现代电机控制技术
现代电机控制技术

dφAA dt
(1-17)
根据电路基尔霍夫第二定律,线圈 A 的电压方程为
uA = RA iA − eAA = RA iA +
(1-18)
在时间 dt 内输入铁心线圈 A 的净电能 dWeAA 为
2 dWeAA = u A iA dt − RA iA dt = −eAA iA dt = iA dψ AA
1 Bδ2 Wm = Vδ 2 μ0
(1-16)
式中, Wm 为主磁路磁场能量,它全部储存在气隙中; Vδ 为气隙体积。
16
现代电机控制技术
第1章 基础知识
当励磁电流 iA 变化时,磁链ψ AA 将发生变化。根据法拉第电磁感应 定律,ψ AA 的变化将在线圈 A 中产生感应电动势 eAA 。若设 eAA 的正方 向与 iA 正方向一致, iA 方向与 φmA 和 φσA 方向之间符合右手法则,则有
LmA 是个与励磁电流 iA 相关的非线性参数。若将铁心磁路的磁阻忽略不计
2 ( μ Fe = ∞ ), LmA 便是个仅与气隙磁导和匝数有关的常值,即有 LmA = N A Λδ 。
13
现代电机控制技术
第1章 基础知识
在磁动势 f A 作用下,还会产生没有穿过气隙主要经由铁心外空 气磁路而闭合的磁场,称之为漏磁场。它与线圈 A 交链,产生漏磁 链ψ σA ,可表示为
f A = H δδ = φδ Rδ
气隙磁通,所以又将 φmA 称为励磁磁通。
(1-8c)
图 1-1 中,因为主磁通 φmA 是穿过气隙后而闭合的,它提供了
12
现代电机控制技术
第1章 基础知识
ψ mA = φmA N A
定义线圈 A 的励磁磁链为 (1-9) 由式(1-7)和式(1-9),可得
现代直线电机关键控制技术及其应用研究

现代直线电机关键控制技术及其应用研究一、本文概述随着科技的不断进步和工业领域的快速发展,现代直线电机及其关键控制技术已经成为现代工业自动化领域的重要研究内容。
直线电机以其高效、高精度、高速度等显著优点,在高速交通、精密机械、电子设备等多个领域得到了广泛应用。
然而,直线电机的控制技术作为影响其性能的关键因素,一直是研究的热点和难点。
本文旨在深入探讨现代直线电机的关键控制技术,并分析其在实际应用中的研究现状和发展趋势,为相关领域的科研工作者和工程师提供有益的参考。
本文首先简要介绍了直线电机的基本原理和分类,阐述了直线电机在现代工业中的重要地位。
随后,重点分析了直线电机的关键控制技术,包括位置控制、速度控制、力控制等方面,并详细探讨了各种控制技术的原理、特点以及适用场景。
在此基础上,本文还综述了直线电机在高速交通、精密机械、电子设备等领域的应用案例,分析了这些应用中的技术难点和解决方案。
本文展望了现代直线电机关键控制技术的发展趋势,探讨了未来可能的研究方向和应用前景。
通过本文的研究,旨在为推动现代直线电机控制技术的进步和实际应用的发展提供有益的借鉴和指导。
二、直线电机基本原理与分类直线电机,又称线性电机,是一种能够实现直线运动的特殊电机。
其基本原理与传统的旋转电机相似,都是基于电磁感应原理进行工作。
但与传统电机不同的是,直线电机不需要通过旋转运动转化为直线运动,而是直接产生直线运动。
直线电机的基本结构主要包括定子、动子和支撑结构。
定子通常由铁心和绕组构成,负责产生磁场;动子则负责在磁场中运动,其结构形式多样,可以是磁铁,也可以是带有绕组的导体。
当定子中的电流变化时,产生的磁场也会随之变化,进而驱动动子在直线方向上运动。
根据动子与定子之间的相对运动关系,直线电机可以分为动磁式和动圈式两类。
动磁式直线电机中,动子是磁体,定子是线圈,电流在定子线圈中产生磁场,从而驱动动子做直线运动。
而动圈式直线电机则相反,动子是线圈,定子是磁体,电流在动子线圈中产生磁场,与定子磁场相互作用,驱动动子直线运动。
现代直线电机关键控制技术及其应用研究

现代直线电机关键控制技术及其应用研究随着现代工业自动化技术的不断发展,直线电机在工业生产中的应用越来越广泛。
直线电机具有结构简单、传动效率高、响应速度快等优点,因此受到了工业界的青睐。
而直线电机的关键控制技术则是直接影响其性能和应用效果的重要因素。
本文将从直线电机的控制原理、关键控制技术以及应用研究等方面进行探讨,旨在深入了解直线电机的控制技术及其应用。
一、直线电机的控制原理直线电机是一种能够将电能直接转换为机械运动的电动机,其工作原理类似于传统的旋转电机,但是输出的是直线运动而不是旋转运动。
直线电机通过电磁感应力产生运动,其控制原理主要包括电磁场调节、电流控制和位置控制等方面。
电磁场调节是指通过改变直线电机的磁场强度和方向来控制其运动。
一般来说,直线电机都是通过一组永磁体和电磁线圈组成,当在电磁线圈通电时,产生的电磁力会与永磁体之间的磁力相互作用,从而产生运动。
控制直线电机的磁场强度和方向,就可以实现对其运动的控制。
电流控制是指通过控制直线电机的电流大小和方向来实现运动控制。
在直线电机中,电流会影响电磁感应力的大小,因此通过调节电流大小和方向,可以控制直线电机的输出力和速度。
位置控制是指通过控制直线电机的位置来达到运动控制的目的。
直线电机通常会配备位置传感器,通过检测电机的位置信息,可以实时地控制电机的位置,从而实现精准的位置控制。
1. 电磁场调节技术电磁场调节技术是直线电机控制中的关键技术之一。
通过改变电磁线圈的电流大小和方向,可以实现对电磁场的调节,从而控制直线电机的运动。
在实际应用中,电磁场调节技术需要根据电机的要求和工作条件进行合理的设计和调节,以确保电机的性能和稳定性。
2. 电流控制技术三、直线电机的应用研究1. 工业自动化领域直线电机在工业自动化领域中具有广泛的应用前景。
在汽车生产线上,直线电机可以用于汽车车身焊接、喷漆、装配等环节的自动化操作;在半导体制造领域,直线电机可以用于半导体芯片的切割和封装等工艺中;在食品加工领域,直线电机可以用于食品包装、分拣等环节的自动化操作。
现代电机控制技术

现代电机控制技术
现代电机控制技术是当今机电行业的核心技术,它是以电机为驱动的机械系统的重要控制技术。
其影响着机电行业的发展,也影响着各个领域的应用。
电机控制技术的发展有利于提高产品效率、改善质量、控制能耗、减少成本等,从而改善企业的经济效率,更好地满足客户的需求。
现代电机控制技术主要分为两大类:一种是电动控制技术,它是利用电动机或其它电动装置来控制机械设备的运行;另一种是智能控制技术,它是通过计算机程序来控制机械设备的运行。
现代电机控制技术运用越来越广泛,它具有可靠性高、智能化、运行稳定、寿命长等优点,可以更有效地满足各个领域的需要。
它主要应用于工业控制、家用电器、电力系统、航空航天、核工业、交通运输等领域。
现代电机控制技术也有一些缺点,由于其运行受到外界条件影响,在实际应用中容易出现故障,因此需要定期保养,以确保其长期正常运行。
现代电机控制技术在机电行业的发展中起着重要作用,它不仅可以提高产品的质量和效率,还可以降低生产成本,从而为企业创造更大的经济效益。
未来,现代电机控制技术将会得到进一步的发展,
为机电行业的发展提供更多的可能性。
《现代电机控制技术(第2版)》第5章 三相永磁同步电动机直接转矩控制

ψs Lsis ψf (5-1) 电磁转矩的生成可看
成是两个磁场相互作用的 结果,可认为是由转子磁
图 5-1 面装式 PMSM 中的定子电流和磁链矢量
4
场与电枢磁场相互作用生成的。
由式(3-19),可得
te
p0ψf
is
p0
1 Ls
ψf
(Lsis )
(5-2)
因为电枢磁场和转子磁场分别是定、转子独立励磁磁场,所以可将式(5-2)
te
p0
1 Ls
ψf
(Lsis
ψf
)
1 p0 Ls ψf ψs
根据式(5-4),可进行直接转矩控制。
(5-4)
将式(5-4)表示为
te
p0
1 Ls
f
s
sin sf
(5-5)
在式(5-5)中,转子磁链矢量 ψf 的幅值不变,若能控制定子磁链矢
量 ψs 的幅值为常值,电磁转矩就仅与 sf 有关,sf 称负载角,通过控
(5-28)
ψs
2 D
2 Q
(5-29)
s
arcsin Q
ψs
(5-30)
式中, iD 和 iQ 由定子三相电流 iA、iB 和 iC 的检测值经坐标变换后求
得,uD 和 uQ 可以是检测值,也可直接由逆变器开关状态,利用式(4-41)
和式(4-42)求得。
22
2.电流模型
电流模型是利用式(5-16)和式(5-17)来获取 ψd 和 ψq 。 但这两个方程是以转子 dq 轴系表示的,必须进行坐标变换, 才能由 iD 和 iQ 求得 id 和 iq,这需要实际检测转子位置。
图 5-2 中,定子 磁链矢量 ψs 为
现代电机控制技术

现代电机控制技术
现代电机控制技术是电力驱动的系统的核心部分,能够满足现代电机多种要求。
由于发展迅速,越来越多的机械设备被自动化,越来越依赖电机的控制,电机的控制技术有着极其重要的作用。
本文主要介绍现代电机控制技术的基础:
1. 马达控制原理:马达控制通过电源和传动系统来控制电机,由于电源传输的能量可以控制电机驱动的机械元件,所以可以控制机械设备的运动状态。
2. 机器控制内容:机器控制是采用数字化电机控制系统来控制机械设备的运动状态。
它是将电机的控制信号与机器设备的动作联系起来,使机械设备可以根据电源传输的能量实现控制。
3. 电力控制:电力控制是指在指定的电流或功率中对电机进行控制,以实现特定的动作。
它通常是指根据电机控制信号调整电机输出参数,实现电机控制的能力。
4. 电源信号控制:电源信号控制是指用电源传输的信号来控制电机的运动状态,可以实现电机的高精度控制。
综上所述,现代电机控制技术已经发展得相当成熟,取得了很大的成就,它深刻地改变了机械设备的结构,并有效地提升了机械设备的性能,为各种机械设备的自动化提供了有力的支持。
《现代电机控制技术》课件

03 现代电机控制技术实现
数字信号处理器(DSP)在电机控制中的应用
数字信号处理器(DSP)是一种专用的微处理器,特别适合于进行高速数字信号处 理计算。
在电机控制中,DSP可以用于实时计算复杂的控制算法,实现精确的速度和位置控 制。
DSP通过接收编码器的反馈信号和输入的参考信号,计算出电机的控制量,并输出 到驱动器来控制电机的运行。
数字化与智能化
高效与节能
随着数字化和智能化技术的不断发展,电 机控制技术将更加智能化和自适应性。
未来电机控制技术将更加注重高效和节能 ,以适应绿色环保的需求。
网络化与远程控制
多学科交叉融合
网络化技术的发展将使得电机控制更加便 捷和远程化,提高设备的可维护性和安全 性。
电机控制技术将与多个学科交叉融合,如 人工智能、机器视觉和物联网等,以实现 更广泛的应用和创新。
02 电机类型和控制原理
直流电机及其控制原理
01
02
03
直流电机
利用直流电能转换为机械 能的电动机,具有较好的 调速性能和启动转矩。
控制原理
通过改变电机的输入电压 或电流,实现对电机转速 和转矩的控制。
调速方法
改变电枢电压、改变励磁 电流、串电机
利用交流电能转换为机械 能的电动机,具有结构简 单、价格便宜、维护方便 等优点。
交通运输
电机控制技术在交通领域有广泛应用 ,如电动汽车、轨道交通和航空电子 等。
能源转换与利用
电机控制技术有助于提高能源转换效 率和利用率,如风力发电、太阳能逆 变器和智能电网等。
智能家居与楼宇自动化
电机控制技术为智能家居和楼宇自动 化提供了技术支持,如智能家电、自 动门和安防系统等。
电机控制技术的未来趋势
现代电机控制技术

(1-16)
式中, Wm 为主磁路磁场能量,它全部储存在气隙中; Vδ 为气隙体积。
16
现代电机控制技术
第1章 基础知识
当励磁电流 iA 变化时,磁链ψ AA 将发生变化。根据法拉第电磁感应 定律,ψ AA 的变化将在线圈 A 中产生感应电动势 eAA 。若设 eAA 的正方 向与 iA 正方向一致, iA 方向与 φmA 和 φσA 方向之间符合右手法则,则有
磁导, Λδ =
1 μ0 S 。 = Rδ δ
将式(1-8a)写为
φδ = Λmδ f A
式中, Λmδ =
(1-8b)
Λm Λδ 1 , Λmδ 为串联磁路的总磁导, Λmδ = 。 Λm + Λδ Rmδ
11
式(1-8b)为磁路欧姆定律的另一种表达形式。
现代电机控制技术
第1章 基础知识
式(1-7)表明,作用在磁路上的总磁动势恒等于闭合磁路内各 段磁压降之和。 对图 1-1 所示的磁路而言,尽管铁心磁路长度比气隙磁路长 得多,但由于 μ Fe >> μ 0 ,气隙磁路磁阻还是要远大于铁心磁路的 磁阻。对于这个具有气隙的串联磁路,总磁阻将取决于气隙磁路 的磁阻,磁动势大部分将降落在气隙磁路中。 在很多情况下,为了问题分析的简化,可将铁心磁路的磁阻 忽略不计,此时磁动势 f A 与气隙磁路磁压降相等,即有
2 NA 2 = iA = N A ΛmδiA Rmδ
(1-10)
定义线圈 A 的励磁电感 LmA 为
LmA =
ψ mA
iA
2 NA 2 = = NA Λmδ Rmδ
(1-11)
LmA 表征了线圈 A 单位电流产生磁链ψ mA 的能力。对于图 1-1,又将 LmA 称
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
现代电机控制技术
第1章 基础知识 第2章 三相感应电动机矢量控制 第3章 三相永磁同步电动机矢量控制 第4章 三相感应电动机直接转矩控制 第5章 三相永磁同步电动机直接转矩控制 第6章 无速度传感器控制与智能控制
3
第1章 基础知识
1.1 电磁转矩 1.2 直、交流电机电磁转矩 1.3 空间矢量 1.4 矢量控制
9
0
1
2
3
4
5
6
7
8
9
a) 三相绕组由逆变器供电
b) 电子开关VT1、VT2、VT6闭合时的电路
图1-29 定子电压矢量 c) 电压矢量us1的构成
0
1
2
a) 正弦分布磁动势波
b) 正弦分布磁场
图1-30 A相绕组产生的正弦分布磁场
3
4
5
6
7
8
9
0
1
2
4
1.1 电磁转矩
1.1.1 磁场与磁能 1.1.2 机电能量转换 1.1.3 电磁转矩生成 1.1.4 电磁转矩控制
5
图1-1 双线圈励磁的铁心
6
7
磁压降
磁压降
磁路的 磁动势
8
9
铁心磁路 主磁通
铁心磁 路磁阻
气隙 磁通
气隙磁 路磁阻
0
1
2
3
4
5
6
7
8
9
0
1
2
3
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
转子励磁产生 的励磁转矩
转子凸极效应引 起的磁阻转矩
0
1
2
Hale Waihona Puke 3456
7
8
a) 定子三相绕组轴线
b) A相绕组产生磁场的分布
图1-23 A相绕组产生的磁场
9
0
1
2
3
4
5
6
7
8
3
图1-32 三相感应电动机内定、转子电流和各磁链矢量
4
5
6
7
8
9
0
1
2
3
4
5
6
7
a) 气隙磁场与导条中运动电动势
b) 导条中运动电动势大小空间分布
图1-34 气隙磁场与导条中电动势和电流的空间分布
8
c) 导条中电流空间分布
d)转子电流矢量
图1-34 气隙磁场与导条中电动势和电流的空间分布
4
5
6
7
8
9
输入系统 的净电能
磁场吸收 的总磁能
转变为机械 能的总能量
这里忽略了铁心磁路的介质损耗(不计铁磁材料的涡流和磁滞损耗)。
0
1
2
3
4
5
由iA和iB变化引 起的变压器电动 势所吸收的电能
由转子旋转引 起的运动电动 势吸收的电能
6
7
8
9
0
1
2
3
4
5
6
9
0
a) 气隙磁场与导条中变压器电动势
b) 导条中变压器电动势空间分布
图1-35 导条中变压器电动势
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7