,又由D 是AB 的中点,所以DE=14AB . 解:因为DE ⊥AC ,BC ⊥AC ,∠A=30°,由定理知BC=12AB ,DE=12AD , 所以BD=12×7.4=3.7(m ).又AD=12AB ,所以DE=12AD=12×3.7=1.85(m ).答:立柱BC 的长是3.7m ,DE 的长是1.85m .五.练习:1、三角形三内角度数比为1:2:3,它的最大边长是4cm ,则最小边长为2、等腰三角形的顶角为60°,底边长为8cm ,则腰长为3、等腰三角形顶角为30°,腰长是4cm ,则三角形面积是4、等腰三角形的底角为15°,腰长为2cm ,则腰上的高为 。
(1)D CABC ABD CAEB5、△ABC 中, ∠ACB=90°, ∠B=60°,BC=3cm,则 AB= . 课堂检测:已知△ABC 中,AB=AC ,∠C=30°,AB ⊥AD ,AD=2cm ,求BC 的长。
等边三角形(三)1.等边三角形的性质:三边相等;三角都是60°;三边上的中线、高、角平分线相等 2.等边三角形的判定:三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形; 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半注意:推论1是判定一个三角形为等边三角形的一个重要方法.推论2说明在等腰三角形中,只要有一个角是600,不论这个角是顶角还是底角,就可以判定这个三角形是等边三角形。
推论3反映的是直角三角形中边与角之间的关系.补充:已知如图所示, 在△ABC 中, BD 是AC 边上的中线, DB ⊥BC 于B, ∠ABC=120o , 求证: AB=2BC证明: 过A 作AE ∥BC 交BD 的延长线于E ∵DB ⊥BC(已知)∴∠AED=90o (两直线平行内错角相等) 在△ADE 和△CDB 中⎪⎩⎪⎨⎧=∠=∠∠=∠)()()(已知对顶角相等已证CD AD BDC ADE CBD E ∴△ADE ≌△CDB(AAS)∴AE=CB(全等三角形的对应边相等) ∵∠ABC=120o ,DB ⊥BC(已知) ∴∠ABD=30o在Rt △ABE 中,∠ABD=30o ∴AE=21AB(在直角三角形中,如果一个锐角等于30o , 那么它所对的直角边等于斜边的一半) ∴BC=21AB 即AB=2BC 点评 本题还可过C 作CE ∥ABBA等腰三角形与等边三角形复习一、知识回顾1、等腰三角形:有两条边相等的三角形是等腰三角形。
2、等腰三角形的性质性质1:等腰三角形的两个底角相等(简写成“等边对等角”)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
3、等边三角形三条边都相等的三角形叫做等边三角形,也叫做正三角形。
4、等边三角形的性质等边三角形的三个内角都相等,•并且每一个内角都等于60°二、典型例题例1:(2010•江津区)如图,△ABC中,已知AB=AC=x,BC=6,则腰长x的取值范围是()A.0<x<3 B.x>3 C.3<x<6 D.x>6分析:根据三角形的三边关系定理来确定腰长x的取值范围.解答:若△ABC是等腰三角形,需满足的条件是:6-x<x<6+x,解得x>3;故选B.例2:有两边相等的三角形的两边长为3cm,7cm,则它的周长为()A.15cm B.17cm C.13cm D.17cm或13cm分析:分情况考虑:相等的两边是3cm时或相等的两边是7cm时.根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,判断能否组成三角形后,再进一步计算其周长.解答:当相等的两边是3cm时,此时3+3<7,不能组成三角形,应舍去;当相等的两边是7cm时,此时能够组成三角形,则其周长是7+7+3=17(cm).故选B.例3:(2010•宁波)如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别为∠ABC,∠ACB的角平分线,则图中等腰三角形共有()A.5个B.6个 C.7个D.8个分析:由已知条件,根据等腰三角形的性质和判定,角的平分线的性质,三角形内角和等于180°得到各个角的度数,应用度数进行判断,答案可得.解答:设CE与BD的交点为点O,∵AB=AC,∠A=36°,∴∠ABC=∠ACB,再根据三角形内角和定理知,∠ABC=∠ACB=(180°-36°)/2 =72°,∵BD是∠ABC的角的平分线,∴∠ABD=∠DBC=1/2 ∠ABC=36°=∠A,∴AD=BD,同理,∠A=∠ACE=∠BCE=36°,AE=CE,∵∠DBC=36°,∠ACD=72°,根据三角形内角和定理知,∠BDC=180°-72°-36°=72°∴BD=BC,同理CE=BC,∵∠BOC=180°-36°-36°=108°,∴∠ODC=∠DOC=∠OEB=∠EOB=72°,∴△ABC,△ADB,△AEC,△BEO,△COD,△BCE,△BDC,△BOC都是等腰三角形,共8个.故选D.例4:已知:如图,△ABD和△ACE均为等边三角形,且∠DAB=∠CAE=60°,那么△ADC≌△AEB的根据是()A.边边边 B.边角边 C.角边角 D.角角边分析:根据判定方法寻找条件判断.解答:∵△ABD和△ACE均为等边三角形,∴DA=BA,AC=AE,∠DAB+∠BAC=∠CAE+∠BAC.∴△ADC≌△AEB.(SAS)故选B.例5:如图,在△ABC中,D、E在BC上,且BD=DE=AD=AE=EC,则∠BAC的度数是()A.30°B.45° C.120°D.15°分析:根据直角三角形的判定得△ABE是直角三角形,再根据等腰三角形的性质、三角形的内角和定理求解.解答:设∠B=x∵BD=AD则∠B=∠BAD=x,∠ADE=2x,∵AD=AE∴∠AED=∠ADE=2x,∵AE=EC,∠AED=∠EAC+∠C∴∠EAC=∠C=x又BD=DE=AD,由直角三角形斜边的中线等于斜边的一半,知∠BAE=90°,则∠B+∠AED=x+2x=90°得x=30°∴∠BAC=180°-2x=120°故选C.例6:已知△ABC≌△DEF,若∠A=60°,∠F=90°,DE=6cm,则AC=()A.3cm B.4cm C.5cm D.6cm分析:由△ABC≌△DEF,∠F=90°,DE=6cm,根据全等三角形的性质,即可求得∠C=90°,AB=6cm,又由∠A=60°,根据三角形内角和定理,即可求得∠B=30°,然后根据在直角三角形中,30°角所对的直角边等于斜边的一半,即可求得AC的长.解答:∵△ABC≌△DEF,∠F=90°,DE=6cm,∴∠C=∠F=90°,AB=DE=6cm,∵∠A=60°,∴∠B=30°,∴AC=1/2 AB=3cm.故选A.例7:如图,已知EA⊥AB,BC∥EA,EA=AB=2BC,D为AB的中点,那么下列式子不能成立的是()A.DE=AC B.DE⊥AC C.∠CAB=30°D.∠EAF=∠ADF分析:已知EA=AB=2BC,且D是AB中点,那么AD=BC,进而可证得△AED、△BAC全等,可根据这个条件进行判断.解答:∵EA=AB=2BC,AB=2AD,∴AD=BC;又∵EA⊥AB,BC∥EA,即∠EAD=∠B=90°,∴Rt△EAD≌Rt△ABC,∴DE=AC;又∠EAF、∠ADF同为∠FAD的余角,∴∠EAF=∠ADE;故A、B、D的结论都正确;Rt△CAB中,AB=2BC,显然sin∠CAB≠1/2 ,所以∠CAB≠30°,因此C的结论是错误的;等腰以及等边三角形练习题一.填空题第1题第3题第4题第7题第8题1. 已知如图,A、D、C在一条直线上AB=BD=CD, ∠C=40°,则∠ABD=__________________ED CABF2. 在等腰△ABC 中, AB =AC, AD ⊥BC 于D, 且AB +AC +BC =50cm, 而AB +BD +AD =40cm, 则AD =___________cm.3. 如图, ∠P =25°, 又PA =AB =BC =CD, 则∠DCM =_______度.4. 如图已知∠ACB =90°, BD =BC, AE =AC, 则∠DCE =__________度. 二.单选题5. 下列命题正确的是[ ]A.等腰三角形只有一条对称轴B.直线不是轴对称图形C.直角三角形都不是轴对称图形D.任何一角都是轴对称图形6. 等腰三角形一腰上的高与底所夹的角等于 [ ] A.顶角 B.顶角的21C.顶角的2倍 D 底角的217. 如图, 在△ABC 中, AB =AC, CD ⊥AB 于D, 则下列判断正确的是[ ]A.∠A =∠BB.∠A =∠ACDC.∠A =∠DCBD.∠A =2∠BCD 8. 如图已知: AB =AC =BD, 那么∠1与∠2之间的关系满足[ ] A.∠1=2∠2 B.2∠1+∠2=180° C.∠1+3∠2=180° D.3∠1-∠2=180° 三.证明题9. 已知:如图,BE 和CF 是△ABC 的高线,BE=CF,H 是CF 、BE 的交点.求证:HB=HC10. 如图,△ABC 中,D 在BC 延长线上,且AC=CD,CE 是△ACD 的中线,CF 平分∠ACB,交AB 于F,求证:(1)CE ⊥CF;(2)CF ∥AD.11.如图:Rt △ABC 中,∠C=90°,∠A=22.5°,DC=BC, DE ⊥AB .求证:AE=BE .12.下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形; ③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有( ) A .①②③ B .①②④ C .①③ D .①②③④13.如图,D 、E 、F 分别是等边△ABC 各边上的点,且AD=BE=CF ,则△DEF•的形状是( ) A .等边三角形 B .腰和底边不相等的等腰三角形21EDCA BD CAE DCAHFC .直角三角形D .不等边三角形14.Rt △ABC 中,CD 是斜边AB 上的高,∠B=30°,AD=2cm ,则AB 的长度是( ) A .2cm B .4cm C .8cm D .16cm15.如图,E 是等边△ABC 中AC 边上的点,∠1=∠2,BE=CD ,则对△ADE 的形状最准备的判断是( )A .等腰三角形B .等边三角形C .不等边三角形D .不能确定形状 三、解答题16.已知D 、E 分别是等边△ABC 中AB 、AC 上的点,且AE=BD ,求BE 与CD 的夹角是多少度?17.如图,△ABC 中,AB=AC ,∠BAC=120°,AD ⊥AC 交BC•于点D ,求证:BC=3AD.18.如图,已知点B 、C 、D 在同一条直线上,△ABC 和△CDE•都是等边三角形.BE 交AC 于F ,AD 交CE 于H , ①求证:△BCE ≌△ACD ; ②求证:CF=CH ;③判断△CFH 的形状并说明理由.。